$1 / 5 / 15$

$$
\begin{array}{cl}
\mathrm{H}_{2} \mathrm{O} & \mathrm{CH}_{3}-\mathrm{CH}_{3} \\
\text { water } & \text { ethane } \\
M M=18 \mathrm{~g} / \mathrm{mol} & M M=30 \mathrm{~g} / \mathrm{mol}
\end{array}
$$

Electroneg afivity - The tendency for an atom to draw electron density towards itself when part of a bond.
delta-" a little bit"

dipole - charge
H- O : H separation across
space (two ends, positive + negative)
is more EN
\rightarrow a vector quantity
polar - has a dipolar
bond dipole-canseal by a difference in electronegativity of the atoms in a bond
VSEPR - Valence shell $\frac{\text { electron pair }}{\downarrow} \frac{\text { repulsion }}{\downarrow}$
contains the most
energetic electrons that orbitals hold like charges are involved in bonding electrons
Symmetry bond

horizontal projections repel

vertical
projections reinforce each other \longrightarrow Molecular dipole cancel
borane

The dipoles in boron exactly balance each other, meaning the vector sum is Zero, meaning the molecule is non-polar

- Due to its asymmetric shape and its strong bond dipoles, water is a very polar molecule.
- Due to its symmetric shape and its weak bond dipoles, ethane is a non-polar molecule,
IMF - inter-molecular forces - attractions between molecules due to the interaction of full charges (ions) or partial charges (permanent Or induced dipoles) \rightarrow electostatic forces Water has strong IMf due to its polarity, while ethane has very weak IMF due to its non-polarity. heat (thermal energy) - sum of the translational, vibrational, or rotational motion of the atoms and/or molecules in a system \rightarrow room temperate Water is able to be a liquid at $R T$ because its IMF are able to resist the effects of heal. Ethane is unable to be a liquid at RT because thermal energy overcomes ethane's weak ImF.

Molecular energy distribution diagram

Water is able to evaporate at room temperature, even though it is not near its (normal) boiling point, because a small fraction of molecules will have the energy necessary to evaporate.

