
Full Terms & Conditions of access and use can be found at
https://maa.tandfonline.com/action/journalInformation?journalCode=umma20

Mathematics Magazine

ISSN: 0025-570X (Print) 1930-0980 (Online) Journal homepage: https://maa.tandfonline.com/loi/umma20

Dials and Levers and Glyphs, Oh My! Linear
Algebra Solutions to Computer Game Puzzles

Jessica K. Sklar

To cite this article: Jessica K. Sklar (2006) Dials and Levers and Glyphs, Oh My! Linear
Algebra Solutions to Computer Game Puzzles, Mathematics Magazine, 79:5, 360-367, DOI:
10.1080/0025570X.2006.11953433

To link to this article:  https://doi.org/10.1080/0025570X.2006.11953433

Published online: 16 Apr 2018.

Submit your article to this journal 

Article views: 28

View related articles 

Citing articles: 1 View citing articles 

https://maa.tandfonline.com/action/journalInformation?journalCode=umma20
https://maa.tandfonline.com/loi/umma20
https://maa.tandfonline.com/action/showCitFormats?doi=10.1080/0025570X.2006.11953433
https://doi.org/10.1080/0025570X.2006.11953433
https://maa.tandfonline.com/action/authorSubmission?journalCode=umma20&show=instructions
https://maa.tandfonline.com/action/authorSubmission?journalCode=umma20&show=instructions
https://maa.tandfonline.com/doi/mlt/10.1080/0025570X.2006.11953433
https://maa.tandfonline.com/doi/mlt/10.1080/0025570X.2006.11953433
https://maa.tandfonline.com/doi/citedby/10.1080/0025570X.2006.11953433#tabModule
https://maa.tandfonline.com/doi/citedby/10.1080/0025570X.2006.11953433#tabModule


360 MATHEMATICS MAGAZINE

Dials and Levers and Glyphs, Oh My!
Linear Algebra Solutions to

Computer Game Puzzles
JESS ICA K. SKLAR

Pacific Lutheran University
Tacoma, WA 98447-0003

sklarjk@plu.edu

Let the games begin!

I am a gaming geek. Not necessarily the kind of gaming geek you might expect a math-
ematician to be: I get beaten at chess by 12-year-olds, and I refuse to even go near the
game of Go. The few times I’ve tried role-playing games, my mismanagement of my
posse invariably caused my men to starve to death before they even encountered a
monster. No, my games of choice are computer adventure games. Myst, Riven, The
Longest Journey: you know the type. Lush visuals. Extravagant music. Marvelous ma-
chines, strange creatures, often haunting storylines, and the best part: puzzles. Ah, the
glory of cracking codes, of damming rivers, of finally getting that hovercraft to work!

So you can imagine my excitement when during a cold and gloomy winter va-
cation, as I sat curled up on the couch with one of my beloved games, I got the
following email from a student I’d taught in the fall. Chris wrote: “I was playing
[Myst] and it had a riddle. Suppose you have 3 rows of numbers. . . Also, suppose
there are 2 levers. . . Anyway, the game asked me to give a certain combination of
numbers. . . Rather than just play the game, I wanted to play math.”

My heart started beating faster.
He continued: “This reminded me of. . . our dihedral groups, but not exactly. Just

messing around, I did find that every combination of levers had an inverse.” Keep in
mind that the puzzle Chris was describing was not obviously mathematical (at least,
to a non-mathematician). It wasn’t solvable by elementary arithmetic or geometry: its
mathematical solution required the use of linear and abstract algebra. Upon reading
this email, I glowed with pride: here was my student, from my very first abstract al-
gebra class, recognizing that the puzzle’s levers could be thought of as elements of a
group. I immediately flashed back to a similar puzzle my friend, Vanessa, and I had
encountered in a game. In that case, Vanessa was the one to interpret the problem
mathematically. All of a sudden she and I were madly solving a system of equations
and—ta da!—our puzzle was solved.

Mulling over these two puzzles, I began to wonder: were there other puzzles like
that out there? The answer was a resounding yes. In this paper, I’ll explore merely
a few of the myriad linear and abstract algebra problems that masquerade as lever,
dial, and slide puzzles in computer games. I urge you to play along at home as you
read. My descriptions of situations will likely be more understandable that way; plus,
hearing chimes that indicate you’ve solved a puzzle can be much more exciting than
just reading about such phenomena.

