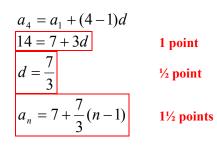

Math 43 (8:30am Class) Quiz 1 Version W Fri Jan 13, 2012

SCORE: / 20 POINTS

WHERE INDICATED, YOU MUST SHOW THE WORK THAT LEAD TO YOUR ANSWER TO GET FULL CREDIT.

Find the first 4 terms of the sequence defined recursively by $a_1 = 2$, $a_k = k^2 - a_{k-1}$ (for $k \ge 2$). SCORE: ____/ 3 POINTS


 $a_1 = 2$ → MINUS ½ point if you forgot to write $a_1 = 2$ $a_2 = 2^2 - a_1 = 4 - 2 = 2$ 1 point $a_3 = 3^2 - a_2 = 9 - 2 = 7$ 1 point $a_4 = 4^2 - a_3 = 16 - 7 = 9$ 1 point Fill in the blanks: For the sum $\sum_{k=2}^{m} a_k$,

m is called the <u>upper limit of summation</u>,

k is called the <u>index (OR dummy index) of summation</u>, and

2 is called the <u>lower limit of summation</u>.

Find a general formula for the arithmetic sequence whose first term is 7, and whose fourth term is 14. SCORE: / 3 POINTS SHOW YOUR WORK.

Use sigma notation to write the sum $\frac{1}{4} + \frac{3}{8} + \frac{7}{16} + \frac{15}{32} + \frac{31}{64}$. SCORE: ____ / 3 POINTS ¹/₂ **point** 5 ¹/₂ point $\sum_{n=1}^{2^n-1} \frac{2^n-1}{2^{n+1}}$ ¹/₂ point for numerator, ¹/₂ point for denominator **PLUS** ¹/₂ point if both correct $\frac{1}{2}$ point n =OR ¹/₂ point $\sum_{\substack{n=2\\n=2}} \frac{2^{n-1}-1}{2^n}$ ¹∕₂ point for numerator, ¹⁄₂ point for denominator **→** PLUS ¹⁄₂ point if both correct ¹/₂ point $\frac{1}{2}$ point n = 2Simplify the expression $\frac{(2n-4)!}{(2n-2)!}$ SCORE: ____ / 3 POINTS SHOW YOUR WORK. $\frac{(2n-4)\cdots(3)(2)(1)}{(2n-2)(2n-3)(2n-4)\cdots(3)(2)(1)}$ 1¹/₂ points $\frac{(2n-4)!}{(2n-2)(2n-3)(2n-4)!}$ 1¹/₂ points OR = (2n-2)(2n-3) $\overline{(2n-2)(2n-3)}$ $1\frac{1}{2}$ points