SCORE:	/ 30 POINTS

One of the statements below is true, and the other is false.

SCORE: ___ / 14 PTS

IS WORTH & POINT, EXCEPT THOSE LABELLED AS WORTH

Prove the statement that is true, and disprove the statement that is false (ie. show that the false statement is false).

- [a] $\sqrt[3]{2}$ is irrational.
- [b] The quotient of an irrational number divided by a rational number is an irrational number.

 EACH UNDERLINED SENTENCE

[a] is true.

Proof by contradiction:

Suppose not.

That is, suppose that $\sqrt[3]{2}$ is rational.

By definition of rational, $\sqrt[3]{2} = \frac{a}{b}$ for some $a, b \in \mathbb{Z}$.

Without loss of generality, we may assume that the fraction $\frac{a}{b}$ is in simplest reduced form,

ie. the greatest common factor of a and b is 1.

Since $\sqrt[3]{2} = \frac{a}{b}$, therefore $2 = \frac{a^3}{b^3}$ and $2b^3 = a^3$.

 $b^3 \in Z$ by the closure of Z under \times .

So, by definition of |, $2 | 2b^3$ and therefore, $2 | a^3$.

By the lemma below, $2 \mid a$, so a = 2c for some $c \in Z$.

So, $2b^3 = (2c)^3 = 8c^3$ and $b^3 = 4c^3 = 2(2c^3)$ where $2c^3 \in Z$ by the closure of Z under \times .

So, by definition of $|, 2|4c^3$ and therefore, $2|b^3$.

By the lemma below, $2 \mid b$.

Since $2 \mid a$ and $2 \mid b$, the greatest common factor of a and b is at least 2.

But, the greatest common factor of a and b is 1, and the greatest common factor of a and b is at least 2. (CONTRADICTION)

So, by contradiction, $\sqrt[3]{2}$ is irrational.

Lemma: For all integers x, if $2 \mid x^3$, then $2 \mid x$.

Proof by contraposition:

Let $x \in Z$ such that 2/x.

By definition of $| , x \neq 2q$ for any $q \in Z$.

By the quotient remainder theorem, x = 2q + 1 for some $q \in Z$.

So,
$$x^3 = (2q+1)^3 = 8q^3 + 12q^2 + 6q + 1 = 2(4q^3 + 6q^2 + 3q) + 1$$

where $4q^3 + 6q^2 + 3q \in Z$ by the closure of Z under \times and +.

So, by the definition of mod, $x^3 \mod 2 = 1$, and by exercise 26 in section 4.4, $2 \cancel{/} x^3$.

[b] is true.

Counterexample: The irrational number $\sqrt{2}$ divided by the rational number 0 is not a number, and therefore not an irrational number.

For all integers a greater than or equal to 2, $a^3 + 2a$ is divisible by 3.

NOTE: You will NOT earn any points if you do not use mathematical induction.

Proof by induction:

$$a = 2$$
:

$$2^3 + 2(2) = 12 = 3(4)$$
, so $2^3 + 2(2)$ is divisible by 3.

Inductive step: Assume that $k^3 + 2k$ is divisible by 3 for some $k \in \mathbb{Z}$ where $k \ge 2$.

By definition of divisible,
$$k^3 + 2k = 3m$$
 for some $m \in \mathbb{Z}$.
$$\frac{(k+1)^3 + 2(k+1)}{(k+1)^3 + 2(k+1)} = k^3 + 3k^2 + 3k + 1 + 2k + 2 = k^3 + 2k + 3k^2 + 3k + 3$$

$$= 3m + 3k^2 + 3k + 3 = 3(m + k^2 + k + 1)$$

where $m + k^2 + k + 1 \in \mathbb{Z}$ by the closure of \mathbb{Z} under \times and +. By the definition of divisible, $(k+1)^3 + 2(k+1)$ is divisible by 3.

So, by mathematical induction, $a^3 + 2a$ is divisible by 3 for all integers a greater than or equal to 2.

Prove the following statement by mathematical induction.

SCORE: ___/8 PTS

For all integers k greater than or equal to 3, $2^k + 10 < 3^k$.

NOTE: You will NOT earn any points if you do not use mathematical induction.

Proof by induction:

Basis step:
$$k = 3$$
: $2^3 + 10 = 18 < 27 = 3^3$.

Inductive step: Assume that $2^m + 10 < 3^m$ for some $m \in \mathbb{Z}$ where $m \ge 3$.

$$3^{m+1} = 3(3^m)$$

$$> 3(2^m + 10) = 3(2^m) + 30$$

$$> 2(2^m) + 30$$

$$> 2(2^m) + 10 = 2^{m+1} + 10$$
So, $2^{m+1} + 10 < 3^{m+1}$.

So, by mathematical induction, $2^k + 10 < 3^k$ for all integers k greater than or equal to 3.