Clock arithmetic

Let’s start by discussing the puzzle in Myst about which Chris was writing. Near the
beginning of the game, you encounter a contraption in a clock tower, which focuses
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mightily on the number 3. The contraption consists, in part, of three levers; from left to
right, we’ll call these levers A, B, and C. The first time we encounter the contraption,
we also see three number 3s facing us, vertically aligned. Basic experimentation with
the levers shows us that, in fact, each number 3 marks a face of a “dial” which has
exactly two other faces, marked with the numbers 1 and 2, respectively. So we have
three dials, each with three faces, marked with the numbers 1, 2, and 3. Here is where
a math-friendly person might get excited: regarding these numbers as integers modulo
3, the set of numbers on each dial can be identified with the set Z3 = {0, 1, 2} (where
a dial’s number 3 is identified with 0 in Z3). Since there are three dials, what we have
represented here is the set Z

3
3. Let us identify the numbers facing us at any moment on

the top, middle, and bottom dials with, respectively, the first, second, and third coor-
dinates of an element in Z

3
3: so, for instance, if the numbers facing us at a certain time

read 2, 1, 3 from top to bottom, we’ll identify this situation with the vector (2, 1, 0).
Now, if we are clever, we can deduce from facts learned elsewhere in the game that

we must somehow rotate these dials so that the numbers facing us, from top to bottom,
are 2, 2, and 1 (the proof of this is non-mathematical, and is left to the reader). The
mathematical question is: how can this (efficiently) be done?

Well, first, more careful experimentation is needed. Let’s say we start with the dials
in the positions associated with vector (x1, x2, x3) in Z

3
3. It is not hard to discover that

pulling lever A leaves the top dial alone, while rotating the middle and bottom dials
so that their resulting visible faces show numbers that are 1 more (modulo 3) than the
numbers they previously showed. That is, the resulting situation will be associated with
vector (x1, x2 + 1, x3 + 1), where addition is done modulo 3. Lever B, on the other
hand, leaves the bottom dial alone, while rotating the top two dials so that (x1, x2, x3)

becomes (x1 + 1, x2 + 1, x3). Finally, Lever C merely resets all the dials to their initial
position, with three 3s facing us. Lever C is merely an aid so that struggling puzzle-
solvers can start from scratch, and thus we may essentially ignore it for the rest of this
discussion.

We are now at a point where we can translate this problem entirely into mathemati-
cal terms. What we in fact have going on here is a group action: in particular, the action
of a subgroup of Z

3
3 on Z

3
3 via left translation. Pulling lever A adds (0, 1, 1) to any ele-

ment of Z
3
3, while pulling lever B adds (1, 1, 0) to any element. We begin with element

(0, 0, 0) in Z
3
3, and want to pull each of levers A and B a particular number of times so

that we obtain the element (2, 2, 1): that is, so that we add (2, 2, 1) to (0, 0, 0). This
corresponds to writing (2, 2, 1) as a linear combination

(2, 2, 1) = λ1(0, 1, 1) + λ2(1, 1, 0),

where λ1, λ2 ∈ Z
+, and where our addition takes place in Z

3
3; we can then pull lever A

repeatedly λ1 times and lever B repeatedly λ2 times to solve the puzzle. (Notice that
it does not matter in which order we pull the levers, as Z

3
3 is an abelian group.) Thus,

our immediate goal is to find positive integral solutions to this system of congruences
modulo 3:

λ2 ≡ 2 (mod 3)

λ1 + λ2 ≡ 2 (mod 3)

λ1 ≡ 1 (mod 3).

Which is all well and good, except that this system clearly has no solutions, since if
λ1 ≡ 1 (mod 3) and λ2 ≡ 2 (mod 3), then λ1 + λ2 must of necessity be congruent to 0
(mod 3).
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So we return to the puzzle and mess with the levers some more; or, if we are im-
patient, we consult a walk-through of the game. Either way, one will discover the
following sneaky fact: holding down lever A or lever B for a beat adds (in Z

3
3) the

vector (0, 1, 0) to the currently represented vector; furthermore, copies of (0, 1, 0) are
continually added as long as the lever is held down. Thus, by holding lever A or B
down for an appropriate amount of time, one can add the vector (0, λ3, 0) (for any
λ3 ∈ Z

+) to the currently represented vector. Thus, our revised mathematical goal is to
find positive integers λ1, λ2 and λ3 so that in Z

3
3 we have

(2, 2, 1) = λ1(0, 1, 1) + λ2(1, 1, 0) + λ3(0, 1, 0).

So the system of congruences for which we really need to find positive integral solu-
tions is

λ2 ≡ 2 (mod 3)

λ1 + λ2 + λ3 ≡ 2 (mod 3)

λ1 ≡ 1 (mod 3).

