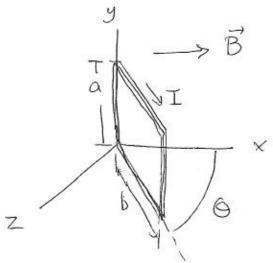
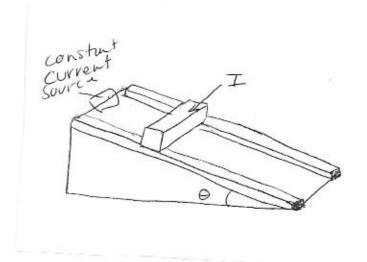

Homework Set 6 - Magnetic Force


A rod of mass m and radius r rests on two parallel rails that are a distance d apart and of length
L. The rod carries a current of I in the direction shown and rolls along the rails without
slipping. A uniform magnetic field B is directed perpendicular to the rod and the rails. If it starts
from rest, what is the speed of the rod as it leaves the rails?


2. A strong magnet is placed under a horizontal conducting ring of radius r that carries current \mathcal{I} as shown in the figure. If the magnetic field B makes and angle θ with the vertical at the ring's location, what is the force (magnitude and direction) on the ring?

3. A rectangular coil of N turns has dimensions a and b as shown. The coil is hinged along the y axis, and its plane makes an angle θ with the x-axis. If the current in the wire is I in the direction indicated and the magnetic field is given by $B = B_o i$ -hat, find the torque exerted on the coil.

- 4. A rigid, circular loop of radius R and mass m lies in the xy plane on a rough, flat table. The magnetic field is $\mathbf{B} = B_x \mathbf{i} + B_y \mathbf{j}$. How large must the current I be before one edge of the loop will lift off the table?
- 5. A particle of mass m and charge q enters a region where there is a uniform magnetic field B along the x axis. The initial velocity of the particle is $\mathbf{v} = v_{ox} \mathbf{i} + v_{oy} \mathbf{j}$, so that the particle moves in a helix. Show that the radius of the helix is $r = mv_{oy}/qB$. Show that the particle takes a time $t = 2\pi m/qB$ to make one orbit around the helix.
- 6. A metal crossbar of mass M rides on a pair of long, frictionless conducting rails which make an angle θ with the horizontal and are separated by a distance L. The rails are connected to a device that supplies constant current I to the circuit as shown. (a) What vertical magnetic field B is need to keep the bar from sliding down the rails? (b) If the magnetic field B is twice the value found in part A, what is the acceleration of the bar?

- 7. A circular loop of wire with mass M carries a current \mathcal{I} in a uniform magnetic field. It is initially in equilibrium with its magnetic moment vector aligned with the magnetic field. The loop is given a small twist about a diameter and then released. What is the period of the motion? (Assume the only torque exerted on the loop is due to the magnetic field.)
- 8. A nonconducting disk of mass M and radius R has a surface charge density σ and rotates with angular velocity ω about its axis. (a) Consider a ring of radius r and thickness dr. Show that the total current in the is ring is $dl = (\omega/2\pi)dq = \omega\sigma r dr$. (b) Show that the magnetic moment of the ring is $dm = \pi\omega\sigma r^3 dr$. (c) Integrate your result for part (b) to show that the total magnetic moment of the disk is $m = \frac{1}{4}\pi\omega\sigma R^4$ (d) Show that the magnetic moment m and angular momentum m are related by m = (Q/2M)L where q is the total charge on the disk.