
Introduction to error-correcting codes.

Maksim Maydanskiy

Summer 2018.

Contents

1 The basics. 1
1.1 Messages and codewords. 1
1.2 Decoding. Hamming noise model and Hamming distance. Hamming bound. 2
1.3 Codes of distance n − 1 and orthogonal arrays. 5
1.4 Singleton and Plotkin bounds. 6

2 Linear codes. 7
2.1 Definitions. 7
2.2 Generator matrices. Parity check matrices. 8
2.3 Columns of parity check matrix and error correction ability. 9
2.4 Parity and generator matrices in systematic form. 10
2.5 Dual codes. 11
2.6 Hadamard codes. 11
2.7 Error detection. Syndromes. Error correction with syndromes. 12

3 Some code constructions. 13
3.1 Random linear codes and GV lower bound. 13
3.2 Reed-Solomon codes. 14
3.3 Cyclic codes. 15

3.3.1 Introduction. Ideals in Fq[x]/(xn − 1) and cyclic codes. 15
3.3.2 Generator and parity check matrices for a cyclic code. 16
3.3.3 Zeroes of cyclic codes. 17

3.4 Bose-Chaudhuri-Hocquenghem (BCH) codes. 17
3.4.1 BCH codes are a special type of cyclic codes. 17
3.4.2 Number theoretic Fourier transforms. 20
3.4.3 Classical Reed-Solomon code as a BCH code. Design distance of BCH codes. 22

1

1 The basics.

1.1 Messages and codewords.

Anyone who has played a game of whispers1 knows that messages can get garbled in transmis-
sion. That’s fun in games, but troublesome and sometimes dangerous in communications and
computing systems. To counteract, designers of such systems often use error-correcting codes –
ways of pre-processing data before transmission so that the recipient can recover the original mes-
sage even if some of it has been corrupted.

Example 1 (Repetition code, version 1). Suppose in the game of whispers you say every word of the
message three times. Then even if one of the words gets corrupted, the listener can use ”majority
vote” to figure out what you said.

To make a mathematical model of this problem, we imagine a set of messages M. We often
think of a message as a string of characters drawn from some alphabet Σ (its elements are called
characters), and take as messages all strings of length k; that is, we pick m ∈ M to be an ordered
k-tuple of elements of Σ.

Remark 1. In the real world, different messages might be more or less likely: If you are expecting
a message from a friend ”Hello!” is a more likely message than, say, ”fsTZYUXQ”. Moreover,
your transmission channel may transmit some messages more readily than others (for example,
in Morse code a dash is the length of 3 dots). You may get an idea to use pre-encoding so that the
source messages that are more common correspond to shorter transmitted messages, so that on
average your messages go through faster (this is in fact done in Morse code). This is an extremely
fruitful idea, developed in Part 1 of famous paper by Claude Shannon ”A Mathematical Theory
of Communication”. This is not, however, directly about error-correction, and we will not deal
with it. We will simply assume that whatever necessary pre-processing is done separately, and
in our analysis we don’t rely on any statistical knowledge about how likely various messages are
(essentially thinking that all of them are now equally likely).

Then, to transmit the message, the sender encodes it – maps it to a (generally longer) sting
of characters, and then sends that. For the recipient to have any hope of identifying the original
message - even without any corruption in transmission - the encoding should be one to one; this
means that we can often identify the image of the encoding (set of all transmitted strings) with the
message itself. We are led to the following definitions.

Defintion 1. (Encoding function.) An encoding function is an injective map E : M → Σn.

Defintion 2. (Code.) A code C of block length n over alphabet Σ is a subset of Σn. The elements of the
code are called codewords.

Thus the image of an encoding function is a code.

1.2 Decoding. Hamming noise model and Hamming distance. Hamming bound.

After encoding the message m ∈ M, the sender transmits the resulting codeword c = E(m).
Transmission introduces some errors, and the recipient receives some other n-string s. Recipient’s
task, then, is to recover c = E(m) ∈ C and, ultimately, m from s.

1Also known as ”telephone” in many countries.

2

m E−→ c noise−−→ s

Remark 2. Recovering m from E(m) ∈ C is the task of inverting the injective function E on its
image. For the same code C this may be more or less difficult, depending on E (this is the whole
point of cryptography!), but for error-correcting codes is usually a lesser concern than recovering
c from the received message s. We mostly focus on this latter task.

The task of ”recovering c from s” is not well posed at this point, because we do not know in
what way the transmission channel introduces noise. Clearly if the channel completely ignores
the input and just outputs whatever it wants, recovering c will not be possible. Thus we must pos-
tulate some kind of noise model. One possible option is a probabilistic model – for any codeword
c and any possible received string s we specify probability P(s|c) that c will be transmitted as s.
”Recovering c from r” becomes a question of finding the code word c with maximal probability
P(c|s) that it was the original codeword. This model is introduced in Part 2 of the same famous
paper of Shannon (it is famous for a reason!); apart from one optional example right below to
illustrate this model’s connection with our setup, we shall also not deal with it. We will instead
take another option, introduced by Richard Hamming in his famous paper ”Error detecting and
error correcting codes”, and will say that the cannel introduces noise by corrupting some bounded
number t of entries in the n-tuple. We then ask for an decoding procedure that recovers original c
from this corrupted s. The ratio of number of possible errors t from which the code can recover to
the total number of transmitted symbols n is called the relative distance of the error correcting code.

Remark 3. The two noise models are not completely disconnected, of course. We give one of the
simpler illustrations of this connection (which is already a bit involved, and is optional). Here we
are considering so-called binary symmetric channel, where we are transmitting bits (that is, the
alphabet is Σ = {0, 1}; thus ”binary”) and the probabilities of erroneously receiving 1 instead of 0
and of erroneously receiving 0 instead of 1 are the same (hence ”symmetric”). We want to say that
the probability of getting too many errors is not very large. More precisely we have:

Theorem. Suppose the probability of error in every bit is p < 1/2 and errors in different bits are indepen-
dent. Then when sending a message of length n, for any d > pn, the probability that we get more than
d = (p +)n errors occurring is less than e−2n/2.

Since limn→∞ e−2n/2 = 0, if we have a family of codes with relative distance δ = p + > p we
can use it to communicate over a channel with random noise with arbitrarily low risk of error.

Plausibility arguments for this Theorem. Level 0: The expected number of errors is pn, so getting
many more errors than that is unlikely.

Level 1: To get a crude estimate how unlikely it is, we recall that the number of errors follows
binomial distribution; normal approximation to binomial (which is an instance of the central limit
theorem) is N(µ = pn, σ2 = n(p(1 − p)) and being at more than d errors is d − pn = n =

√

n√
p(1−p)

σ above the average, which does not happen with probability of more than e

√

n√
p(1−p)

2

/2
=

e−
2n

2p(1−p) . This is off by a factor of p(1 − p) in the exponent (and is based on an approximation in
any case), but give the right exponential dependency on n and .

Level 2: The actual proof involves the Chernoff bound in probability. We will not go there.

3

Example 2 (Repetition code, version 2). Suppose in our transmission we send every letter of the
message three times. Then even if one of the letters gets corrupted, the receipient can use ”majority
vote” to figure out what the original message was. What happens if you send every letter 4 times?
What about 5 times? How many corruptions can you correct?

Mathematically, error-correcting abilities of codes in Hamming model are best described using
the notion of Hamming distance.

Defintion 3. (Hamming distance) Given two strings over the same alphabet define the distance
to be the number of places where they do not agree. More precisely, if c = (c1, c2, . . . , cn) and
s = (s1, s2, . . . , sn) then

d(c, s) = |{i ∈ {1, . . . , n}|ci ∕= si}|.
You can think of d(c, s) as the minimal number of ”character switching moves” to get from c

to s, where a single move is changing one letter.