It is easy to see that this system has solution

λ1 = 1, λ2 = 2, and λ3 = 2

(where these solution values are unique modulo 3). Turning to the game, we first make
sure the dials are in their initial position (pulling lever C to put them there, if need be).
Then we can solve the puzzle by pulling lever A once and lever B twice, and holding
B down after its second pull exactly long enough to add the vector (0, 1, 0) twice. And
voilà, we hear a grinding noise and the gear at the bottom of the contraption opens.
Moreover, we have now gained access to a book that will allow us to travel a different
world. Nice, huh?

A stasis gun and skulls

We next turn to one of my favorite games, Timelapse. A number of puzzles in this game
can be interpreted mathematically; we focus on two such puzzles. The first puzzle that
we’ll discuss is the second of those two that we encounter in the game: it is the stasis
tube gun puzzle. (You should likely save your game before exploring the mechanisms
of this puzzle, as if you don’t solve it quickly enough you will be conquered by a
robot and lose the game: not good.) The puzzle consists of six tricolored circles and
six yellow triangles. (See Figure 1.) In the center of the puzzle, there is a small, red
hexagonal button. At first, clicking on the button merely makes a small noise; the
button appears to be currently inactive. Let C1 be the circle in the upper right-hand
corner of the puzzle, and let C2, C3, . . . , C6 be the puzzle’s other circles, in clockwise
order from C1. Next, for i = 1, 2, . . . , 6, let Ti be the triangle nearest to Ci . Each
circle is divided into red, green and blue sectors, of equal size, in clockwise order in
the circle. We’ll say that a circle is in state 0 (respectively, states 1 or 2) if its red
(respectively, blue or green) sector faces the center of the puzzle. We will soon see that
clicking on any of the triangles rotates several of the circles clockwise by multiples of
120◦; the set of all orientations of the circles can therefore be identified with a subset
of Z

6
3, where the i th entry of an element x ∈ Z

6
3 is the state of Ci in orientation x of the

circles. When you first encounter the puzzle, the orientation of the circles corresponds
to the vector (1, 0, 2, 1, 0, 2) ∈ Z

6
3.
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Figure 1 The stasis tube gun puzzle in Timelapse

At this point, one might begin to wonder if this puzzle’s solution is mathematically
similar to that of the clock tower puzzle; one will discover that, indeed, it is. Exper-
imentation shows that clicking on any given yellow triangle rotates exactly three of
the circles clockwise by either 120◦ or 240◦, while leaving the other circles alone. For
instance, clicking on T1 rotates C1 and C6 clockwise by 120◦ and rotates C2 clock-
wise by 240◦, but does nothing to the other circles, while clicking on T4 rotates C3

and C5 clockwise by 240◦ and rotates C2 clockwise by 120◦, while leaving the other
circles alone. Thus, clicking on a triangle causes the states of exactly three circles to
change. For instance, clicking on T1 causes the states of C1 and C6 to increase by 1
(mod 3) and the state of C2 to increase by 2 (mod 3). Mathematically, this corresponds
to adding a certain vector to the vector associated with an orientation of the circles.
Specifically, for each i = 1, 2 . . . , 6, clicking on triangle Ti adds vi to the puzzle’s
current orientation vector, where

v1 = (1, 2, 0, 0, 0, 1), v2 = (2, 2, 1, 0, 0, 0), v3 = (0, 2, 1, 1, 0, 0)

v4 = (0, 0, 2, 1, 2, 0), v5 = (0, 0, 0, 2, 1, 1), and v6 = (1, 0, 0, 0, 2, 1).

Now, what’s our goal for this puzzle? Well, recall the inactive red hexagonal button
in the center of the puzzle; chances are we want to activate it. Moreover, in adventure-
game language, its shape and color suggest that we will be able to do this by ro-
tating the circles so that each circle’s red sector faces the puzzle’s center: that is,
so that each circle is in state 0. Thus, mathematically, we begin with the element
(1, 0, 2, 1, 0, 2) in Z

6
3, and want to obtain the element (0, 0, 0, 0, 0, 0): that is, we

want to add (2, 0, 1, 2, 0, 1) to (1, 0, 2, 1, 0, 2). Since what we can do is limited to
the actions performed by the Ti , we want to find positive integers λ1, λ2, . . . , λ6 so
that

(2, 0, 1, 2, 0, 1) =
6∑

i=1

λivi .
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Looks familiar, huh? Only this time, this corresponds to solving a system of six con-
gruences in six unknowns, which is not so nice to do by hand. An alternate way of
solving this system is to use slightly more sophisticated linear algebra. Specifically,
we can represent this system by the matrix equation

Ax = b,

where A is the matrix whose i th column is vi , x is the column vector whose i th entry
is λi , and b is the transpose of (2, 0, 1, 2, 0, 1). Note that we are thinking of all these
matrices as being over Z3. Solving for x, we obtain

x = A−1b;
so we’re done if we can invert A. If we don’t wish to invert a 6 × 6 matrix over Z3 by
hand, we can do the inversion using, for instance, the GAP system for computational
discrete algebra. We can also then multiply A−1 by b using that system, and obtain the
solution

xT = (A−1b)T = (2, 1, 0, 0, 1, 1).

