Augmented matrices

We often use "augmented matrices" to simplify calculations involved in solving the matrix equation $A X=B$, where A is an m by n matrix, X is an unknown vector in R^{n}, and B is a given vector in R^{m}. The augmented matrix for this calculation is written $\left(C_{1}\left|C_{2}\right| \ldots\left|C_{n}\right| B\right)$.

Here the C_{i} are the columns of matrix A . Note that $A X=B$ corresponds to m linear equations in n variables, and elementary row operations on the augmented matrix correspond to either (1) switching two equations, (2) multiplying an equation by a non-zero constant, or (3) adding a non-zero constant times one equation added to another. These operations are encoded by doing the same operations to the augmented matrix.

We then put the augmented matrix $[\mathrm{A} \mid \mathrm{B}]$ in row reduced echelon form. The equation $A X=B$ will have a solution if and only if the equations corresponding to the augmented matrix have the same solution. This is because placing the matrix A in row reduced echelon form is accomplished by multiplying A on the left by a series of invertible elementary matrices $E_{1} E_{2} . . E_{n}=R$, and doing the same to B. That is, the solutions of
$A X=B$ are the same as the solutions to $R A X=R B$. (If $A X=B$ for some vector X , then also $R A X=R B$; and if $R A X=R B$, then $R^{-1} R A X=R^{-1} R B$, or $A X=B$.)

We can easily see whether there is a solution: if the number of non-zero rows in $R A$ is the same as the number of non-zero rows in $R[A \mid B]$, then there is a solution (the system of equations is said to be "consistent.") If there are more non-zero rows in $R[A \mid B]$ than in $R A$, then there is no solution (the system of equations is said to be "inconsistent.")

Here are two related examples $A X=B$, both in row-reduced echelon form:

$$
\begin{array}{cc}
\text { Example 1: }\left(\begin{array}{llll}
1 & 0 & 1 & 2 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right) \vec{X}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) & \text { or } \quad\left(\begin{array}{llll|l}
1 & 0 & 1 & 2 & 1 \\
0 & 1 & 2 & 3 & 2 \\
0 & 0 & 0 & 0 & 3
\end{array}\right) \\
\text { and } \\
\text { Example 2: }\left(\begin{array}{llll}
1 & 0 & 1 & 2 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right) \vec{X}=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right) & \text { or } \quad\left(\begin{array}{llll|l}
1 & 0 & 1 & 2 & 1 \\
0 & 1 & 2 & 3 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{array}
$$

The first example clearly has no solution, since the product of X and the third row of the matrix cannot be 3 . The second example has the obvious solution $X=(1,2,0,0)^{t}$. If S is the set of all solutions to the homogeneous system $A X=0$, then the set of all solutions to the second example above is the sum of a particular solution plus any solution to the homogeneous case, as we saw in R^{3} and R^{2}. That is, we simply add $\mathrm{X}=(1,2,0,0)^{\mathrm{t}}$ to V , for any vector V in S . As we saw before, we can represent the set of
solutions to $A X=0$ as follows, using the parameters r and s for the $3^{\text {rd }}$ and $4^{\text {th }}$ columns of the reduced matrix variables:

$$
X=r\left(\begin{array}{c}
-1 \\
-2 \\
1 \\
0
\end{array}\right)+s\left(\begin{array}{c}
-2 \\
-3 \\
0 \\
1
\end{array}\right)
$$

Therefore, the set of solutions to $A X=B$, for the second example, is:

$$
X=\left(\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right)+r\left(\begin{array}{c}
-1 \\
-2 \\
1 \\
0
\end{array}\right)+s\left(\begin{array}{c}
-2 \\
-3 \\
0 \\
1
\end{array}\right)
$$

We should also pay attention to relevant dimensions. The dimension of the domain space is 4 , the domension of the range space is 3 . However, the dimension of the column space is only 2 , and the rank of the matrix is therefore 2 also. (Note the dimension of the row space must be the same, 2.) The nullity, or dimension of the null space is the number of non-leading one columns, or 2 also. The set of vectors in the column space, which represents the set of vectors mapped onto by the matrix, is 2 also, even though it exists in a 3 dimensional space. The rank of the augmented matrix in the first example is 3 , which is greater than that of the non-augmented matrix, so it has no solution. The dimension of the augmented matrix in example 2 is 2 , the same as the rank of A, so there are an infinite number of solutions.

