SCORE: / 20 POINTS

Write the **formal definition** of a function used in discrete math. Use correct English and mathematical notation. SCORE: ___ / 3 POINTS

A relation R from set A to set B is a function if and only if

for all $x \in A$, there exists $y \in B$ such that $(x, y) \in R$

and for all $x \in A$, for all $y, z \in B$, if $(x, y) \in R$ and $(x, z) \in R$, then y = z

If $W = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $Y = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$,

SCORE: / 1 POINTS

how many elements are in $Y \times W$?

 $11 \times 13 = 143$ 1 point

Classify each statement as Universal Conditional (<u>UC</u>), Universal Existential (<u>UE</u>) or Existential Universal (<u>EU</u>). SCORE: ____ / 2 POINTS

- Some positive integer is less or equal to every positive integer. EU [a] 1 point
- Everyone who rides the roller coaster must be at least 54 inches tall. UC 1 point [b]

MULTIPLE CHOICE: Which of the following statements are true? SCORE: ___ / 2 POINTS

- $x \in \{\{x\}, y, z\}$ [1]
- ${x} \subseteq {\{x\}, y, z\}}$ [2]
- $\{z\} \subset \{\{x\}, y, z\}$ [3]
- none of the above are true (a)
- all of the above are true (b)

2 points (c) only [3] is true

only [1] and [2] are true (d)

only [1] and [3] are true (e)

(f) only [2] and [3] are true

Rewrite the following statement using the formal universal existential structure mentioned in lecture.

SCORE: /3 POINTS

NOTE: The answer requires 2 variables.

You may use algebra and/or symbolic set notation where appropriate.

"Every positive integer has a reciprocal."

For every positive integer x, there is a real number ysuch that ½ point ½ point ½ point ½ point ½ point ½ point

⇒SUBTRACT 1 point if you wrote "there is a real

number y" before "for every positive integer x"

OR

For all $x \in Z^+$, there exists $y \in R$ such that

⇒SUBTRACT 1 point if you wrote "there is a real

 $\frac{1}{2}$ point $\frac{1}{2}$ point $\frac{1}{2}$ point $\frac{1}{2}$ point $\frac{1}{2}$ point $\frac{1}{2}$ point

number y" before "for every positive integer x"

Let $A = \{x \in Z \mid x^2 < 5\}$.

Let $B = \{x \in Z^{nonneg} \mid x^3 < 9\}$.

Let $C = \{x \in Z \mid 0 \le x < 3\}$.

Are the following statements true or false? Explain very briefly your answers. (No points if no explanation given.)

[a] A = C

False. $-2 \in A$ but $-2 \notin C$.

2 points (no points for "FALSE" if incorrect reason given)

OR

False. $-1 \in A$ but $-1 \notin C$.

2 points (no points for "FALSE" if incorrect reason given)

[b] B is a proper subset of C

False. C does not contain any element that is not in B since $B = C = \{0, 1, 2\}$

2 points (no points for "FALSE" if incorrect reason given)

(even though every element of B is also in C).

Let $F = \{-1, 0, 1\}$.

Let $G = \{0, 1, 2\}$.

Let K be the relation from F to G defined by xKy if and only if $x^2 - y^2$ is a multiple of 3.

[a] Write K in set roster notation.

 $\{(-1,1), (-1,2), (0,0), (1,1), (1,2)\}$

 $\frac{1}{2}$ point for each ordered pair = $\frac{2}{2}$ points total

⇒SUBTRACT ½ point if not written in proper set notation

SCORE: ___ / 4 POINTS

SCORE: /5 POINTS

[b] Is K a function? Why or why not?

No. $(-1, 1) \in K$ and $(-1, 2) \in K$, but $1 \neq 2$

1 point (no points for "NO" if incorrect reason given)

OR

No. $(1, 1) \in K$ and $(1, 2) \in K$, but $1 \neq 2$

1 point (no points for "NO" if incorrect reason given)

[c] If $H = \{3, 4\}$, write $H \times G$ in set roster notation.

 $\{(3,0), (3,1), (3,2), (4,0), (4,1), (4,2)\}$

 $\frac{1}{4}$ point for each ordered pair = $\frac{1}{2}$ points total

⇒SUBTRACT ½ point if not written in proper set notation