Exercise 1. Show that d is a distance metric on the set of all strings of length n. That is show that:

1. d(a, b) ≥ 0

2. d(a, b) = 0 =⇒ a = b

3. d(a, b) = d(b, a)

4. d(a, c) ≤ d(a, b) + d(b, c)

Hint. The only non-trivial part is the last one (called the triangle inequality); however for func-
tions defined as ”minimal number of steps to get from a to c” the triangle inequality is always true
– you can always get to c by first going to b and then continuing to c.

Thus in Hamming error model (which we adapt from now on and will stop mentioning by
name) we fix the maximal number of errors t and the received message is any message of Ham-
ming distance at most t from the sent code message c.

To be able to uniquely recover c from s, we must have that c is the unique code word at distance
t or less from s; this is saying that the (closed) balls of radius t around points of C do not overlap.

Defintion 4. A code C ⊂ Σn is t-error correcting if for any r ∈ Σn there is at most one c ∈ C with
d(c, s) ≤ t.

Note that this is the same as all the closed balls of radius t centered at codewords being disjoint.
Clearly, there can not be too many disjoint balls in the finite set Σn. With view towards the

future we denote the size of Σ by q. To see how many can fit at most, we count the points in Σn

(ok, that’s easy: |Σ|n = qn), and in the Hamming balls.

Remark 4. Note that Hamming balls look quite different than ”usual” balls. Imagine for a moment
that Σ = R (this is not finite, but we ignore this for the moment). Then a closed ball of radius 1
through the origin is simply the union of coordinate lines, while a ball of radius 2 is the union of
coordinate planes - etc.

Exercise 2. The number of strings in the closed ball of radius t around any string s ∈ Σn is

Vol(t, n) =
t

∑
j=0

n
i

(q − 1)j

4

Remark 5. (Optional.)
For large n the dominant term in volume Vol(pn, n) is (n

np). The rough Stirling approximation
is logq n! ≈ n logq n − n logq e. Using this compute for large n, after some algebraic manipulations
and cancellations we get:

logq Vol(pn, n) ≈ [n logq n − n logq e]− [n logq np − np logq e]

− [n(1 − p) logq n(1 − p)− n(1 − p) logq e] + np logq(q − 1)

= n

−p logq p − (1 − p) logq(1 − p) + p logq(q − 1)

=: nHq(p)

Here for q = 2 we recover H2(p) = H(p) = −p log2 p − (1 − p) log2(1 − p) the Shannon
entropy function, and for other values we get the so-called q-entropy.

We actually computed the volume of the ”sphere” or radius pn (assuming this is an integer).
The strings in this sphere are ”typical” strings output by a source producing 1s with probability
p, running for n steps - unless something very unlikely happen, the source will produce a string
with number of ones very close to np. This means that the source is basically sending one of
2nH(p) roughly equiprobable stings. Following Shannon, it is therefore reasonable to say that the
amount of information transmitted (measured in bits) is the log2 number of possible messages =

log2 2nH(p) = nH(p). Thus the information capacity of the channel is H(p) bits of information per
one transmitted bit. (End of the optional remark).

Since the balls have to be disjoint, we get the following bound on the size of the code C:

Theorem 1 (Hamming bound). The size of any t-error correcting code C in Σn satisfies

|C|Vol(t, n) = |C|

t

∑
i=0

n
i

(q − 1)i

≤ qn

The inequality in this theorem becomes equality precisely when the Hamming spheres around
codewords of C cover the set of all strings on Σk completely. Such codes are called perfect codes.

Example 3. Consider repetition code with Σ = {0, 1} (such codes are called ”binary”) and odd
number of repetitions n = 2t + 1. There are two codewords (all-0 and all-1), and the Hamming
balls or radius t around them cover all of Σ = {0, 1}n without overlapping. Thus this is a perfect
code (you can also check algebraically that the Hamming bound holds – summing half of binomial
coefficients you get 22t).
Together with the examples where t = 0 and C = Σn these codes are called ”trivial perfect codes”.

Error-correcting ability of a code C is best formulated in terms of the quantity called minimum
distance.

Defintion 5. (Distance of a code.) For a code C, define the it’s minimum distance (or just distance) to
be the smallest distance between two codewords in C:

dC = min{d(c, c′)|c, c′ ∈ C, c ∕= c′}
Relation between this and error-correction ability is as follows:

5

Theorem 2 (Theorem 3.2.10). Code C can correct t errors if and only if dC ≥ 2t + 1.

Proof. We prove the contapositive: dC ≤ 2t if and only if some two closed radius t balls centered
at some c and c′ in C intersect.

If dC ≤ 2t then exist c, c′ ∈ C with d(c, c′) ≤ 2t. Then there exists a path of no more than 2t
coordinate switches from c to c′. At t steps down that path we find s with d(s, c) ≤ t, d(s, c′) ≤ t.

Conversely, if d(s, c) ≤ t and d(s, c′) ≤ t for some s and c, c′ ∈ C, then d(c, c′) ≤ 2t.

1.3 Codes of distance n − 1 and orthogonal arrays.

Fix q and n. For every d we can ask about the maximal size of a code on n characters from alphabet
of size q with distance at least d. People denote this maximal size by Aq(n, d).

Every code has d ≥ 1, and maximal such is all of Σn, Aq(n, d) = qn. We will soon see linear
codes, which always achieve distance d ≥ 2, and will allow us to say that Aq(n, 2) ≥ qn−1. For
certain n and q that are prime powers, there are perfect codes with d = 3 known as Hamming
codes – we sill study them later.

Question 1. Investigate Aq(n, d) for d = 3 (without requiring codes to be linear).

On the other end of the spectrum if d = n there can be only one point in C, so Aq(n, n) = 1.
What about Aq(n, n − 1)? Let’s assume n ≥ 2.

Theorem 3. There exists a code in Σn of size S and distance d = n − 1 if and only if there exist n mutually
orthogonal arrays of size S (see ”Combinatorics” Definition 4, Section 2.1).

Before we prove the theorem, we state:

Corollary 1. Aq(n, n − 1) ≤ q2 and Aq(n, n − 1) = q2 if and only if there exists n − 2 mutually
orthogonal latin squares of size q.

The corollary follows like this: 1) since we can not have a pair of orthogonal arrays of size more
than q2 (”Combinatorics” Proposition 2, Section 2.1), so Aq(n, n − 1) ≤ q2 and 2) the condition is
vacuous if n = 2, and Aq(2, 1) = q2 indeed, and in other cases having n − 2 MOLS is of size q is
equivalent to having n mutually orthogonal arrays of size q2 as we saw before (”Combinatorics”
Theorem 5, Section 2.1).

Proof of theorem. The proof below is best visualized by imagining a S by n table with all the code-
words written out as rows and the arrays forming the columns.

A1 A2 . . . An

= = =

c = c1 c2 . . . cn
c1 = c1

1 c1
2 . . . c1

n
...

...
...

cS = cS
1 cS

2 . . . cS
n

If we have n mutually orthogonal arrays Lj(s) of size S then to every cell s we associate a
codeword c(s) = (L1(s), · · · , Ln(s)). Any two such codewords c(s) and c(s′) agreeing in two
places j and j′ would mean that the arrays Lj and Lj′ agree on two distinct cells, and so are not
orthogonal. So Hamming distance between any two codewords is at least n − 1.

6

Conversely, given a code of size S of dc = n − 1, with codewords c1, . . . , cs build n arrays
Lj(s) by assigning Lj(s) = cs

j (this is the reverse of the procedure in the previous paragraph).
By the same logic as above, any two Ljs being not mutually orthogonal would mean that two of
the cs would agree in at two places, which is not possible. So we got our collection of mutually
orthogonal arrays.

