$3 / 1 / 12$
Many nuclei have spin. For example, it t (protium) and ${ }^{13} \mathrm{C}$ have spin $\frac{1}{2}$ [techinally $\left.\frac{1}{2} \frac{1}{2 \pi} h=\frac{1}{2} \hbar\right]$.
Nude with spin are randomly arranged in the absence of a magnetic field; in the presence of a magnetic field, Andei with spin $1 / 2$ can align either with the magnetic field or against it, This causes an energy gap to form.
no magnetic field
W/ mag. field

If a photon with the correct energy (which corresponds to light of a particular frequency) is absorbed by the nucleus, the nucleus can flip from the low n to high-energy spin state. The energy released when the nudeus return, to the lower state, is measured by an NMR spectrometer.

If a nueleus has an electronegative neighbor, that neighbor will pull electron density a way from the nucleus (deshield), exposing the nudes more greatly to the magnetic field. This causes a larger energy gap, which means a higher frequency of light would be needed,

$$
\delta \equiv \frac{\text { observed frequency - machine } f}{\text { machine } \frac{f}{f}} \times 1,000,000
$$

For ${ }^{1} 4$ and ${ }^{13} \mathrm{C}$, the machine frequency is determined b) using the reference stand ard TMS (tetramethyl silane),

$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$

- chemical shitt \rightarrow functional group
-integration \rightarrow proportion to the \# of it's.
 about neighbors

$$
\begin{aligned}
& \delta 2.0,5,3 H \\
& 82.3, t, 2 H \\
& 82.5, d t, 2 H \\
& \delta 5.3, t, 1 H \\
& I \& J_{a b} \ll J_{b c}
\end{aligned}
$$

