SCORE: / 30 POINTS

TO GET FULL CREDIT:

YOU MUST SHOW THE WORK THAT LEAD TO YOUR ANSWER

Test $r = \cos \theta - \sin \theta$ for symmetry with respect to the polar axis. State clearly the conclusion of the test.

SCORE: / 4 POINTS

 $\frac{(1)r = \cos(-\theta) - \sin(-\theta)}{r = \cos(\theta) + \sin(\theta)} - \frac{1}{r} = \cos(\pi - \theta) - \sin(\pi - \theta)$ $-r = \cos(\pi - \theta) - \sin(\pi - \theta)$ $-r = \cos(\pi \cos \theta + \sin(\pi - \theta))$ - LSINTOSO-COSTSINOJ

-r = -cosA-sinA

Fr= cos O+sm & NO conclusion

Find all values of θ (for $0 \le \theta < 2\pi$) where the graph of $r = 3 + 6\cos\theta$ passes through the pole.

SCORE: /3 POINTS

Convert the rectangular equation $x^2 - y^2 = 8$ to polar form. Simplify your final answer using identities.

SCORE: ___/3 POINTS

$$r^{2}\cos^{2}\theta - r^{2}\sin^{2}\theta = \frac{8}{\cos^{2}\theta - \sin^{2}\theta} = \frac{8}{\cos^{2}\theta} = \frac{8\sec^{2}\theta}{6}$$

Convert the polar equation $r^2 = \csc 2\theta$ to rectangular form.

SCORE: / 4 POINTS

Your final answer must NOT have radicals, but may use factored expressions.