This completes the proof.

1.4 Singleton and Plotkin bounds.

We now present two more bounds on size |C| of error correcting code C in Σn with distance d.
The first simple bound after Hamming bound (Theorem 1) on the size of C is obtained by

observing that if we forget dC − 1 coordinates of a code word, we should still get distinct strings
– any two codewords differ in at least dC places, so they still differ if we remove any dC − 1
coordinates. The conclusion is that the number of codewords is at most the number of strings of
size n − (dC − 1).

Theorem 4 (Singleton bound). The size of any t-error correcting code C in Σn satisfies

|C| ≤ qn−dC+1

We note that this is equivalent to dC ≤ n − logq |C|+ 1.

Remark 6. Note that if dc = 2 this says |C| ≤ qn−1. As we mentioned before, this is achievable by a
”codimension 1 linear code” (see Section 2 just below), so Aq(n, 2) = qn−1.

Remark 7. As we explain later when talking about linear codes, logq |C| is called the dimension of

C. This is ”approximate number of characters k such that |Σk| ≈ |C|”. The number k
n then called

the rate of the code. There is in general a ”rate-relative distance tradeoff”, and the Singleton bound
says basically ”rate+ relative distance ≤ 1”.

Finally, so-called Plotkin bound is as follows.

Theorem 5. For any code C in Σn we have

dC ≤ n
|C|

|C|− 1
q − 1

q

Observe that, since |C| is the number of codewords and should be quite large, this implies that
the relative distance of any code is below something quite close to q−1

q , and in particular for binary
codes is below something close to 1/2.

Proof. For the proof, we count in two ways the sum S of all distances d(c, c′) for (c, c′) an ordered
pair of distinct elements in C.

On one hand, we count over all pairs (c, c′). Since for every such pair d(c, c′) ≥ dC and there
are |C|(|C|− 1) such ordered pairs, we get

S ≥ |C|(|C|− 1)dc

7

On the other hand, we count summing over all coordinates i ∈ {1, 2, . . . n}. For any symbol
σ ∈ Σ define ni,σ to be the number of codewords in C with ci = σ. What is the total number (over
all pairs (c, c′)) of mismatches in the ith coordinate? Well, c has some symbol ci = σ there, and we
must have c′i ∕= σ. For a fixed symbol σ there are ni,σ choices for c and |C|− ni,σ choices for c′. To
get all contributions from ith coordinate, we sum over all σ ∈ Σ – and then to get S we sum over
all coordinates i ∈ {1, 2, . . . n}. Overall we get:

S = ∑
i

∑
σ

ni,σ(|C|− ni,σ) = ∑
i
|C||C|− ∑

i
∑
σ

n2
i,σ = n|C|2 − ∑

i
∑
σ

n2
i,σ

Here we used that ∑σ ni,σ = |C| – every codeword has some symbol σ in the ith place. Finally,
we bound the sum of squares by Cauchy Schwartz: ∑σ n2

i,σ ≤ 1
q (∑σ ni,σ)

2 = |C|2/q to get overall:

S ≤ n|C|2 − n
q
|C|2

Putting the two inequalities for S together we get

|C|(|C|− 1)dc ≤ S ≤ |C|2n(1 − 1
q
)

which gives what we wanted.

2 Linear codes.

2.1 Definitions.

Things are always better with linear algebra.

Defintion 6. (Linear code) A linear code is a vecor subspace if a vector space Fn
q .

That is, our alphabet is now Σ = Fq, and the code is a vector space.

Defintion 7. (Dimension of a code) The dimension of the linear code is it’s dimension as a vector
space.

Remark 8. A linear code of dimension k has qk points, so that dim C = logq |C|. For this reason the
number logq |C| is called ”dimension” even when C is non-linear.

Example 4 (Repetition code, version 3). If Σ = Fq then the repetition code from before is a linear
code.

The fact that the code is a vector space means that we can add, subtract, and rescale codewords,
and that if c and c′ are codewords, then so is c − c′ (and c + c′ and kc for any k ∈ Fq etc.). This, and
the fact that the Hamming distance is translation-invariant, immediately gives:

Proposition 1. If C is a linear code then dC = min{d(0, c)|c ∈ C}.

Proof. d(c, c′) = d(0, c − c′), so the minimum defining dC and min{d(0, c)|c ∈ C} coincide.

Defintion 8. (Weight of a string) For a string s in Σn we define its weight wt(s) to be its distance to
the origin: wt(s) = d(0, s). This is clearly the number of non-zero entries of s.

8

Immediately from this definition and Definition 5 we get:

Corollary 2. In linear codes, dC is the smallest weight of a codeword.

Example 5 (Repetition code version 4). We now immediately see that for repetition code with r
repeats dC = r.

Remark 9. So far we have used no field properties of Fq. We could have worked with any group
Z/nZ as alphabet Σ. However, in a moment we will start solving linear equations and systems
and will definitely use the field properties.

Here is another simple linear code:

Example 6 (Naive ”parity check”). Given a message m = (m1, . . . , mk) ∈ M = Fk
q encode it to the

codeword c = E(m) ∈ Fk+1
q by computing the parity entry mk+1 = ∑k

i=1 mk and sending m to
(m1, . . . , mk + 1). This code has dC = 2. It can not correct an errors, but can detect a single error
(or, more generally, any odd number of errors), by observing that the received message is not a
codeword. Such ”error detection” codes could be of some use, especially if one is allowed to ask
the sender to retransmit a corrupted message, but we focus on error-correction.

2.2 Generator matrices. Parity check matrices.

Every vector subspace of vector space V can be defined as an image of a linear map into V, or
as a zero set of a linear map from V. If such description is to be non-redundant, the maps into V
should be injective, or, correspondingly the map from V should be surjective. In either case we say
that the map is ”of full rank”. In the context of linear codes, where V = C we obtain the notions
of generating and parity check matrices respectively, which are described below.

Remark 10. In the book we are following, and in most books I have seen on the subject of error
correction, the convention is that vectors are by default row vectors, of size 1 × n, and linear maps
are thus given by matrices multiplying (”acting”) on the right thus 1 × n · n × m = 1 × m. This
is contrary to my personal habits, but I decided to try to follow this convention when talking
about coding theory. If you get confused you can try to write out the sizes as above and see if the
”same sizes go together”. Or simply transpose everything, making vectors into column vectors
and making matrices act by multiplying on the left. Good luck!

A k × n matrix G with entries in Fq encodes a map Fk
q → Fn

q sending m to mG. If G is of ”full”
rank k, this map is injective, and so is an encoding function in the sense of Definition 1.

Defintion 9 (Generator matrix). A k × n matrix G of rank k is called a generator of its image code

C = image(G) = {c|c = mG for some m}.

Dually, a n × (n − k) matrix HT with entries in Fq encodes a map Fn
q → Fn−k

q sending c to cHT.
If HT is of ”full” rank n − k, the null space {c|cHT = 0} (also called kernel) of HT is a linear code
of dimension k. Observe that the same subspace is also the set {c|HcT = 0}.

Defintion 10 (Parity check matrix.). A (n − k)× n matrix H of rank n − k is called a parity matrix of
its kernel code

C = kernelH = {c|HTc = 0} = {c|cT H = 0}.

9

Proposition 2. Matrices H and G of dimensions as above and full rank are parity and generator matrices
for the same code C if and only if

GHT = 0

Here the zero in this equality is the zero k × (n − k) matrix.

Proof. If GHT = 0 then image of G is in the kernel of HT, and since by our conditions on the rank
they are both of dimension k, they must be equal.

Conversely, if imageG = kernelHT then GHT = 0.

