Quiz#1

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- 1. Approximate the area under the curve $y = \sin x$ from 0 to $\frac{\pi}{2}$ using ten approximating rectangles of equal widths and right endpoints. The choices are rounded to the nearest hundredth.
 - 0.36 a.
 - b. 0.02
 - c. 0.72
 - d. 0.98
 - 1.08 e.
 - 2. Use the Midpoint Rule with n = 10 to approximate the integral.

$$\int_{1}^{2} \sqrt{4+t^2} dt$$

- 7.510716 a.
- b. 1.510716
- c. 12.510716
- d. 2.510716 10.510716 e.
- 3. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function.

$$h(x) = \int_{1}^{\sqrt{x}} \frac{z^2}{z^4 + 1} dz$$

a. $\frac{\sqrt{x+1}}{x^2 + 2}$

b.
$$\frac{\sqrt{x^2+1}}{2}$$

c. none of these d. $\frac{\sqrt{x}}{x^2+1}$

e.
$$\frac{\sqrt{x}}{2(x^2+1)}$$

4. An animal population is increasing at a rate of 16 + 51t per year (where *t* is measured in years). By how much does the animal population increase between the fourth and tenth years?

a. 2248

- b. 2288
- c. 2338
- d. 2258
- e. 2238
- 5. The velocity function (in meters per second) is given for a particle moving along a line. Find the distance traveled by the particle during the given time interval.

 $v(t) = 8t - 8, \ 0 \le t \le 5$

a. 36 m

- b. 72 m
- c. 100 m
- d. 64 m
- e. 68 m

Numeric Response

1. The speed of a runner increased steadily during the first three seconds of a race. Her speed at half-second intervals is given in the table. Find a lower estimate for the distance that she traveled during these three seconds.

Γ	<i>t</i> (s)	0	0.5	1.0	1.5	2.0	2.5	3.0
	(ft/s)	0	2.8	3.5	6.9	8.2	12.2	16.3

2. Find an expression for the area under the graph of f as a limit. Do not evaluate the limit.

 $f(x) = \sqrt{\tan x}, \ 0 \le x \le \pi$

3. Find an expression for the area under the graph of f as a limit. Do not evaluate the limit.

$$f(x) = x^2 + \sqrt{1+2x}, \quad 4 \le x \le 7$$

Quiz#1 Answer Section

MULTIPLE CHOICE

1.	ANS: MSC:	E Bimodal	1 1 2 .	1 Section 5.1	DIF:	Medium	REF:	5.1.3a
2.	ANS: MSC:	D Bimodal	PTS: NOT:	1 Section 5.2	DIF:	Medium	REF:	5.2.10
3.	ANS: MSC:	E Bimodal	PTS: NOT:	1 Section 5.3	DIF:	Medium	REF:	5.3.17
4.	ANS: MSC:	E Bimodal		1 Section 5.4	DIF:	Medium	REF:	5.4.64
5.	ANS: MSC:	E Bimodal	PTS: NOT:	1 Section 5.4	DIF:	Medium	REF:	5.4.59

NUMERIC RESPONSE

1. ANS: 16.8

PTS: 1 DIF: Medium REF: 5.1.13 MSC: Numerical Response NOT: Section 5.1 2. ANS: $\lim_{n \to \infty} \sum_{i=1}^{n} \left[\sqrt{\tan\left(\frac{\pi i}{n}\right)} \right] \cdot \frac{\pi}{n}$ PTS: 1 DIF: Medium REF: 5.1.21 MSC: Numerical Response NOT: Section 5.1

3. ANS:
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[\left(4 + \frac{3i}{n} \right)^2 + \sqrt{1 + 2\left(4 + \frac{3i}{n} \right)} \right] \cdot \frac{3}{n}$$

PTS: 1 DIF: Medium REF: 5.2.20 MSC: Numerical Response NOT: Section 5.2

<u>D</u> 2.