r2 = 5m20 2225m0ws0=10

exy= or y= 1

Convert the rectangular co-ordinates $(-3,\sqrt{3})$ to polar co-ordinates using $r>0$ and $0\leq\theta<2\pi$.	SCORE: / 2 POINTS
$r = (-3)^{2} + (\sqrt{3})^{2}$ $\Theta = \pi + \tan^{-1} \frac{\sqrt{3}}{3}$	
r= \(\int_2 = 2\overline{3}\) \(\text{D} = \overline{\pi} - \overline{\pi} = \overline{5}\)	国、等)
r= \(\int_2 = 2\overline{3}\)\(\text{D}\) \(\text{D} = \overline{1} - \overline{1} = \overline{5}\)\(\text{D}\)	3,50) D POINTS, BUT MINUS
	11 1123/109
Fill in the blanks.	SCORE: / 5 POINTS
[a] The asymptotes of a hyperbola intersect at the	
[b] If replacing (r, θ) in a polar equation with $(-r, -\theta)$ yields an equivalent equation,	
then the graph of the equation is symmetric with respect to $ = \frac{71}{2} $ $ = \frac{71}{2} $	
[c] If the point with rectangular co-ordinates $(0, -7)$ has polar co-ordinates $(7, \theta)$ and $0 \le \theta < 2\pi$	θ , then $\theta = \frac{3\pi}{2}$.
In the polar co-ordinate system, the locus of points with co-ordinates $(0,\theta)$ is called THE f	OLED
The conic with equation $97x^2 - 97x + 253y - 671 = 0$ is a/an PARABOLA	
The conic with equation $97x^2 - 97x + 253y - 671 = 0$ is a/an PARABOLA.	
	SCORE:/7 POINTS
A hyperbola has asymptotes $3x - y + 9 = 0$ and $3x + y + 9 = 0$. If one of the foci is at $(7, 0)$, find the equation of the hyperbola.	SCORE: $_{-}/7$ POINTS
A hyperbola has asymptotes $3x - y + 9 = 0$ and $3x + y + 9 = 0$. If one of the foci is at $(7, 0)$, find the equation of the hyperbola.	
A hyperbola has asymptotes $3x - y + 9 = 0$ and $3x + y + 9 = 0$. If one of the foci is at $(7,0)$, find the equation of the hyperbola. $y = 3x + 9$ $y = -3x - 9$ $m = \pm 3$ $V = 3h$ $V = 3h$	
A hyperbola has asymptotes $3x - y + 9 = 0$ and $3x + y + 9 = 0$. If one of the foci is at $(7,0)$, find the equation of the hyperbola. $y = 3x + 9$ $y = -3x - 9$ $3x + 9 = -3x - 9$ $3x + 9 = -3x - 9$ Note: $a = h$, $b = 0$ $b $	
A hyperbola has asymptotes $3x - y + 9 = 0$ and $3x + y + 9 = 0$. If one of the foci is at $(7,0)$, find the equation of the hyperbola. $y = 3x + 9$ $y = -3x - 9$ $3x + 9 = -3x - 9$ $6x = -18$ Note: $a = h$, $b = 0$ $y = 3x + 9 = 0$ $y = 3x$	$\frac{1}{2} + h^2 = 100$
A hyperbola has asymptotes $3x - y + 9 = 0$ and $3x + y + 9 = 0$. If one of the foci is at $(7,0)$, find the equation of the hyperbola. $ y = 3x + 9 $ $ y = -3x - 9 $ $ 3x + 9 = -3x - 9 $ $ bx = -18 $ $ x = -3 $ A hyperbola has asymptotes $3x - y + 9 = 0$ and $3x + y + 9 = 0$. Note: $a = h$, $b = 0$ $ y = 3x + 9 $ $ y = 3x + 9 $ $ y = 3x - 9 $	$\frac{+h^2=100}{+h^2=1000}$ $\frac{10h^2=1000}{h^2=1000}$
A hyperbola has asymptotes $3x - y + 9 = 0$ and $3x + y + 9 = 0$. If one of the foci is at $(7,0)$, find the equation of the hyperbola. $ y = 3x + 9 $ $ y = -3x - 9 $ $ 3x + 9 = -3x - 9 $ $ bx = -18 $ $ x = -3 $ $ y = 0 $ A hyperbola has asymptotes $3x - y + 9 = 0$ and $3x + y + 9 = 0$. Note: $a = h$, $b = 0$	$\frac{1}{2} + h^{2} = 100$ $\frac{10h^{2} = 1000}{h^{2} = 1000}$ $\frac{10h^{2} = 1000}{h = 1000}$
A hyperbola has asymptotes $3x - y + 9 = 0$ and $3x + y + 9 = 0$. If one of the foci is at $(7,0)$, find the equation of the hyperbola. $ y = 3x + 9 $ $ y = -3x - 9 $ $ 3x + 9 = -3x - 9 $ $ bx = -18 $ $ x = -3 $ $ y = 0 $ Conten (-3, 0) (1)	$\frac{+h^2=100}{+h^2=1000}$ $\frac{10h^2=1000}{h^2=1000}$
A hyperbola has asymptotes $3x - y + 9 = 0$ and $3x + y + 9 = 0$. If one of the foci is at $(7,0)$, find the equation of the hyperbola. $ y = 3x + 9 $ $ y = -3x - 9 $ $ 3x + 9 = -3x - 9 $ $ bx = -18 $ $ x = -3 $ $ y = 0 $ $ conten (-3,0) 0 $ $ x = M Focal Length = 7 - 3 = 10 $ $ (x+3)^{2} = 0 $	$\frac{1}{2} + h^{2} = 100$ $\frac{10h^{2} = 1000}{h^{2} = 1000}$ $\frac{10h^{2} = 1000}{h = 1000}$
A hyperbola has asymptotes $3x - y + 9 = 0$ and $3x + y + 9 = 0$. If one of the foci is at $(7,0)$, find the equation of the hyperbola. $ y = 3x + 9 $ $ y = -3x - 9 $ $ 3x + 9 = -3x - 9 $ $ bx = -18 $ $ x = -3 $ $ y = 0 $ Conten (-3, 0) (1)	$\frac{1}{2} + h^{2} = 100$ $\frac{10h^{2} = 1000}{h^{2} = 1000}$ $\frac{10h^{2} = 1000}{h = 1000}$

A point has polar co-ordinates $\left(4, \frac{6\pi}{5}\right)$.

SCORE: ___/ 2 POINTS

[a] Find another polar representation for this point using r>0 and $-2\pi<\theta<2\pi$.

$$(4, \frac{67}{5} - 2\pi) = (4, \frac{47}{5})$$

[b] Find another polar representation for this point using r < 0 and $-2\pi < \theta < 2\pi$.

$$(-4, \frac{3}{5} + \pi) = (-4, \frac{11}{5}) or (-4, \frac{3}{5} - \pi) = (-4, \frac{3}{5})$$