The graph of a function f is shown below. Sketch a graph of f^{-1} on the same axes.

SCORE: _____ / 14 PTS

Let
$$f(x) = \frac{x}{1 - 2x}$$
 and $g(x) = \frac{2}{x + 1}$.
[a] Find $(f \circ g)(x)$. Simplify your final answer.

[b]

Find $(f \circ g)(x)$. Simplify your final answer. $f(g(x)) = \frac{2}{x+1} \cdot \frac{x+1}{x+1} = \frac{2}{x+1-4} = \frac{2}{x-3}$

SCORE: / 18 PTS

Find the domain of
$$f \circ g$$
.

DOMAIN OF $g = \{x \neq -1\}$

DOMAIN OF $f = \{x \neq \pm 2\}$
 $g(x) \neq \pm$

DOMAIN OF $f \circ g$

$$\frac{2}{x+1} \neq \pm 2$$

$$4 \neq x+1 \longrightarrow x \neq 3$$

Sketch the graph of
$$f(x) = -x(x+2)^4(x-5)^3$$
. SCORE: _____/14 PTS

Find the remainder when
$$f(x) = 10x^{37} + 9x^{26} - 2x + 3$$
 is divided by $x + 1$.

= 4

SCORE: _____ / 10 PTS

HINT: There is a short way to solve this, and a LONG way to solve this.
$$= f(-1) = 10(-1) + 9(1) - 2(-1) + 3$$

$$= 10(-1) + 9(1) - 2(-1) + 3$$
$$= -10 + 9 + 2 + 3$$

Let
$$f(x) = \frac{3x+2}{4-5x}$$
.

[a] Find
$$f^{-1}(x)$$
.

$$y = \frac{3x + 2}{4 - 5x}$$

$$x = \frac{3y + 2}{4}$$

$$X = \frac{3y+2}{4-5y}$$

$$4x-5xy=3y+2$$

$$4x-2=5xy+3y$$

 $4x-2=(5x+3)y$

[b] Find the range of
$$f(x)$$
. HINT: Why is this part [b]?

DOMAIN OF
$$f^{T}$$

$$= \left\{ \times \neq -\frac{3}{5} \right\}$$

$$y = \frac{4x-2}{5x+3}$$

$$f'(x) = \frac{4x-2}{5x+3}$$

RANGE OF
$$f = \{y \neq -\frac{3}{5}\}$$

Find a polynomial with real coefficients with roots 1 and -3 + 2i. Simplify your answer completely. SCORE: _____/ 14 PTS

$$(x-1)(x-(-3+2i))(x-(-3-2i))$$

$$= (x-1)((x+3)-2i)((x+3)+2i)$$

$$= (x-1)((x+3)^2-4i^2)$$

$$= (x-1)(x^2+6x+9+4)$$

$$= (x-1)(x^2+6x+13)$$

$$= x^3 + 6x^2 + 13x - x^2 - 6x - 13 = x^3 + 5x^2 + 7x - 13$$

 $f(x) = \left| - \left| \bigcirc \right| \times \left| g(x) = \left| \times 5 - 3 \right| \times \left| \left| \frac{1}{3} \right| \right|$

Consider the polynomial
$$f(x) = 2x^4 - 11x^3 + 8x^2 - 13x - 10$$
.

SCORE: / 33 PTS

[a] According to Descartes' Rule of Signs, how many possible positive and negative real roots does f have?

3 OR | POSITIVE ROOTS
$$f(-x) = 2x^4 + 11x^3 + 8x^2 + 13x - 10$$

| NEGATIVE ROOT

[b] List all the possible rational roots of f.

[c] Find f(-1) using synthetic division. YOU MUST USE SYNTHETIC DIVISION TO EARN ANY POINTS.

[d] Find all roots of f.

$$-\frac{1}{2}$$
 2 -11 8 -13 -10
-1 6 -7 10
2 -12 14 -20 0

$$X^{2}-X+2=0$$

$$X = 1 \pm \sqrt{-7}$$

$$X = 1 \pm \sqrt{7}$$

$$2x^{4}-11x^{3}+8x^{2}-13x-10$$

$$=(x+\frac{1}{2})(2x^{3}-12x^{2}+14x-20)$$

$$=(2x+1)(x^{3}-6x^{2}+7x-10)$$
ONLY NEED TO
$$TRY x=1,2,5,10$$

$$=(2x+1)(x-5)(x^2-x+2)$$

A corral is to be made in the shape of a rectangle with a divider running down the middle. The corral and divider SCORE: _____ / 14 PTS together are to be made using exactly 20 meters of fencing. What should be the dimensions of the corral in order for the total area to be a maximum?

$$3x+2y=20$$

$$y = \frac{20-3x}{2} = -\frac{3}{2}x+10$$

$$A = xy = x(-\frac{3}{2}x+10) = -\frac{3}{2}x^2+10x$$

$$VERTIEX @ x = -\frac{10}{-3} = \frac{10}{3}$$

$$y = -\frac{3}{2} \cdot \frac{10}{2} + 10 = 5$$