Finding the domain of $f\circ g$

Because $(f \circ g)(x) = f(g(x))$,

in order for x to be in the domain of $f \circ g$, x must first be in the domain of g, since we first need to plug x into g, and in addition, g(x) must be in the domain of f, since we then need to plug g(x) into f.

Example

Let $f(x) = \frac{x+1}{x-2}$ and $g(x) = \frac{x-6}{x+3}$. The domain of f is $\{x \neq 2\}$. The domain of g is $\{x \neq -3\}$.

[a] If we try to find $(f \circ g)(-3)$, we first write it as f(g(-3)), and we immediately realize there's a problem because g(-3) would be $\frac{-3-6}{-3+3}$ which isn't defined since the denominator is 0.

The problem is that x = -3 isn't in the domain of g, so g(-3) doesn't give us a value, so we have nothing to plug into f, which means $(f \circ g)(-3) = f(g(-3))$ doesn't give us a value.

So, x = -3 isn't in the domain of $f \circ g$.

[b] Now, if we try to find $(f \circ g)(-12)$, we first write it as f(g(-12)). Now, $g(-12) = \frac{-12-6}{-12+3} = \frac{-18}{-9} = 2$. So we made it past the first obstacle in part [a].

> So now, $(f \circ g)(-12) = f(g(-12)) = f(2)$, and we realize there's a second issue because f(2) would be $\frac{2+1}{2-2}$ which isn't defined since the denominator is 0.

The problem is that, even though -12 is in the domain of g, g(-12) = 2 isn't in the domain of f. So, even though we can plug x = -12 into g and get a value g(-12) = 2, we can't plug that value g(-12) = 2 into f, which means $(f \circ g)(-12) = f(g(-12))$ doesn't give us a value.

So, x = -12 isn't in the domain of $f \circ g$ either.

So, looking back on the two examples above, in order for x to be in the domain of $f \circ g$, x must first be in the domain of g, so that we get a value when we plug x into g, and in addition, g(x) must be in the domain of f, so that we get a value when we later plug g(x) into f.

To find the domain of our example above, we first need to know the domains of both f and g. Remember that the domain of f is $\{x \neq 2\}$ and the domain of g is $\{x \neq -3\}$.

For the domain of $f \circ g$, x must first be in the domain of g, which means $x \neq -3$.

In addition, g(x) must be in the domain of f. Since the domain of f is $\{x \neq 2\}$, ie. all real numbers that are not equal to 2, that means g(x) can be any real number except 2. Or, algebraically, $g(x) \neq 2$. Since $g(x) = \frac{x-6}{x+3}$, we get $\frac{x-6}{x+3} \neq 2$, or $x-6 \neq 2(x+3)$,

or $x - 6 \neq 2x + 6$, or $x \neq -12$.

So, putting it together, in order for x to be in the domain of $f \circ g$, x must first be in the domain of g, ie. $x \neq -3$ and in addition, g(x) must be in the domain of f, ie. $x \neq -12$. So, the domain of $f \circ g$ is $\{x \neq -3 \text{ and } x \neq -12\}$.

Now, a common question is what happened to the condition in the domain of f that $x \neq 2$? Why don't we have to say $x \neq 2$ in the domain of $f \circ g$? The easiest way to understand this is to try to find $(f \circ g)(2)$ and see what happens.

Now $(f \circ g)(2) = f(g(2)) = f(-\frac{4}{5}) = -\frac{1}{14}$. So, we can plug x = 2 into $f \circ g$ and get a value, so, x = 2 is in the domain of $f \circ g$, even though x = 2 is not in the domain of f. If you look at the calculation of $(f \circ g)(2) = f(g(2))$ above, you see that when we plugged x = 2 into $f \circ g$, we first plugged x = 2 into g, got $-\frac{4}{5}$, and it was this $-\frac{4}{5}$ that we then plugged into f. Since $-\frac{4}{5}$ is in the domain of f, we were able to the final value of $(f \circ g)(2)$. The x = 2 we plugged into $f \circ g$ was never plugged directly into f, so there was no problem with x = 2 in the domain of $f \circ g$.

NOTE: The restriction that $x \neq 2$ in the domain of fbecomes the restriction $g(x) \neq 2$ when finding the domain of $f \circ g$, since it is g(x) that gets plugged into f, not x itself.