2.3 Columns of parity check matrix and error correction ability.

It is easy to characterize linear code’s correction ability in terms of the parity check matrix.

Proposition 3. If H is a parity check matrix of the code C then dc is the cardinality of the minimal set of
linearly dependent columns of H.

Proof. If ∑i cihi = 0 is a linear combination of columns of H equal to zero if and only if c =
(c1, . . . , cn) is in kernelHT = C. The number of non zero ci’s is the weight of c and so the minimal
weight of c in C is precisely the cardinality of the minimal set of linearly dependent columns of H.
By Proposition 2 this is dC.

The size of the column n − k is the number of ”extra parity check symbols” that you append
to your message, so all else being equal you might want to keep it low, and you want to make k
large. Thus the game is to keep columns short and numerous, while keeping dC large.

Example 7. To get dc = 2 you just need to not put any zero vectors as columns. To keep dc = 2
nothing prevents us from taking n − k = 1 and any n we want. If we just fill the one row of H with
1s we obtain the ”minus parity check” code - the last entry is minus the sum of all the others. This
is just as we saw in ”Naive parity check” Example 6 - one extra digit is enough to ensure dc = 2.

Example 8 (Hamming codes.). What do we need to get dc = 3? We need to keep columns of H
pairwise linearly independent. If we freeze the length l = n − k of these columns, how many
pairwise linearly independent column vectors can we get? We have already encountered this

problem when constructing Latin squares. In any case, the answer is n = ql−1
q−1 , and the resulting

code is of dimension k = ql−1
q−1 − l is called the Hamming code.

The parity check matrix of Hamming code has particularly simple description when q = 2. In
this case every ”line” (1-d subspace) consists of the origin and just one extra point, and so there
is only one choice of non-zero vector in that line. Such a vector is a ”binary number”, and so the
columns of H are ”all non-zero binary numbers”. This is the description in Hamming’s paper. For
example, when l = 3 we get the matrix

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

The corresponding code appears also as an example in Section 17 of Shannon’s paper.

Proposition 4. Hamming codes are perfect.

10

Proof. You can of course check that the Hamming inequality in Theorem 1 is equality for Hamming
codes. Here is an alternative explanation: every codeword in C encodes a linear relation between
columns of H. Suppose we have any string s in Fn

q . If we interpret it as encoding a relation
between columns of H this relation will be false precisely when s /∈ C. Instead of summing to
zero, the resulting linear combination of columns will some to some non-zero vector e. This e is a
multiple of unique column of H, e = Khj for some constant k and columnhj. If we want to move
s to lie in C by a single Hamming move, we want to add to the relation encoded by s a multiple of
one column of H to make it true. But this we can do in precisely unique way by adding e = Khj
– adding K to the component sj of s. Thus every string not in C lies at distance 1 from exactly one
codeword of C, and so C is perfect.

2.4 Parity and generator matrices in systematic form.

Perhaps the simplest type of a full rank matrix is the one that has identity matrix as a submatrix.
We can get such a matrix for fixed C by Gaussian elimination, using only row operations for G
(correspondingly, only column operations for H). Such forms of generator and parity matrices are
called systematic.

Proposition 5. If G and H are systematic generator and parity matrices for C then

G =

Idk P

and HT =

−P

Idn−k

for some matrix P.

Proof. The systematic form dictates

G =

Idk P

and HT =

Q

Idn−k

,

and Proposition 2 dictates Q = −P.

Observe that if G is in systematic form this means that our encoding function simply starts with
the message m and then appends some linear combinations of the entries in the end as ”check-
sums”. In this case decoding a valid codeword c to the original message m is trivial – one simply
keeps the first k characters of c.

2.5 Dual codes.

The fact that G and HT play dual roles is formalized in the following proposition.

Proposition 6. Let C be a k dimensional code in Fn
q given by a generator matrix G and a parity check

matrix H. Then the n − k dimensional codes C ′ and C ′′ in Fn
q given, respectively, by generator matrix H

and by parity check matrix G coincide.

Proof. By Proposition 2 C ′ = C ′′ if and only if HGT = 0. But of course that is true, since HGT =
(GHT)T = 0T.

11

From this it follows that C ′ = C ′′ actually depends only on C, and not on the choice of G or H
(since C ′ does not depend on choice of G and C ′′ does not depend on the choice of H).

In fact we can give direct definition and see that both C ′ and C ′′ coincide with it.

Defintion 11. Given a linear code C, define the dual code C⊥ to be the vector subspace

C⊥ = {u ∈ Fn
q |ucT = u · c = 0 for all c ∈ C}

Proposition 7. For a fixed C, we have C⊥ = C ′ = C ′′

Proof. We already know C ′ = C ′′.
We show C ′ ⊂ C⊥ ⊂ C ′′, so the result follows.
Suppose u ∈ C ′. Then u = mH, and hence uCT = mHCT = 0. Hence u is orthogonal to all the

rows of G, and thus to their span C. Hence u ∈ C⊥.
Suppose u ∈ C⊥. Then since all rows of G are in C, GuT = 0. So u ∈ C ′′.
This completes the proof.

We conclude that just like in usual linear algebra we have:

Corollary 3. If dimension of C is k then dimension of C⊥ is n − k.

Corollary 4.
(C⊥)⊥ = C

The codes with C⊥ = C are called self-dual.

Remark 11. Those a more familiar with abstract linear algebra we can also note that C⊥ can also
be described the annihilator of C in the dual vector space (Fn

q)
∗ = Fn

q (that is, the set of linear
functions in (Fn

q)
∗ that vanish in C).

2.6 Hadamard codes.

Example 9 (Dual of binary Hamming code aka Hadamard codes.). Consider the code with gen-
erator matrix G whose columns are all binary digits of size up to l. This is a code of dimen-
sion l and size 2l . It is easy to see that every row of G has weight 2l−1. Once one thinks for a
bit (hah!) about what G does to various basis vectors one concludes that it sends the message
vector m = (m1, . . . , ml) to the string of values of the linear form (m1x1 + m2x2 + . . . + mlxl) as
x = (x1, . . . , xl) varies in Fl

2. Exactly half of the values of this form (for any non-zero m) are 1. So
weight of every non-zero vector in C is 2l−1. We have a [2l , l, 2l−1] code.

In fact, the vectors in C are precisely the rows of the Hadamard matrix H2n , once we replace 1
by 0 and −1 by 1! (For this reason this is sometimes called the Hadamard code). You can prove this
directly by induction, but the ”more conceptual high-brow induction” is as follows: replacing 1 by
0 and −1 by 1 turns multiplication into addition in F2. The original H2 has rows recording values
of the two linear functions f (x) = x and f (x) = 0 on F2. Then, inductively, rows of the tensor
product of a pair of matrices correspond to pairs of rows of the original matrices. Via isomorphism
V∗

1 ⊕ V∗
2 = (V1 ⊕ V2)∗ sending f1 and f2 to f1 ⊕ f2(v1, v2) = f1(v1) + f2(v2) we see that the tensor

product of the matrix recording values of linear functions on V1 and the matrix recording values
of linear functions on V2 is precisely the matrix recording values of linear functions on V1 ⊕ V2. So

12

rows of H2n record values of linear functions on Fn
2 in agreement with description above.

If we allow also the constant function f (x) = 1 this amounts to allowing in addition to rows
of H rows of −H (taking x to −x before switching 1,−1 to 0, 1 is the operation of taking x to 1 − x
after this substitution). In vector space description this just means adding vector (1, . . . , 1) to the
span. These rows still all have weight 2l−1, so as far as keeping the same dC is concerned, this ex-
tra bit is ”free”. We get a linear code with parameters [2l , l + 1, 2l−1], called punctured Hadamard
code, or sometimes just Hadamard code. Having very high error-correction ratio, it is suitable
for noisy or difficult environments. The n = 8 version of this code was used by NASA Mariner
missions to Mars.

