## Chapter 7: Work and Energy

- 1. A small object of mass m is suspended from a string of length L. The object is pulled sideways by a force F that is always horizontal, until the string finally makes an angle  $\Phi$ m with the vertical. The displacement is accomplished at a small constant speed. Find the work done by F on the object.
- 2. Three forces applied to a trunk that moves leftward by 3.00 m over a frictionless floor. F1 = 5.00 N, F2 = 9.00 N, F3 = 3.00 N and angle  $\theta$  = 60°. During the displacement, (a) what is the net work done on the trunk by the three forces and (b) does the kinetic energy of the trunk increase or decrease?
- 3. A simple Atwood's machine uses two masses  $m_1$  and  $m_2$ . Starting from rest, the speed of the masses is 4.0 m/s at the end of 3.0 s. At that time, the kinetic energy of the system is 80 J and each mass has moved a distance of 6.0 m. Determine the values of  $m_1$  and  $m_2$ .
- 4. A system of two paint buckets connected by a lightweight rope is released from rest with the  $m_l$  bucket h meters above the floor. Find the speed with which this bucket strikes the floor. You can ignore friction and the mass of the pulley.
- 5. A box of mass M is at rest at the bottom of an inclined plane, the coefficient of kinetic friction between the box and the plane is  $\mu k$ . The box is attached to a string that pulls with a constant tension T. (a) Find the work done by the tension as the box moves through a distance x along the plane. (b) Find the speed of the box as a function of x and  $\theta$ . (c) Determine the power produced by the tension in the string as a function of x and  $\theta$ .
- 6. A horizontal force acts on a cart of mass m such that the speed v of the cart increases with distance x as v = Cx, where C is a constant. (a) Find the force acting on the cart as a function of position. (b) What is the work done by the force in moving the cart from x = 0 to  $x = x_1$ ?
- 7. A straight rod of negligible mass is mounted on a frictionless pivot. Mass  $m_1$  and  $m_2$  are attached to the rod at distance  $L_1$  and  $L_2$ . (a) Write an expression for the gravitational energy of the masses as a function of the angle  $\theta$ . (b) For what angle  $\theta$  is the potential energy a minimum? Show that if  $m_1$  \* $L_1$  =  $m_2$  \* $L_2$ , the potential energy is