(Again, these solution values are unique modulo 3.) Thus, to solve the puzzle it should
suffice to click on T1 twice, and each of T2, T5 and T6 once. Sure enough, this works!
Nothing happens immediately, but now clicking on the red button in the puzzle’s center
causes the button to disappear as the red sectors of the circles come together to form a
hexagon. Further, we now have access to a gun, and can shoot the robot (assuming we
have sufficiently good non-intuitive aim)!

We now turn to another Timelapse puzzle. A computer adventure game without a
Mayan world seems to be almost as rare as an even prime number; in Timelapse you
encounter a Mayan calendar puzzle. (Before you experiment with this puzzle, you may
want to save your game: one of our examples will assume that we start with the puzzle
in its original state, and unlike many other puzzles, this puzzle does not reset to its
original state when you back away from it and then return.)

The puzzle contains three rings: two on its left side, and one on its right. We’ll
call the inner left ring R1, the outer left ring R2, and the right ring R3. Each of these
rings displays symbols. At any given time, three symbols, one from each of the three
rings, are aligned; basic experimentation yields that you can change the symbols that
are aligned by turning the rings (we will later discuss the turning of the rings in more
detail). You will need to use this puzzle to obtain access to four temples (respectively
associated with skulls, jaguars, monkeys, and lizards); each temple’s access requires a
different combination of symbols be aligned. It is straightforward to discover that R1,
R2, and R3 display 8, 12, and 16 distinct symbols, respectively. The original aligned
symbols are shown in FIGURE 2; we’ll identify each of these symbols with the number
0 (on their respective rings). We number the remaining symbols clockwise on each
ring. Clearly, then, we can identify the set of all possible alignments of symbols with
the set Z8 × Z12 × Z16.

Now it’s time to explore more carefully the movements of the rings. We can rotate
the rings in this puzzle either clockwise or counterclockwise. (This does not constitute
a fundamental difference between this puzzle and the other puzzles we’ve discussed,
but does allow us slightly more flexibility in executing our solution, as in this case
our solution can involve negative integers.) Now, suppose the alignment of symbols
at a certain time is represented by an element x in Z8 × Z12 × Z16. If we rotate R1

one position counterclockwise, this also turns R2 one position counterclockwise while
leaving R3 unchanged, so we’ve added v1 = (1, 1, 0) to x . If we instead rotate R2 one
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Figure 2 The Mayan Calendar in Timelapse

position counterclockwise, this also turns R1 one position counterclockwise and R3

one position clockwise, so we’ve added v2 = (1, 1, 15) to x . Finally, if we rotate R3

one position counterclockwise, this also rotates R1 one position counterclockwise and
doesn’t move R2, so we’ve added v3 = (1, 0, 1) to x .

Since we must obtain four different alignments of symbols to gain access to every
temple, and since this puzzle does not reset itself to its original state when we leave
it and come back, solving this puzzle efficiently requires we treat it a little differently
than we did the other puzzles. To solve our previous puzzles, we merely had to write
one element of our set as a linear combination of specific vectors; here, we need to
write at least four elements of our set as linear combinations of the vi (we may need
to write more than four this way if we mess up at some point, since the puzzle doesn’t
reset itself). Thus, we will try to answer the question: given any alignment x and any
element (a, b, c) of Z8 × Z12 × Z16, how can we add (a, b, c) to x by turning the
rings? Well, let (a, b, c) ∈ Z8 × Z12 × Z16. It suffices to find λ1, λ2, λ3 ∈ Z so that in
Z8 × Z12 × Z16 we have

(a, b, c) =
3∑

i=1

λivi ;

that is, we want to find λi that solve the system of congruences

λ1 + λ2 + λ3 ≡ a (mod 8)

λ1 + λ2 ≡ b (mod 12)

15λ2 + λ3 ≡ c (mod 16).

