$4 / 17 / 20$

> metal
> box
fixed volume
1.00 L, atm
$25^{\circ} \mathrm{C}$
When temperature decreases, the average energy of the molecules decreases, so the molecules colli de with inside of the container with less energy, Since the volume will not change, the pressure anat change,

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \Rightarrow \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

Pod) T proportional
\angle If the volume of a gas is decreased (while maintaining temperature), piston maintaining the surface area inside the container will also decrease. Since $P=F / A$ (pressure is force divided by area), this means the pressure wal increase.

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \Longrightarrow P_{1} V_{1}=P_{2} V_{2} \quad P \alpha \frac{1}{V}
$$

Manipulations of the ideal gas law

$$
\begin{aligned}
& P V=n R T \quad n=\frac{M M}{M} \leftarrow \text { mass } \quad \text { molar mass } \\
& P V=\frac{m}{M M} \cdot R T
\end{aligned}
$$

Density

$$
\underset{\left(r h_{0}\right)}{P}=\frac{\text { mass }}{\text { Volume }} \quad \frac{m}{V}=\frac{P \times M M}{R T}
$$

Molar mass

$$
M M=\frac{m R T}{P V}
$$

Partial Pressure
$1 \operatorname{atm} \mathrm{CO}_{2}$ $2 \mathrm{~atm} \mathrm{~N}_{2}^{2}$
3 atm Ne

If all gases in a container are ideal, since the gases do not interact with each other (except to collide), the total pressure in the container is equal to The sum of the individual pressures.

$$
\begin{aligned}
P_{T}= & P_{\mathrm{CO}_{2}}+P_{\mathrm{N}_{2}}+P_{N_{e}} \rightarrow \text { partial pressures } \\
& \text { If the gases are not ideal the total }
\end{aligned}
$$

If the gases are not ideal, the total pressure is not necessarily the sum of the partial pressures.

Quiz HI

- Ideal Gases - 3 assumptions
- Ideal Gas Law
- "or iginal"
- density
- change in conditions - molar mass
- Pressure - what isit -units
- STR ($0^{\circ} \mathrm{C}$, 1 atm)

$$
\begin{aligned}
& \text { not - "The Graph"- Molecular energy } \\
& \text { on } \\
& \text { quiz } \left\lvert\, \begin{array}{l}
\text { - ms } \\
\text { - effusion or diffusion - vapor } \\
\text { - real gas laws pressure }
\end{array}\right.
\end{aligned}
$$

