SCORE: ___ / 30 POINTS

TO GET FULL CREDIT: YOU MUST SHOW THE WORK THAT LEAD TO YOUR ANSWER

Test $r = \cos \theta - \sin \theta$ for symmetry with respect to $\theta = \frac{\pi}{2}$. State clearly the conclusion of the test.

SCORE: ___/ 4 POINTS

 $C_{r} = cos(-\theta) - sin(-\theta)$ $-r = cos(\theta) + sin(\theta)$ $r = -cos(\theta) - sin(\theta)$

 $r = \cos(\pi - \theta) - \sin(\pi - \theta)$ $r = \cos\pi\cos\theta + \sin\pi\sin\theta$ $- \left[\sin\pi\cos\theta - \cos\pi\sin\theta\right]$ $r = -\cos\theta - \sin\theta$

NO CONCLUSION (1)

Find all values of θ (for $0 \le \theta < 2\pi$) where the graph of $r = 3 + 6\cos\theta$ passes through the pole.

SCORE: ___/3 POINTS

$$DO = 3 + 6 \cos \Theta$$

$$\cos \Theta = -\frac{1}{2}$$

$$D = \frac{2\pi}{3}, \frac{4\pi}{3}$$

Convert the rectangular equation $x^2 - y^2 = 6$ to polar form. Simplify your final answer using identities.

SCORE: ___ / 3 POINTS

$$\frac{r^2 \cos^2 \Theta - r^2 \sin^2 \Theta = 6}{\cos^2 \Theta - \sin^2 \Theta} = \frac{6}{\cos^2 \Theta} = \frac{6 \sec 2\Theta}{\cos^2 \Theta}$$

Convert the polar equation $r^2 = \csc 2\theta$ to rectangular form.

SCORE: ___ / 4 POINTS

Your final answer must NOT have radicals, but may use factored expressions.

 $r^{2} = \frac{1}{2\sin\theta\cos\theta}$ $r^{2} = \frac{1}{2\sin\theta\cos\theta}$ $2r^{2}\sin\theta\cos\theta = 1$ $2(r\sin\theta)(r\cos\theta) = 1$

 $2xy=1 \text{ or } y=\frac{1}{2x}$

Convert the rectangular co-ordinates $(-\sqrt{3})$, 3) to polar co-ordinates using $r>0$ and $0 \le \theta < 2\pi$.	SCORE: / 2 POINTS
$\Gamma = \sqrt{(-\sqrt{3})^2 + 3^2}$	O= T+tan 3 MANUS \$	(2/3, 24)
r= \(\int 12 = 2\sqrt{3}\)	0 = Tit tan (-13) = Ti-	\frac{7}{3} = \frac{27}{3}
	(1)	= _3 (=)

Fill in the blanks.

SCORE: ___ / 5 POINTS

- If replacing (r, θ) in a polar equation with $(-r, -\theta)$ yields an equivalent equation, then the graph of the equation is symmetric with respect to $\underline{\hspace{0.5cm}} = \underline{\mathcal{I}}$.
- [c] If the point with rectangular co-ordinates (0, -7) has polar co-ordinates $(7, \theta)$ and $0 \le \theta < 2\pi$, then $\theta = \frac{371}{2}$
- [d] In the polar co-ordinate system, the locus of points with co-ordinates $(0, \theta)$ is called THE POLE.

A hyperbola has asymptotes 3x - y + 6 = 0 and 3x + y + 6 = 0. If one of the foci is at (8, 0), find the equation of the hyperbola.

y=3x+6 y=-3x-6 3x+6=-3x-6 6x=12 x=-2 y=0CENTER (-2,0)0 SEMI-FOCAL LENGTH = 8-2=10 HORIZONTAL TRANSVERSE AXIS NOTE: a=h, b=V SCORE: __/7 POINTS

 $\frac{(x+2)^2-y^2}{10}=1$

A point has polar co-ordinates $\left(5, \frac{6\pi}{7}\right)$.

SCORE: ___ / 2 POINTS

[a] Find another polar representation for this point using r>0 and $-2\pi<\theta<2\pi$.

[b] Find another polar representation for this point using r < 0 and $-2\pi < \theta < 2\pi$.