$6 / 1 / 20$
Ran I- $\mathrm{KI}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8} \longrightarrow I_{3}{ }^{-}$
Ran with RLS being studied

$$
R=k[I-]^{a}\left[S_{2} O_{8}^{-2}\right]^{b}
$$

Part A- KI concentration is changed to determine order a
Part R- $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{\text {e }}$ concentration is changed to determine order b
$R_{x n}$ II - $\left.\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+I_{3}-\right] \begin{aligned} & \text { controls } \\ & \text { Stoichiometry }\end{aligned}$
$R_{x n}$ that controls the extent $R_{\text {in }}$ I occurs
Consumes I_{5}^{-}as it is formed
R en II -Starch
Ran that causes the mixture to change
colors, signaling the end of the $r \not y n$.
starch binds reversibly with T_{3} to change color,

Calculations product of rim with RLS

$$
R_{\text {ate }}=\frac{\left.\Delta\left[I_{3}\right]\right]}{\Delta t}=\frac{1 \Delta\left[S_{2} \partial_{3} 1^{2}\right]}{\Delta t}-\text { controls }
$$

Due to stoichiometry

Tables from p art A Dilution

$$
\begin{aligned}
M_{\text {diluted }} & =M_{\text {stock }} \cdot \frac{V_{\text {stock }}}{V \text { total }} \\
{\left[S_{2} O_{3}^{-2}\right] } & =0.012 \mathrm{M} \cdot \frac{.0002 L}{}=0.00126 \\
\left.R_{\text {ate }}\right] & \frac{1}{2} \frac{0\left[S_{2} 0_{3}^{-2}\right]}{\Delta t}=\frac{1}{2} \cdot \frac{0019 \mathrm{~L}}{\Delta t} \\
& =0.00126
\end{aligned}
$$

Calculate order parameter a Parr A-Reactions $1-4$

since changing $[K I]$ changes rate (changes time), KI is involved in RLS,

$$
\begin{aligned}
& \frac{R_{1}}{R_{2}}=\frac{K[I \cdot]_{1}^{a}\left[S_{2} \theta_{8}^{-2}\right]_{1}^{b}}{K[I-]_{2}^{a}\left[S_{2} 0_{8}^{-2}\right]_{2}^{b}} \quad\left[S_{2} 0_{8}^{-2}\right]_{1}=\left[S_{2} \sigma_{8}^{-2}\right]_{2} \\
& \left.R_{2} O_{8}^{-2}\right] \text { same } \\
& \frac{R_{1}}{R_{2}}=\frac{[I-]_{1}^{a}}{[I-]_{2}^{a}}=\left(\frac{[I]_{1}}{[I]_{2}}\right)^{9}=29 \text { A }
\end{aligned}
$$

In Part $A,\left[I^{-}\right]_{1} /\left[I^{-}\right]_{2}=2$

$$
\begin{equation*}
\frac{\text { rateryn 1 }}{\text { rateren } 2}=2 \tag{9}
\end{equation*}
$$

$$
a=\frac{\ln \left(\frac{r_{\text {ate }}}{\text { rate }}\right)}{\ln 2}
$$

For part A, runs $1+2,2+3$, and $3+4$ are compared to determine the order parameter (a)
ran | rate $=0,00063 / 36=1.75 \times 10^{-5}$
ran 2 rate $=0,00063 / 75=8,4 \times 10^{-6}$

$$
a=\frac{\ln \left(\frac{1.75 \times 10^{-5}}{8.4 \times 10^{-6}}\right)}{\ln (2)}=1.05 \rightarrow 8.4 \times 10^{-6}
$$

The ran is first-order in $K \perp$.

In part B, reactions $5+6,6+7$, and $7+8$ are compared to determine order parameter b,
\rightarrow Both reagents turn out to be First order,

$$
\rightarrow R=\left(k[E-]\left[s_{2} a_{8}^{-2}\right]\right.
$$

Reactions (-8 (Part $A+P a r t B$) are used to calculate K.

$$
k=R /\left(\frac{\left.[I-]\left[S_{2} \partial_{8}^{-2}\right]\right)}{1}\right.
$$

These are not the same as the stock concentrations.

$$
\begin{aligned}
& {[K I]_{\text {dilute }}=[K I]_{\text {stock }} \cdot \frac{V_{\text {used }}}{V_{\text {rota }}}} \\
& \quad=0.20 \mathrm{~m} \cdot \frac{0.0008 \mathrm{~L}}{0.0019 \mathrm{~L}}=0,0842 \mathrm{~m}
\end{aligned}
$$

Determining activation energy

$$
\begin{gathered}
k=A e^{-E a / R T} \text { (Arrhenius } \\
\ln k=\ln \left(A e^{-E a / R T}\right) \text { expression) } \\
\ln k=\ln A+\ln \left(E^{-E a / R T)}\right. \\
\ln k=\ln A+(-E a / R T) \\
\ln k=-E a / R T+\ln A \\
\frac{\ln k}{}=\frac{-\frac{E a}{R} \cdot \frac{1}{T}+\frac{\ln A}{X}}{b} \\
\ln k
\end{gathered}
$$

