TO GET FULL CREDIT:

YOU MUST SHOW THE WORK THAT LEAD TO YOUR ANSWER

Test $r = \sin \theta + \cos \theta$ for symmetry with respect to the polar axis. State clearly the conclusion of the test.

SCORE: / 4 POINTS

Find all values of θ (for $0 \le \theta < 2\pi$) where the graph of $r = 3 + 6\sin\theta$ passes through the pole.

SCORE: ___/3 POINTS

Convert the rectangular equation xy = 6 to polar form. Simplify your final answer using identities.

SCORE: ___ / 3 POINTS

rcosDrsmH=

$$\frac{r^2 = \frac{6}{5m\theta\cos\theta}}{r^2 = \frac{12}{25m\theta\cos\theta} = \frac{12}{5m2\theta} = \frac{12\cos2\theta}{\frac{2}{5}}$$

$$\frac{12}{5m2\theta} = 12csc2\theta$$

Convert the polar equation $r^2 = \cos 2\theta$ to rectangular form.

SCORE: / 4 POINTS

Your final answer must NOT have radicals, but may use factored expressions.

(2) r2 = cos20 - sm20

$$((x^2 + y^2)^2 = x^2 - y^2$$

$$(x^2+y^2)^2 = x^2+y^2-2y^2$$

$$(x^2+y^2)^2 = x^2-y^2$$

		NO POINTS	
Convert the rectangular co-ordinates $(-\sqrt{3}, -3)$	to polar co-ordinates using $r > 0$ and $0 \le \epsilon$	$\theta < 2\pi$. BUT SCORE:	/ 2 POINTS
$r = \sqrt{(-\sqrt{3})^2 + (-3)^2}$	O= T+ tan ===	MINUS &	147
1((13)+(-3)	0= 11+ tan -13	IF MISSING (213	3)

Fill in the blanks.

SCORE: ___ / 5 POINTS

- [b] If replacing (r, θ) in a polar equation with $(-r, \pi \theta)$ yields an equivalent equation, then the graph of the equation is symmetric with respect to $\frac{\text{THE POLAR AXIS}}{\text{POLAR AXIS}}$.
- [c] If the point with rectangular co-ordinates (0, -7) has polar co-ordinates $(7, \theta)$ and $0 \le \theta < 2\pi$, then $\theta = \frac{3\pi}{2}$
- [d] In the polar co-ordinate system, the locus of points with co-ordinates $(0, \theta)$ is called THE POLE $(0, \theta)$.
- [e] The conic with equation $109x^2 + 109x 97y^2 + 253y 671 = 0$ is a/an Hyperbola (

A hyperbola has asymptotes 2x - y - 4 = 0 and 2x + y - 4 = 0. If one of the foci is at (-3, 0), find the equation of the hyperbola.

$$y = 2x - 4$$
 $y = -2x + 4$
 $2x - 4 = -2x + 4$
 $4x = 8$
 $x = 2$
 $y = 0$

CENTER (2,0) ()

SEMI-FOCAL LENGTH = 2-3=5

HORIZONTAL TRANSVERSE AXIS

NOTE: a=h, b=V SCORE: __/7 POINTS

$$\frac{1}{h} = \frac{2}{10} \qquad \frac{\sqrt{2} + h^2 = 5^2}{4h^2 + h^2 = 25}$$

$$\frac{5h^2 = 25}{5h^2 = 25} \qquad 0$$

$$\frac{1}{h^2 = 5} \qquad 0$$

A point has polar co-ordinates $\left(7, \frac{4\pi}{5}\right)$.

SCORE: ___ / 2 POINTS

[a] Find another polar representation for this point using r > 0 and $-2\pi < \theta < 2\pi$.

$$(7, 4 - 2\pi) = (7, -4)$$

[b] Find another polar representation for this point using r < 0 and $-2\pi < \theta < 2\pi$.

$$(-7, \frac{47}{5} + \pi) = (-7, \frac{47}{5}) \circ (-7, \frac{47}{5} - \pi) = (-7, -\frac{7}{5}) \circ (-7,$$