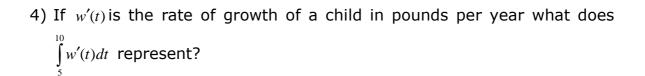
Id:
Exam#1
Math IB
 Please show all your work step by step clearly, and underline or circle your final answer. No graphic calculators are allowed.
1) a) Estimate the area under the graph of $f(x) = \frac{1}{x}$ from $x=1$ and $x=5$
using four approximating rectangles and right end points.
b) Sketch the graph and rectangles.

Is your estimate an under estimate or over estimate? Why?

Name:


c)

Monday, May 6th, 2014

2) **Use the definition of definite integral** to calculate the value of the following integral

$$\int_{0}^{4} (x^2 - 3x) dx.$$

3) Use the comparison properties of integrals to **estimate** $\int_{-1}^{1} \sqrt{1+x^4} dx$.

5) a) State the Fundamental Theorem of Calculus Part I.

b) Use Part I of Fundamental Theorem of Calculus to find the derivative of the function $y = \int_{\tan x}^{17} \sin(t^4) dt$

6) Find the integral of the following

$$a) \int \frac{1+x}{1+x^2} dx$$

$$b) \int_{0}^{\pi} x \cos(x^2) dx$$

- 7) Given the functions $x = 2y^2$ and $x = 4 + y^2$.
 - a) Sketch the graph of the region enclosed by the given curves.

b) Find the area of the region enclosed by the given curves.

8) Given
$$y = 1 - x^2$$
, $y = 0$

a) Sketch the region, the solid, and a typical disk.

b) Find the volume of the solid obtained by rotating the region bounded by the given curves about the x-axis.

9) Prove the following:

Suppose f is continuous on [-a,a], If f is even [f(-x)=f(x)], then $\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx \ .$