Vector **s** has magnitude 6 and direction angle $\frac{\pi}{4}$. If $\mathbf{v} = 3\mathbf{s} - 2\mathbf{r}$, write **v** as a linear combination of **i** and **j**.

$$\nabla = 3\langle 3\sqrt{2}, 3\sqrt{2} \rangle - 2\langle -12, 5 \rangle = \langle 9\sqrt{2} + 24, 9\sqrt{2} - 10 \rangle$$

= $(9\sqrt{2} + 24)$ $\vec{1} + (9\sqrt{2} - 10)$ $\vec{1}$

Let
$$w = 3 j - 2 i$$
.

[a] Find the component form of the unit vector in the same direction as w.

[b] Find the component form of the vector with magnitude 4 in the same direction as **w**.

Find the magnitude and direction angle of the vector $<-3, \sqrt{3}>$.

If
$$\mathbf{m} = <7, -5>$$
 and $\mathbf{n} = <-2, -4>$, find $\mathbf{m} \cdot \mathbf{n}$.

$$7(-2)+(-5)(-4)=6$$

If **g** has magnitude 4, and **h** has magnitude 5, and the angle between the vectors is $\frac{\pi}{6}$, find **g**·**h**.

Sketch the curve represented by the parametric equations

$$s \frac{x = t^2 - 2t}{y = 4 - t^2}, -1 \le t \le 2,$$

SCORE: ___ / 4 POINTS

and indicate the orientation of the curve.

Find the simplified rectangular equation corresponding to the parametric equations

$$x = 1 + 2 \tan t$$

$$y = 3 \sec t$$

SCORE: / 4 POINTS

$$tant = \frac{x-1}{2}$$
 $sec^2t = 1 + tan^2t$
 $sec^2t = 1 + tan^2t$
 $sec^2t = 1 + tan^2t$

$$tant = \frac{x-1}{2}$$
 Sec²t = |+ tan²t

$$\frac{y^2}{4} = 1 + \frac{(x-1)^2}{4}$$

The parametric equations $x = 1 - 2t^2$ and $x = 1 - 2\cos 2t$ $y = t^2$ $y = \cos 2t$

$$x = 1 - 2t^2$$
 and $x = 1 - 2\cos 2$

$$y = t^2 \qquad \qquad y = \cos 2$$

SCORE: ___/3 POINTS

both correspond to the rectangular equation x = 1 - 2y, whose graph is shown on the right.

Describe how their plane curves differ from each other.

FIRST CURVE: 4= t GOES FROM 00 TO 0 TO 00 SO CURVE STARTS AT UPPER LEFT, 2

GOES DOWN TO X-AXIS AT (1,0)

AND GOES BACK TO UPPER LEFT. SEZOND CURVE: 4= COS 2t GOES BETWEEN -1 AND

SO CURVE GOES BETWEEN (3,-1) AND

The diameter of a circle has endpoints (-1, -4) and (7, -10). Find parametric equations for the circle.

SCORE: ___ / 4 POINTS

CENTER = $\left(\frac{-1+7}{2}, \frac{-4+70}{2}\right) = \left(\frac{3}{2}, \frac{-7}{2}\right)$ RADIUS = = 1 (7-1)2+ (-10-4)2