Group A ions are insoluble as chloride (Ag⁺, Pb²⁺, Hg₂²⁺).

A⁺ becomes soluble with Cl⁻ present because it forms a complex.

HCl neutralizes NH₃ so A⁺ complex is destroyed.

H₂C₂O₄ is more soluble in hot H₂O than AgCl.

B ions are insoluble in slightly basic conditions.

- **B₁**: B⁺⁺⁺, Zr⁺⁺⁺, Nb⁺⁺⁺, Fe⁺⁺⁺
 - **B₂**: Al⁺⁺⁺, Cr⁺⁺⁺, H₂C₂O₄

Blue dichromate ion gets reduced to make MnO₄⁻ (purple).

Redox to make black ppt.

Red-brown ppt.

Prussian Blue (light blue ppt).
- C
- $C_2O_4^{2-}$
- Ppt
- $\text{H}_2O, \text{HNO}_3$
- HCl
- Ba$^{2+}$, Ca$^{2+}$, Sr$^{2+}$, Co$^{2+}$
- KNO$_2$
- Ppt
- Co^{2+}
- SnT
- CO_3^{2-}
- Ppt
- Ba^{2+}, Ca$^{2+}$, Sr$^{2+}$
- SnT
- CO_3^{2-}
- Ba^{2+}
- $\text{S}_{4}O_6^{2-}$
- Ppt
- Ca^{2+}

Group Cations are insoluble as oxalates.

Yellow ppt: Co(NO$_2$)$_2$.

Precipitate and redissolve to ensure only are present.

CoSO$_4$ less soluble than CaSO$_4$.
Colligative properties:

- Review: electronegativity + VSEPR → IMF
- Phase changes: KE vs. IMF
- Concentration: molarity, molality, mass %, ppm
- Electrolytes: extent of dissociation (i)
- Freezing point depression + Boiling point elevation: \(\Delta T = k \cdot m \cdot i \)
- Vapor pressure: cause (molecular energy distribution) - relationship to BP
- Heat of sol’n - molecular solids (solute vs solvent) - ionic solids (hydrations vs lattice)
- Dissolve vs dissociate
- Solubility: relationship to \(\Delta G \) vs \(\Delta H \)
- Osmotic pressure

Equilibrium: rate forward = rate reverse

\[\Delta G = \text{change in } [\text{Reactants}] = \text{change in } [\text{Products}] \]

\(\Delta E = 0 \) (not \([\text{Reactants}] > [\text{Products}]\))

\[\Delta G^\circ > 0 \]

Ksp - conversion between g/mL + Ksp

Qsp vs Ksp

selective precipitation
Buffers - what is a buffer? range? capacity?

ICE - when can simplifications be made?
(C when concentrations change very little as equilibrium is reestablished)

Henderson-Hasselbalch \(\Rightarrow \) \(\text{pH} = pK_a + \log_{10} \frac{[A^-]}{[HA]} \)

Calculate pH of a buffer

Calculate quantity of acid or its conjugate

Calculate change in pH due to neutralization

Titirations -

Draw titration curve - buffer range mono-, di-, polyprotonic

Y2 equivalence point indicators

Electrochemistry

Oxidation state vs formal charge

Balancing redox runs

Standard electrode potential

Voltaic cell

Standard reduction potential

Half runs

Identifying stronger oxidizing or reducing agent

Nernst equation

Transition metal complexes

Crystal field theory - d-orbital splitting

Stereochemistry + complex geometry

Ligands - mono vs bi vs polydentate

Strong vs weak field ligands

Transition metals + electron configuration