α-halogenation of aldehydes & ketones

\[\text{H}^+ \quad \left[\overset{\ddagger}{\text{O-}} \text{H} \quad \overset{\ddagger}{\text{O-}} \text{H} \right] \Rightarrow \overset{\ddagger}{\text{O-}} \text{H} \]

\[\overset{\ddagger}{\text{O-}} \text{H} \quad \overset{\ddagger}{\text{O-}} \text{H} \]

\[\Rightarrow \overset{\ddagger}{\text{O-}} \text{H} \quad \overset{\ddagger}{\text{O-}} \text{H} \]

\[\overset{\ddagger}{\text{O-}} \text{H} \quad \overset{\ddagger}{\text{O-}} \text{H} \]

\[\overset{\ddagger}{\text{O-}} \text{H} \quad \overset{\ddagger}{\text{O-}} \text{H} \]

acidic

The product that forms is unlikely to react further, since the halogen creates a \ddagger center immediately next to the carbonyl (□), making the C=O less likely to open/ react.

basic

The circled α-proton of the product (H) has a lower pKa (more acidic) than the α-proton of the starting compound (H). Because the product is in the same reaction conditions as the original starting material, it will react further.