SCORE: ___ / 30 POINTS

Let F_0 , F_1 , F_2 , ... be the Fibonacci sequence. Prove that $F_n = 2F_{n-1} - F_{n-3}$ for all integers $n \geq 3$.

SCORE: ___/4 PTS

NOTE: You do NOT need to write a formal proof. Simply show the algebra.

$$F_{n-1} = F_{n-2} + F_{n-3} \longrightarrow F_{n-2} = F_{n-1} - F_{n-3}$$

 $F_n = F_{n-1} + F_{n-2} \longrightarrow F_n = F_{n-1} + F_{n-1} - F_{n-3}$
 $= 2F_{n-1} - F_{n-3}$

Let $A = \{a, c, f\}$ and $B = \{a, b, e\}$ be subsets of the universal set $\{a, b, c, d, e, f, g\}$.

SCORE: ___/4 PTS

[a] Find $B \cup A^{c}$. $A^{c} = \{b, d, e, g\}$ $B \cup A^{c} = \{a, b, d, e, g\}$ [b] Find B - (B - A). $B - A = \{b, e\}$

Let $A=\{x\in Z\mid x=6k-4 \text{ for some } k\in Z\}$ and $B=\{y\in Z\mid y=3h+2 \text{ for some } h\in Z\}$. Prove that $A\subseteq B$.

SCORE: ___ / 7 PTS

PROOF: LET $\times \in A$ (1)

SO, $\times \in \mathbb{Z}$ AND $\times = 6k-4$ FOR SOME $k \in \mathbb{Z}$ (1)

SO, $\times = 3(2k-2)+2$ WHERE $2k-2 \in \mathbb{Z}$ BY CLOSURE

OF \mathbb{Z} UNDER \times AND -.

AND $\times \in \mathbb{Z}$ (2)

AND $X \in \mathbb{Z}_{0}$ SO, $X \in \mathbb{B}_{0}$ SD, $A \subseteq \mathbb{B}$ BY DEF'N OF $\subseteq \mathbb{Z}_{0}$

Fill	in the	hlanke	hy	writing	the	symbolic	trane	ations
	III till	Columns	Uy	willing	the	Symbolic	trans	ations.

Do not use \cup , \cap , - or C in your answers.

SCORE: / 2 PTS

- $A \subseteq B^{c}$ if and only if $\forall x \in A, x \notin B$
- x ∉ B-A if and only if ~ (x ∈ B AND X ∉ A) IE. X ∉ B OR X ∈ A [b]

Let a_1, a_2, a_3, \dots be a sequence such that

SCORE: ___/ 13 PTS

$$a_1 = 1$$
, $a_2 = 2$ $a_3 = 4$

and $a_n = a_{n-1} + a_{n-2} + 2a_{n-3}$ for all integers $n \ge 4$.

Find the values of a_4 , a_5 and a_6 . Verify the values with your partner before continuing to parts [b] and [c]. [a]

$$a_4 = a_3 + a_2 + 2a_1 = 4 + 2 + 2 \cdot 1 = 8 \oplus$$

as = a4+a3+2a2 = 8+4+2.2=16@

 $a_1 = a_5 + a_4 + 2a_3 = 16 + 8 + 2 \cdot 4 = 32$ Based on the first 6 values of the sequence, guess a general formula for a_n .

[b]

[c] Using strong induction, prove that your formula is correct for all integers $n \ge 1$.

BASIS STEP: n= | a = 1= 2"

n=2 $a_2=2=2^{2-1}$ $a_3=4=2^{3-1}$ $a_3=4=2^{3-1}$

INDUCTIVE STEP! ASSUME a.

k-1+2k-2+2.2k-5 SINCE k > 1

SO, BY S.I., an= 2" FOR ALL ne #