The (punctured) Hadamard code uses values of multivariable linear polynomials evaluated
on the message words to produce a code. Using degree ≤ k polynomials one gets so-called
Reed-Muller codes RM(k, l) of which Hadamard codes are the spacial case k = 1. Similar idea
of evaluating polynomials to produce codes will show up again in discussion of Reed-Salomon
codes.

2.7 Error detection. Syndromes. Error correction with syndromes.

In this section we will talk about how one might actually perform error correction with a linear
code. That is, having received a string s we want to determine the codeword at distance ≤ t from
it (or reject the received message as having too many errors if no such codeword can be found). To
begin, using H we can easily see if s is actually a codeword: we just compute HsT (or, equivalently,
sHT). The result is zero precisely when s is in C. If the result is non-zero this is a ”syndrome” of
errors in transmission. In fact the vector HsT is called the syndrome of s.

Can this ”syndrome” help us ”diagnose” what errors were introduced? That is, given s = c+ e,
can we recover c (or, equivalently, e) from HsT?

Let’s compute:

HsT = H(c + e)T = HcT + He = 0 + HeT = HeT

Exercise 3. Show that if C is t-error correcting, then wt(e) ≤ t then e is the smallest (in terms of
weight) among all e′ with the same syndrome He′T = HeT. Hint: Show that (e − e′) ∈ C.

So the task of recovering e from the syndrome is that of recovering the smallest element
mapped to given b = Hst value by a surjective linear map H.

Question 2. When the underlying field is R and the distance is the Euclidean distance, the solution
to this problem is given by Moore-Penrose pseudoinverse, which has formula HT(HHT)−1. What
happens if one tries to use this formula here?

To error-correct an incoming message we can pre-compute syndromes of all errors e of weight
at most t. These will al be different by the folowing proposition.

Proposition 8. For all e and e′ with wt(e) ≤ t, wt(e′) ≤ t we have HeT ∕= He′T.

Proof. Otherwise HeT = He′T, H(e− e′)T = 0, so e− e′ ∈ C but wt(e− e′) ≤ 2t < dC, contradiction.

13

Then if a string s comes in, we compute HsT, compare it with all the syndromes of e’s and if
we have a match declare c = s − e. Otherwsie we decide that we have too many errors to correct
confindently.

Remark 12. We could do a bit better, and for all possible syndromes (since H is surjective (being full
rank) that means for all possible strings of length n − k) find an e with that syndrome and minimal
weight (these are called ”coset leaders” in the book). Then upon receiving an message with any
syndrome we would decide that the error was e and decode to c = s − e. This would require
finding and then storing all the coset leaders, whereas for the cosets containing e’s of weight ≤ t
those es are the coset leaders (this is what Exercise 3 says), and no searching for coset leaders is
required.

Example 10 (Error correction in binary Hamming codes). The syndrome of weight 1 error is simply
the corresponding column of the parity check matrix H. For binary Hamming code with columns
listed ”in order”, the column in position j contains the binary digits of the number j. Thus for
such codes the syndrome of a single bit error is the binary specification of the coordinate where
the error occurred. Thats some nice syndrome, telling you exactly where the disease is! Hamming
designed his code to have precisely this property.

In general, syndrome decoding is costly, so codes where better decoding methods are available
have additional appeal.

3 Some code constructions.

3.1 Random linear codes and GV lower bound.

Suppose we wanted to construct a linear code with dc = d fixed. We could go about it in various
ways. We could fix l = n− k and try to pick as many columns for parity check matrix H as we can,
while keeping every d − 1 of them independent (this is what is done in the book in the proof of
Theorem 3.3.5). Or we could fix n, and start picking rows for a generator matrix G while keeping
the distance of every new row from old ones at least d (by simple linear algebra this actually
ensures that the whole code had distance at least d). Or we could pick a random generator matrix!

Proposition 9. If Volq(d − 1, n) < qn−k then there exists linear code of dimension k in (Fq)n with dc ≥ d.

Proof. Pick every entry of an k × n matrix G uniformly and independently from Fq. We will prove
the following lemma:

Lemma 1. For any m ∕= 0 in (Fq)k, the vector mG has entries that are distributed uniformly and indepen-
dently in (Fq)n.

Proof. Different components of v = mG depend on disjoint sets of entries of G, and so are inde-
pendent. Each one of these components vj is the same non-zero linear combination of uniform an
independent random variables vj = ∑i nigi j. Since any possible value vj = k ∈ Fq is achieved by
the same number qk−1 assignments of values to gijs, and each such assignment is equally likely,
we conclude that vj is uniformly distributed in Fq. This completes the proof of the lemma.

Now the probability that mG has weight ≤ d − 1 is the volume of Hamming ball Volq(d − 1, n)
divided by the total volume of (Fq)n, i.e. qn.

14

So the probability that any bad thing happens and some non-zero m gives wt(mG) ≤ d − 1 is
at most (qk − 1)Volq(d−1,n)

qn < Volq(d − 1, n)qk−n. As long as that is less than 1, corresponding G will
be injective (any m in the kernel will mean wt(mG) = 0, which we disallowed), and a generator
matrix of a code with dc ≥ d. This completes the proof.

Remark 13. The bounds one gets from other approaches are, while not identical, very similar. The
proof above can be strengthened by noticing that we only need to worry about one m in each line
(the weights of all multiples are the same), so the probability of a ”bad” weight is in fact at most
(qk−1)

q−1
Volq(d−1,n)

qn .

3.2 Reed-Solomon codes.

There are several ways to think about elements s of (Fq)n: as a sequence s1, s2, . . . , sn of elements, as
a vector tuple (s1, s2, . . . , sn), or as a function from an n-element set {α1, α2, . . . , αn} to Fq, si = s(αi).

In this language, looking for codes with codewords of high weight (to get high dc) is like
looking for functions that don’t vanish a lot. We know some such rigid functions that don’t vanish
too much: a non-zero polynomial of degree ≤ k − 1 can not vanish at more than k − 1 points. So
if we evaluate such polynomials at more points (say, n ≥ k) we will get ”codewords” that have
weight at least n − k + 1. Of course we must have n ≤ q to be able to do this.

Defintion 12. A Reed-Solomon code is obtained by picking n ≤ q points {α1, α2, . . . , αn} in Fq, and
taking

C = {p(α1), p(α2), . . . , p(αn)|p is a polynomial over Fq, deg p ≤ k}

We get dc = n − k + 1 – Reed-Salamon codes meet the Singleton bound (but the alphabet size
is constrained to be larger than n).

If we take as αs all elements of Fq we get so called ”classical” Reed-Salomon code.

Exercise 4. Pick 1, x, . . . , xk−1 as a basis for the space of polynomials of degree ≤ k − 1. Write down
the generator matrix of Reed-Solomon code on points α1, . . . , αn. Hint: Look up Vandermonde
matix (this also appeared briefly in ”Combinatorics” notes and will appear again in Section 3.4.1).

In the above exercise, encoding happens by sending the message m into the polynomial which
has m as coefficients. There is an alternative encoding procedure which sends m to the unique
polynomial of degree ≤ k − 1 taking values mi at αi for i ≤ k (this polynomial is produces by
the so-called Lagrange interpolation formula); the values of resulting polynomial at subsequent
αs are used as extra error correction symbols. This produces the same code (the space of values
polynomials of degree ≤ k − 1 at the αs), but a different encoding. Notice that with this encoding
the generator matrix is in systematic form.