Note that, for this puzzle, the λi can be negative: if a λi is negative, this simply means
we should rotate the corresponding ring by |λi | positions in the clockwise, rather than
the counterclockwise, direction. It’s straightforward to show that if a1, b1 and c1 are
any integers with a1 ≡ a (mod 8), b1 ≡ b (mod 12), and c1 ≡ c (mod 16), then a
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solution to our system is given by

λ1 = 2b1 + c1 − a1, λ2 = a1 − b1 − c1, and λ3 = a1 − b1.

Let’s now put our work to the test. Starting in our original state (0, 0, 0), we’ll
attempt to open one of the temples. (Before we start, it’s important to know that in
order to be able to open a particular temple using the puzzle, the crystal ball across
from the puzzle must be in a specific position; we will not discuss this further here, but
it’s something of which to be aware when playing the game.) The order in which we
open the temples doesn’t matter (though it will affect our computations). Let’s open
the Skull Temple first. We learn elsewhere in the game that this requires the attainment
of state (4, 2, 4). This means we want to add (4, 2, 4) to our current state, so, in this
case, a = 4, b = 2, and c = 4. Thus, one solution to our puzzle is given by λ1 = 4,
λ2 = −2, and λ3 = 2. So we turn R1 4 positions counterclockwise, R2 2 positions
clockwise, and R3 2 positions counterclockwise. Ah, success—we hear a lovely chime,
and future exploration will show us that the Skull Temple is now unlocked.

But we’re not yet done with the puzzle: we need to obtain three more elements of
Z8 × Z12 × Z16. Let’s open the Jaguar Temple next. In order to open this temple, it
turns out that we must obtain state (2, 0, 2). Were we starting in our original state,
(0, 0, 0), a solution to our puzzle could be obtained using a = 2, b = 0, and c = 2:
thus, a solution would be λ1 = 0, λ2 = 0, and λ3 = 2. But since we are currently in
state (4, 2, 4) (the state which opened the Skull Temple), this solution won’t work: we
instead wish to add (6, 10, 14) to our current state. In this case, then, a = 6, b = 10,
and c = 14. Using these values would yield relatively large absolute values for the λi ,
requiring lots of turning of rings (for instance, we’d have to turn R1 28 positions coun-
terclockwise); instead, using the valid values a1 = b1 = c1 = −2, we obtain solution
λ1 = −4, λ2 = 2, and λ3 = 0. Hence, we can open the Jaguar Temple simply by turn-
ing R1 four positions clockwise and R2 two positions counterclockwise. We leave the
opening of the remaining two temples to the reader.

We end this section by pointing out another way in which this puzzle differs from
our other puzzles: our solutions for this puzzle are not unique modulo the moduli in
our system. For instance, we mentioned above that starting in initial state (0, 0, 0), to
open the Jaguar Temple we must obtain state (2, 0, 2), and can do that using λ1 = 0,
λ2 = 0, and λ3 = 2. But we can also do it using λ1 = 8, λ2 = 16, and λ3 = 2; note that
our new λ1 and λ2 values are not congruent to their previous values modulo 12, one
of the moduli in our system. So for this puzzle, as a result of our equations involving
different moduli, we do not have the same kind of uniqueness of solutions as we had
for our previous puzzles.

Reflection

Of course, these are all variations on the same puzzle. In fact, when one is attuned to
this type of thing, one notices this Puzzle everywhere: I was watching a friend play
SpongeBob SquarePants : Battle for Bikini Bottom, when he encountered the Puzzle (I
muttered, “Ah, this time it’s Z

8
2. . . ”). But don’t let this distract you from the other math

puzzles that are out there. Computer games contain both obvious and subtle mathemat-
ical puzzles: ones where you need only translate a foreign number system’s numerals
and apply basic arithmetic, and ones, such as the Puzzle, that may not originally appear
to be mathematical at all.

And one of the most beautiful things about computer games is that they allow you
to travel to worlds to which we can’t physically go in real life: including mathemat-
ical worlds. I’ll end this discussion with a teaser. At one point in the old text adven-
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ture game Trinity, you have a gnomon you must screw into a hole—but the threads
in the hole are going the wrong way. Wandering about, you encounter an “abstract
sculpture,” inscribed with the words Felix Klein 1849–1925. Nearby are strange leafy
tunnels. When playing this game, my friend Jen and I suddenly grabbed each other in
excitement, as we realized what was going to happen, and how that would solve the
puzzle. And with that, I leave you to enjoy the mathematical labyrinths of games.

Acknowledgment. The author thanks Chris Ellison for the inspiration for this paper, and Aaron Malver for his
keen eye and his support.
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A Tree That’s Not a Tree

A graph is a tree if it is connected and has no cycles; so this is not a tree.
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