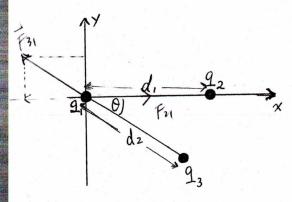
Physics 2B Exam I Winter

Name: Solution

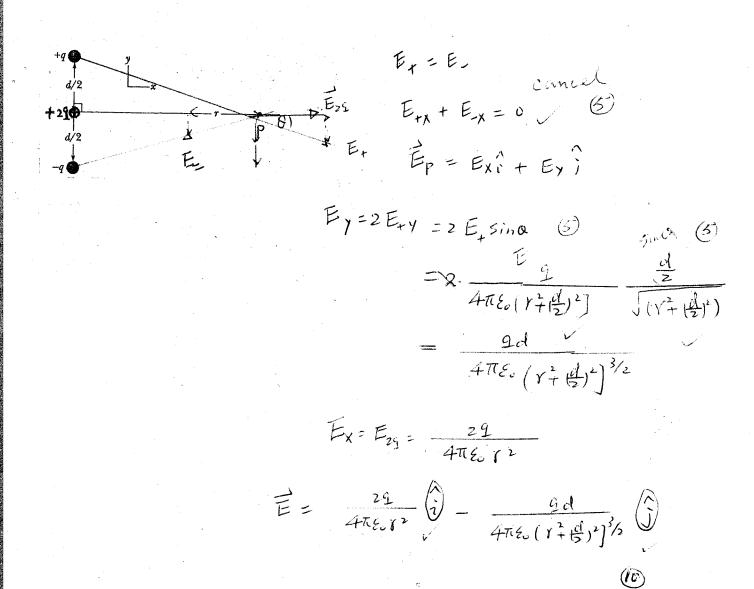
1. (25 points) Three point charges are fixed at the locations (see the figure):

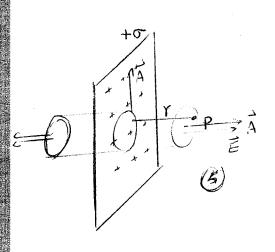

q₁ at the origin with positive charge q, q₂ and q₃ with unknown charge.

The net electric force on q₁ has a magnitude F and is directed in the +y direction.

(a) What is the sign of the charge q₃.

(b) What is the sign of the charge q₂.


(c) Suppose that the magnitude of q_3 is determined to be 2q, calculate q_2 in terms of q, d_1, d_2 and θ .


F2 = x \frac{9291}{d2} = F31x = x. \frac{9193}{d2} coro (6)

92 = (d1)2 29. cor & @ emswer

2. (25 points) An electric dipole with charge +q and -q and a separation d. We put +2q at the midpoint on the dipole axis. What are the magnitude and direction of the electric field at point P located at distance r from the midpoint?

3. (25 points) A thin, infinite nonconducting sheet with uniform positive surface charge density $+\sigma$. (a) Find the electric field a distance r in front of the sheet by using Gauss' law. (b) If there are two large parallel nonconducting sheets with uniform charge density $+\sigma$ and $-\sigma$, calculate the electric field at point P.

gambs' Law
$$\Phi = \overline{\Phi}_L + \overline{\Phi}_R + \overline{\Phi}_S \quad \overline{\Theta}$$

$$= \overline{E} \cdot A \cdot \cos^2 + \overline{E} \cdot A \cdot \cos^2 + \overline{E} \cdot A \cdot \cos^2 \theta$$

$$= 2\overline{E}A = \frac{9\pi}{8\pi} = \frac{5\overline{A}}{8\pi}$$

$$\overline{E}_{p} = \frac{\sigma}{2\varepsilon_{c}} \qquad (3)$$

$$= 2 \cdot \frac{\Im}{2\xi_0}$$

$$= \frac{\Im}{\xi_0} \quad (5)$$

4. (25 points) A rectangle of length l=15cm and width $\omega=5cm$, $q_1=-5\mu C$, $q_2=+2\mu C$ With V=0 at infinite, (a) what are the electric potentials Va at point A and Vb at point B? (b) How much work is required to move a charge $q_3=+3\mu C$ from B to A along a diagonal of the rectangle? (c) How much work is required to move q_3 along any curved path from A to B? ($k=1/4\pi\epsilon_0=9*10^9$ N m²/C²)

$$V_{A} = \frac{Q_{1}}{4\pi \epsilon_{0}l} + \frac{Q_{2}}{4\pi \epsilon_{0}U}$$

$$= \frac{1}{4\pi \epsilon_{0}} \left(\frac{-5x_{10}}{a_{15}} + \frac{2x_{10}}{a_{105}} \right)$$

$$= 6x_{10}t \quad (3)$$

$$V_{B} = \frac{Q_{1}}{4\pi \epsilon_{0}U} + \frac{Q_{2}}{4\pi \epsilon_{0}l}$$

$$= \frac{1}{4\pi \epsilon_{0}} \left(\frac{-5x_{10}}{a_{105}} + \frac{2x_{10}}{a_{105}} \right)$$

$$= -7.8 \times 10^{5} \quad (4)$$

$$V_{app} = 9.3 < V = 9.3 \quad (V_{A} - V_{B}) = 2.52$$

$$B \Rightarrow A$$

$$V_{app} > 9.3 < V = 9.3 \quad (V_{B} - V_{A}) = -2.52$$

$$A \Rightarrow B$$