Problem set 5 - Mechanical Waves

1. A string fastened at both ends has successive resonances with wavelengths of 0.54 m for the $n^{\text {th }}$ harmonic and 0.48 for the $(n+1)^{\text {th }}$ harmonic. (a) Which harmonics are these? (b) What is the length of the string?
2. A coiled spring, such as s Slinky, is stretched to a length L. It has a force constant k and a mass m.

Show that the velocity of longitudinal compression waves along the spring is given by $=L \sqrt{k / m}$. Hint: University page 499 outlines the approach. The main difference is that you are looking at the velocity in the propagation direction. Hope that helps.
3. A metal wire, with density ρ and Young's modiulus Y, is stretched between rigid supports. At temperature T, the speed of a transverse wave is found to be v_{1}. When the temperature is increased to $T+\Delta T$, the speed decreases to $v_{2}<v_{1}$. Determine the coefficient of linear expansion of the wire. 4. Show that the standing wave function $A^{\prime} \sin (k x) \cos (\omega t+\delta)$ can be written as the sum of two harmonic wave functions - one for a wave traveling the positive x direction and the other for a wave traveling in the negaitive x direction. The traveling waves each have the same wave number and angular frequency as does the standing wave.
5. A rope hangs vertically under its own weight. Show that the wavespeed at a distance y from the lower end is given by $\sqrt{g y}$. Note that the wavespeed is independent of the rope's linear density; hence, this relation applies even if the rope is not uniform.
6. Three pieces of string, each of length L are joined together end to end to make a combined string of length 3L. The first piece of string has mass per unit length μ_{1}, the second piece has mass per unit length $\mu_{2}=4 \mu_{1}$, and the third has mass per unit length $\mu_{3}=1 / 4 \mu_{1}$. (a) If the combined string is under tension Ft , how much time does it take a transverse wave to travel the entire length 3L?
7. A uniform rope with length L and mass m is held at one end and whirled in a horizontal circle with angular velocity ω. You may ignore the force of gravity on the rope. Find the time required for a transverse wave to travel from one end of the rope to the other.
8. A horizontal string tied at both ends is vibrating in its fundamental mode. The traveling waves have speed v, frequency f, amplitude A and wavelength λ. Calculate (a) the maximum transverse velocity and (b)maximum transverse acceleration of points located at $x=\lambda / 2, \lambda / 4$ and $\lambda / 8$. (c) At each point what is the amplitude of the motion?