We can generalize this in various ways: over F2 we can take all multi-variable polynomials in
x1, . . . , xl of degree ≤ m. This is known as Reed-Muller code 2.

Alternatively, instead of, or in addition to, sending p to values at some points, evaluate deriva-
tives of p to some order (this order can in fact vary from α to α); or send p to values and/or
derivatives weighted by some constant weights. The resulting generalizations go under name of
”Generalized Reed-Salamon codes” and ”derivative codes”.

2A key thing to remember when comparing this definition with those appearing in some other sources is that over
F2 x2 = x, so all higher degree polynomials are sums of terms where each variable appears in at most first power

15

The most radical generalization is to consider points p not just in Fq but on some algebraic
curve over Fq (think one-dimensional curve in the plane or in space specified or ”cut out” by
polynomial equations, like the circle is ”cut out” by x2 + y2 = 1 – but now in F2

q or F3
q insetead

of R2 or R3). And instead of just specifying zeroes and derivatives one can also allow ”poles”
like 1

(x−α)k or various orders in various points. Such codes are called algebraic-geometric codes.
The Goppa codes mentioned in the book are of this type. Algebraic-geometric codes are quite
powerful, but beyond our present constrains.

Remark 14. Reed-Solomon codes are widely used in practice. For example, Google’s file system
Colossus uses them to store large amounts of data redundantly without too much space overhead.
Apache’s Hadoop Distributed File System (HDFS) new version 3.0 released in December of 2017
also allows Reed-Solomon encoding.

One (main?) drawback of Reed-Solomon codes is the constraint of large alphabet size, q > n.
However, this is less of a disadvantage if the errors come in bursts. What this means is the fol-
lowing: if you want to encode a long bit string, you will not be able to do this with Reed-Solomon
code over F2, since you need q > n. Instead, take a Reed-Solomon code over, say F24=16. Then with
classical Reed-Solomon code where n = 15 you can encode say, strings of 5 hexadecimal charac-
ters with d = 11 and error correct up to 5 errors. However, these are 5 errors in the hexadecimal
characters transmitted. In practice, your 15 hexadecimal characters are 60 bits. If you have 6 bits
corrupted – each one in different hexadecimal – your error correction might fail. So in a sense, you
are getting up to 5 corrected errors on 60 bits transmitted – not really that great. However, if your
corrupted bits tend to clump together (come in ”bursts”) then you can have many more individual
bits affected – nearby bits likely belong to the same hexadecimal, and if so their corruption only
counts as one corrupted hexadecimal.

Burst errors are common in various applications – CD and DVD scratches, bar codes and QR
codes being damaged or partially occluded etc. This is one reason Reed-Solomon codes are used
in these settings.

3.3 Cyclic codes.

3.3.1 Introduction. Ideals in Fq[x]/(xn − 1) and cyclic codes.

In this section we continue with the theme of viewing n-tuples of elements of Fq as functions with
coefficients in Fq, but now instead of thinking about the n-tuple of values on some set of size n,
we think about it as coefficients of a degree ≤ n − 1 polynomial (in the upcoming section 3.4.2 on
”general discrete Fourier transform” we will see that these are ”Fourier dual” perspectives).

What are some good subspaces in the space of polynomial functions? The best sets of poly-
nomials - the ”ideal” ones - are known in algebra by exactly this name ”ideal”. That is, a (linear)
subspace C of polynomials such that if p(x) ∈ C and g(x) any polynomial, then p(x)g(x) ∈ C.
This of course will contain polynomials of arbitrarily large degree. One solution is to take our
polynomials ”mod xn. Algebraically speaking, this means working with ideals in the factor ring
Fq[x]/(xn − 1). Note that elements of Fq[x]/(xn − 1) are equivalence classes of polynomials, but
we will be sloppy and call them ”polynomials”. Every class has a unique representative of degree
≤ n − 1, so linearly Fq[x]/(xn − 1) can be identified with the vector space of these (polynomials
of degree ≤ n − 1); we are now looking at special (”ideal”) subspaces in that. Note that when we
speak about degree of p ∈ Fq[x]/(xn − 1) we mean the degree of this lowest degree representative.

16

What does C being an ideal mean bit more concretely? If c = c0 + c1x + . . . + cn−1xn−1 =
(c0, . . . , cn−1) is in C, then so should be xc = c0x+ c1x2 + . . .+ cn−1xn = cn + c0x+ . . .+ cn−2xn−1 =
(cn−1, c0 . . . , cn−2).

Defintion 13. (Cyclic linear code) A linear code C in Fn
q is cyclic if whenever (c0, . . . , cn−1) ∈ C we

also have
(cn−1, c0 . . . , cn−2) ∈ C.

So if C is an ideal in Fq[x]/(xn − 1) then C is cyclic. Conversely, suppose C is cyclic. Then
thinking of tuples as polynomials, we see that if c ∈ C then xc ∈ C. By induction xkc ∈ C for any
power k, and since C is a vector space, p(x)c ∈ C for any (class of) polynomial p in Fq[x]/(xn − 1).
So cyclic codes and ideals correspond.

Every ideal in Fq[x]/(xn − 1) is principal - generated by a single polynomial g(x). In fact, just
like in Fq[x] we can take any non-zero g(x) ∈ C with lowest degree and it will be a generator for
C.

Exercise 5. Prove this.

Hint. Just like in Fq[x], if c ∈ C is not a multiple of g then c = g f + r for r non-zero and of strictly
lower degree.

A warning: Unlike Fq[x], the ring Fq[x]/(xn − 1) is not an integral domain (there are elements
that multiply to zero), and it also has units (divisors of 1) of non-zero degree (any power of x is
such) (for this last reason generator of C as an ideal is also not unique up to scalars, unlike for
ideals of Fq[x]).

In fact, this forces g(x) to divide xn − 1 – otherwise the reminder of the division would be a
polynomial in C of lower degree. If we assume that gcd(q, n) = 1 then all irreducible factors of
factorization xn − 1 = f1(x) f2(x) . . . ft(x) are distinct. So all cyclic codes are obtained by picking
g(x) to be one of the 2t possible factors of xn − 1 and taking the ideal of all multiples of that g(x).

3.3.2 Generator and parity check matrices for a cyclic code.

If g has degree n − k, then C intersects the n − k dimensional subspace of all polynomials of de-
gree < n − k only at zero, so must have dimension at most k. At the same time the codewords
g, xg, . . . , xn−k form rows of an upper triangular matrix

G =

g0 g1 . . . gn−k 0 0 . . . 0
0 g0 . . . gn−k−1 gn−k 0 . . . 0
...

...
...

...
...

...
0 0 . . . 0 g0 g1 . . . gn−k

and hence are linearly independent. So C is of dimension k and G is a generator matrix for C,
so that a message m is encoded as mG which is the polynomial (m0 + m1x + . . . + mk−1xk−1)g(x).

The quotient h(x) = xn−1
g(x) has g(x)h(x) = xn − 1, which we can write out degree by degree for

all degrees i < n to get g0hi + g1hi−1 + . . . + gn−khi−n+k = 0 (we take hj = 0 for negative j). This
means that the matrix

17

H =

0 . . . 0 0 hk . . . h1 h0
0 . . . 0 hk hk−1 . . . h0 0
...

...
...

...
...

...
hk . . . h1 h0 0 . . . 0 0

has GHT = 0 and since it is of rank n − k, by Proposition 2 H is a parity check matrix for C.

