Find two functions f and g such that $(f \circ g)(x) = 4(3x^2 + 2)^5 - 1$.

$$f(x) = 4 \times 5 - 1$$
 $g(x) = 3 \times 2 + 2$

The graphs of functions f and g are shown on the right.

Evaluate the following function values, if they exist. If a value does not exist, write **DNE**.

[a]
$$(fg)(5) = f(5)g(5)$$

= $2.7 = |4|$
[b] $(f \circ g)(1) = f(g(1))$
= $f(3) = 4$

$$[c] f^{-1}(2) = 5$$

$$[d] \quad (g \circ f^{-1})(5) = g(f^{-1}(5)) = g(1) = 3$$

SCORE: _____ / 4 PTS

$$f''(x) = \frac{3x-5}{4x+2}$$

$$f''(x) = \frac{3x-5}{4x+2}$$

SCORE: _____ / 2 PTS

SCORE: _____/ 4 PTS

Let
$$f(x) = \frac{6}{x+1}$$
 and $g(x) = \frac{3}{x+2}$.

[a] Find
$$(f \circ g)(x)$$
.

$$= \frac{6}{\frac{3}{x+2}} + 1$$

$$= \frac{6(x+2)}{3+x+2} \qquad OR = \frac{6}{\frac{3+(x+2)}{x+2}} = \frac{6}{\frac{x+5}{x+2}}$$
$$= \frac{6x+12}{x+5} = \frac{6(x+2)}{x+5} = \frac{6x+12}{x+5}$$

[b] Find the domain of $f \circ g$.

DOMAIN OF
$$g = \{x \neq -2\}$$
 DOMAIN OF $f = \{x \neq -1\}$
 $g(x) \in \text{DOMAIN OF } f \Rightarrow g(x) \neq -1$
 $\frac{3}{x+2} \neq -1$
 $3 \neq -x-2$
 $5 \neq -x$
 $x \neq -5$
DOMAIN OF $f \circ g = \{x \neq -1 \text{ AND } x \neq -5\}$

The lateral height of a trophy varies directly as its lateral area and inversely as the square root of its base area. **SCORE:** / 5 PTS If a trophy with a lateral area of 60 square inches and a base area of 9 square inches has a lateral height of 5 inches, find the lateral height of a trophy with a lateral area of 140 square inches and a base area of 25 square inches.

h= LATERAL HEIGHT
A= LATERAL MILEA
B= BASK AIREA
h=
$$\frac{kA}{\sqrt{3}}$$

h= $\frac{k(60)}{\sqrt{9}} = \frac{60k}{3} = 20k$
k = $\frac{140}{4\sqrt{25}}$
h= $\frac{140}{4\sqrt{25}}$
h= $\frac{140}{20} = 7$ includes