3.3.3 Zeroes of cyclic codes.

Observation 1. When talking about zeroes of codewords in a cyclic code we have to be a bit careful
- after all, code words are equivalence classes, and different representatives may not have the
same roots: for example x2 and 1 don’t have the same roots (in any Fq), but are of course the
same in Fq[x]/(x2 − 1). However, and this is going to be used repeatedly in the sequel, if r is a
root of xn − 1 – in Fq or in some extension of Fq – then it is either a root of all representatives of
p(x) ∈ Fq[x]/(xn − 1) or is not a root of any of them. Hence for such n-th roots of unity we can
talk about them being ”a root” or ”not a root” of p. Note also that g(x) divides xn − 1, so all roots
of g are n-th roots of unity.

With this proviso, we see that the codewords in C are polynomials which have roots at all the
same n-th roots of unity as g. This gives an alternative description of cyclic codes: start with a
collection α1, α2, . . . , αs of n-th roots of unity in some extension of Fq, and take all polynomials in
Fq which vanish at these αs. Observe that if minimal polynomial of αj is f j, then g for the resulting
cyclic code will be the least common multiple of Mjs.

3.4 Bose-Chaudhuri-Hocquenghem (BCH) codes.

3.4.1 BCH codes are a special type of cyclic codes.

Special type of cyclic code is obtained when we take as the set of αs a sequential set of powers of
a primitive nth root of unity. Here are the details: Still under assumptions of gcd(n, q) = 1, let m
be the multiplicative order of q mod n; that is m is the smallest such that n is divisor of qm − 1 (all
others are multiples). Then Fqm is the smallest extension of Fq in which polynomial xn − 1 splits.
Let α be a primitive n-th root of unity in Fqm . Take α1 = αb, α2 = αb+1, . . . , αs = αb+s−1 (0 < s < n).
The resulting cyclic code is called Bose-Chaudhuri-Hocquenghem (BCH) code.

This code is of interest because it has large distance. In fact, the main result of this subsection
is dC ≥ s + 1. Thus s + 1 is called ”designed distance” - the code is designed to have distance at
least equal to it, but may end up with higher one.

Example 11. If s+ 1 = n the polynomials in C vanish at all nth roots of unity, so must divide xn − 1.
Clearly this means C = 0 ⊂ Fq[x]/(xn − 1) – which is indeed the only code there with distance n!

So why do BCH codes have these large distances? Here is a motivation: if a polynomial has a
few non-zero coefficients, it is of low degree, so then it has few roots – most values are non-zero
(this is what we used to say that Reed-Solomon codes have high distance). We will introduce a
Fourier transform for which, essentially, values of p̂ (at nth roots of unity) are coefficients of p and
vice versa. Then applying the above logic to p̂ we get that if p has a lot of zeroes at nth roots of
unity (p̂ is of low degree), then p has few vanishing coefficients (p̂ has few roots). Translated into
”code speak” this says that elements of BCH codes must have high weight!

18

We shall explain all of this in more detail in the next section, but before let’s give a much
more ”low tech” direct proof. We will need the proposition below, whose rigorous proof in this
generality seems to involve some technicalities – which we supply, and which you may take on
faith if you prefer.

Proposition 10. Let a1, a2, . . . , an be elements of a ring R. The Vandermonde matrix of the ais is the
matrix

V =

1 a1 a2
1 · · · an−1

1
1 a2 a2

1 · · · an−1
2

...
...

...
1 an a2

n · · · an−1
n

Then det V = ∏i<j(aj − ai).

Proof. We will show that equality we want is true ”as a formula”, and then argue that this means
that it is true in any ring R. In fancy language, this means the following: Let

P(x1, x2, . . . , xn) = det

1 x1 x2
1 · · · xn−1

1
1 x2 x2

1 · · · xn−1
2

...
...

...
1 xn x2

n · · · xn−1
n

as polynomial in x1, x2, . . . , xn. We argue as follows:
1) We will show the equality P(x1, x2, . . . , xn) = ∏i<j(xj − xi) is true in the polynomial ring

Z[x1, x2, . . . , xn] (that is, ”true as a formula”) and 2) for any ring R and a1, a2, . . . , an ∈ R, there
is a homomorphism Z[x1, x2, . . . , xn] → R that extends the map xi → ai. Since the polynomials
P(x1, x2, . . . , xn and ∏i<j(xj − xi) are equal in the domain, their images det V and ∏i<j(aj − ai) are
also equal.

It remains to show part 1 - the equality in the polynomial ring Z[x1, x2, . . . , xn]. This consists
of four steps:

1. P is divisible by (xj − xi) for any pair i ∕= j.

Proof: In the ”sum over permutations” formula for determinant we can pair up the permu-
tations σ and σ · τij (this is a pairing since σ · τij · τij = σ). The corresponding monomial terms

will differ by xki
i x

k j
j being replaced by −xki

j x
k j
i . Their sum will be divisible by x

|ki−k j|
j − x

|ki−k j|
i ,

which is in turn divisible by xj − xi; hence the determinant, being the sum of all such pairs,
will be divisible by (xj − xi) as well.

2. The least common multiple of the collection of (xj − xi) is ∏i<j(xj − xi) (and hence P is
divisible by ∏i<j(xj − xi), so that P(x1, x2, . . . , xn) = Q(x1, x2, . . . , xn)∏i<j(xj − xi)).

Proof: By a theorem from algebra, Z[x1, x2, . . . , xn] is a unique factorization domain, co LCM
is the product of all prime divisors of the polynomials (xj − xi); but each such polynomial is
prime, being of degree 1.

19

3. Degree of P is the same as degree of ∏i<j(xj − xi) (and hence deg Q = 0, i.e. P(x1, x2, . . . , xn) =
C ∏i<j(xj − xi) for some constant C).

Proof: Both degrees are equal to 1 + 2 + . . . + (n − 1).

4. The constant C is equal to 1.

Proof: The term coresponding to σ = Id in the ”sum over permuatations” formula is x2x2
3 ·

. . . · xn−1
n and σ = Id is the only permutation that gives such a monomial. On the other

hand, this monomial appears exactly once in expansion of ∏i<j(xj − xi) as well (we must
take all the n − 1 variables xn that we have, then all the n − 2 variables xn−1 that remain etc.).
Equating the coefficients of x2x2

3 · . . . · xn−1
n on both sides of P(x1, x2, . . . , xn) = C ∏i<j(xj − xi)

we see that C = 1.

Theorem 6. Suppose C is the BCH code over Fq given as

C = {p|p(αb) = p(αb+1) = p(αb+s−1) = 0}

for some α primitive root of unity in Fqm , some b and some s ≤ n. Then dc ≥ s + 1

Proof. We want to show that any p in C has at least s + 1 non-zero coefficients. Suppose the
opposite. Then p(x) = b1xn1 + b2xn2 + . . . + bsxns . The s equations p(αb+i) = 0 can be written
in matrix form as:

αbn1 αbn2 · · · αbns

α(b+1)n1 α(b+1)n2 · · · α(b+1)ns

...
...

...
α(b+s−1)n1 α(b+s−1)n2 · · · α(b+s−1)ns

b1
b2
...

bs

=

0
0
...
0

We claim that the matrix on the left is invertible – so that bj = 0 and we get a contradiction.
Why is it invertible? We can take out the factor of αbnj from each column, without affecting in-

vertibility. What remains is the matrix

1 1 · · · 1
αn1 αn2 · · · αns

...
...

...
α(s−1)n1 α(s−1)n2 · · · α(s−1)ns

, which is the transpose

of the Vandermonde matrix of αnj , which is invertible (its determinant is ∏i<j(α
nj − αni) ∕= 0).

3.4.2 Number theoretic Fourier transforms.

Motivation: ”classical” Fourier transformations.
”Classical” Fourier transform decomposes C-valued functions on R into ”continuous linear

combinations” of characters χξ(x) = e2πiξx (for any ξ ∈ R) – homomorphisms from (R,+) to
(S1 ⊂ C, ·); Fourier series decomposes C-valued functions on Z into ”infinite linear combinations”
of characters χn(x) = e2πinx (for any n ∈ Z) – homomorphisms from (S1,+) to (S1 ⊂ C, ·) (these
are the characters of R that factor through the quotient R → S1).

20

Discrete Fourier transform decomposes C-valued functions on Z/nZ ⊂ S1 into linear combi-
nations of characters χk(x) = e2πi k

n x (for k = 0, . . . , n − 1) – homomorphisms from (Z/nZ,+) to
(S1 ⊂ C, ·) (these are the restrictions of all the characters from S1).

General Fourier transformations.
Now if we take functions on Z/nZ valued in any field F (we will soon take F = Fqm) then a

homomorphism from Z/nZ to F∗ is specified by an element β ∈ F∗ of order dividing n (the place
where 1Z/nZ has to go). The n character sending 1Z/nZ to some primitive root of unity β, and
the ones sending 1Z/nZ to powers of β together suffice to decompose all F valued functions on
Z/nZ. Thus we have a definition.

Defintion 14. Given any field F and an element β of order n in F∗, define a linear map FTβ : Fn → Fn

sending p = (p0, p1, . . . , pn−1) to p̂ with p̂j = ∑i piβ
−ji.

Observation 2. If we think of p(i) as coefficients of F valued polynomial p(x) = p0 + p1x +
. . . , pn−1xn−1, then p̂j = p(β−j). Thus FTβ relates sequence of coefficients of p(x) to a sequence of
its values.

Assume that n is invertible in F (this is always the situation we are in if F = Fqm , because
otherwise there would be no primitive nth root of unity β in F∗ – we must have n|qm − 1). Then
our next proposition says that FTβ is invertible, and just like for ”classical” Fourier transforms,
inverse transform is given by formula very similar to the ”direct” transform.

Proposition 11. The inverse of FTβ is 1
n FTβ−1 .

Proof. Method 1: This is true for the same reason as in the usual Fourier transform, namely a kind
of ”orthogonality of characters”. Namely define a dot product of two F valued functions on Z/nZ

as

< f , g >= ∑
k∈Z/nZ

f (k)g(−k)

This is not ”positive definite” - the notion does not even make sense since the values of the dot
product are in F. However it is non-degenerate, since every f has some g with < f , g > ∕= 0.

Then if f and g are characters (homomorphisms from Z/nZ to F∗) then the dot product of f g
is equal to its own multiple by f (1)g(1)−1:

< f , g > = ∑
k∈Z/nZ

f (k)g(−k) = ∑
(l+1)∈Z/nZ

f (l + 1)g(−(l + 1))

= ∑
l∈Z/nZ

f (l) f (1)g(−l)g(−1) = f (1)g(1)−1 ∑
k∈Z/nZ

f (k)g(−k) = f (1)g(1)−1 < f , g >

So for different characters for which f (1) ∕= g(1) we get < f , g >= 0. Of course one easily
computes < f , f >= n.

In our situation, the n characters χj given by χj(k) = βjk pairwise orthogonal of ”square
length” n. This implies that they are linearly independent, and hence form a basis. In fact
(FTβ f)(l) =< f , χl > – Fourier coefficients are dot products with characters, aka components
in the basis of characters. We then have the the usual way of expressing any f in terms of its
components in orthogonal basis: f = 1

n ∑k < f , χk > χk. (This holds since 1
n ∑k < f , χk > χk has

21

the same dot products as f with any basis vector χj, so by non-degeneracy of the dot product they
must be equal.) This is precisely the formula for inverse Fourier transform we were after.

Method 2, computation: You can compute with summation signs and indexes, but I like to
visualize the same computation with matrices. The matrix of FTβ (in the usual convention of
matrices acting on column vectors by left multiplication) is

1 1 1 . . . 1
1 β−1 β−2 . . . β−(n−1)

1 β−2 β−4 . . . β−2(n−1)

...
...

...
...

1 β−(n−1) β−2(n−1) . . . β−(n−1)2

The matrix of FT−β is

1 1 1 . . . 1
1 β1 β2 . . . β(n−1)

1 β2 β4 . . . β2(n−1)

...
...

...
...

1 β(n−1) β2(n−1) . . . β(n−1)2

Their product

M =

1 1 1 . . . 1
1 β−1 β−2 . . . β−(n−1)

1 β−2 β−4 . . . β−2(n−1)

...
...

...
...

1 β−(n−1) β−2(n−1) . . . β−(n−1)2

1 1 1 . . . 1
1 β1 β2 . . . β(n−1)

1 β2 β4 . . . β2(n−1)

...
...

...
...

1 β(n−1) β2(n−1) . . . β(n−1)2

clearly has n as each diagonal entry Mkk, and in every non-diagonal entry Mkl it has a sum of
n-term geometric series sith initial term 1 and rate r = βk−l ∕= 1 (β is primitive nth root of 1). Thus
the entry is 1−rn

1−r ; but rn = βn(k−l) = 1. This concludes the proof.
Remark 15. Behind all the fancy formulas, you can think of these proofs as generalizing the proof
that the sum of all nth roots of unity in C is 0 – either observe that this sum is invariant under
rotation by e2πi/n and so must be zero; or compute 1 + ρ + ρ2 + . . . + ρn−1 = 1−ρn

1−ρ = 0.

3.4.3 Classical Reed-Solomon code as a BCH code. Design distance of BCH codes.

Example 12 (Classical Reed-Solomon code as BCH code - a Fourier transfrom view). ”Classical”
Reed-Solomon code is obtained by letting α be the primitive element of F∗

q and taking

C = {cp = (p(1), p(α), . . . , p(αq−1)|deg p ≤ k − 1}

Taking β = α−1 for our FT, we see:

22

1. The string cp = (p(1), p(α), . . . , p(αq−1)) is

cp =

p(1), p(β−1), . . . , p(β−(q−1))

= (p̂0, p̂1, . . . , p̂q−1) = p̂

2. The condition deg p ≤ k − 1 is just saying pk = pk+1 = . . . , pn−1 = 0. Up to factor of 1
n ,

pj = p̂(βj) = p̂(α−j) = p̂(αn−j). So the degree condition on p is the condition

p̂(α) = p̂(α2) = . . . = p̂(αn−k) = 0

So

C = { p̂| p̂(α) = p̂(α2), . . . , p̂(αn−k) = 0

This is clearly a BCH code – just one with n = q − 1 and b = 1. Here s = n − k and design
distance is s + 1 = n − k + 1, which is indeed the distance for this code.

We now fill in the details of the outline about distance of BCH codes. This is actually quite
similar to Example 12.

Theorem 7 (Theorem 6, again). Suppose C is the BCH code over Fq given as

C = {p|p(αb) = p(αb+1) = p(αb+s−1) = 0}

for some α primitive root of unity in Fqm , some b and some s ≤ n. Then dc ≥ s + 1

Proof. Suppose p ∈ C. Again, we use β = α−1 for our Fourier transforms. Then p̂j =
1
n p(αj), so

p̂ has at least s zero coefficients. This means that p̂ ”can be cycled to” a polynomial q of degree
≤ n − s (rigorously speaking, p̂ is congruent mod xn − 1 to a polynomial q of degree ≤ n − s − 1).
So q has no more than n − s − 1 roots, and so in particular no more than n − s − 1 of the powers
of β are roots of q – and since all such powers are roots of xn−1, the same ones are the roots of p̂
(compare with Observation 1). The conclusion is that no more than n − s − 1 powers of β are roots
of p̂, which is to say (by inverse FT), no more than n − s − 1 coefficients of p are zero, at least s + 1
are non-zero, giving p weight of at least s + 1. This completes the proof.

23

