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Summary

The connection between perfect matchings and benzene was discovered by the German chemist Kekulé in the mid

1800s. Subsequently, chemists have learned that the number of perfect matchings contained in a molecular model is an

important parameter related to chemical stability. Hence, counting perfect matchings has been an important problem

in chemistry for over 50 years. However, counting perfect matchings in general graphs is a computationally difficult

problem. Consequently, chemists and graph theorists have developed efficient counting methods for certain classes

of graphs that arise in modeling special hydrocarbons called benzenoids. Many of these methods involve counting

principles usually discussed in discrete mathematics courses. In this article we discuss several of these methods and

show how to implement a general determinant based formula.

Notes for the instructor

This project works well as an enrichment topic for an advanced discrete mathematics course focused on applications.

Students should be familiar with counting techniques, graphs and determinants. I usually give the paper to students

to read and then present a summary of the material at the end of the course. I spend roughly one class meeting on it.

Exercises that reinforce and extend some key ideas are given in the last section, along with selected solutions.
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Perfect Matchings and Benzenoids

Given a graph G, a perfect matching is a subgraph M that contains every vertex of G such that all vertices in M

have degree 1. Chemists, who use graphs to model hydrocarbon molecules, are interested in perfect matchings since

they provide possible double-bond arrangements for carbon bonds. For example, Figure 1 contains two different graph

models of benzene. The duplicate edges in the model on the left illustrate possible locations for double carbon bonds.

Since every carbon atom must have exactly four bonds, there are actually two possible arrangements for the double car-

bon bonds. To study possible locations of double-bonds, chemists model benzene-like molecules called “benzenoids,”

by omitting the hydrogen bonds and use special hexagonal grid graphs such as the model on the right in Figure 1 (and

also Figures 2-8). In these models perfect matchings are used to indicate the location of the double bonds. In the graph

on the right side of Figure 1 the bold edges are used to illustrate the perfect matching corresponding to the double

bonds in the graph on the left.

It is a well-established fact that, roughly speaking, for benzenoid molecules with the same number of hexagons,

the chemical stability increases with the number of perfect matchings in its associated hexagonal graph. Surprisingly,

when we consider special classes of benzenoids and count perfect matchings, many well-known numbers arise such

as Fibonacci numbers and powers of 2. In this article we shall discuss techniques used to enumerate perfect matchings

in hexagonal graphs.

Figure 1. A graph model of benzene and its associated hexagonal graph.

A graph G is called 2-connected if it is connected and at least two vertices must be removed to make G discon-

nected. A hexagonal system is a 2-connected planar graph such that each interior face can be drawn as a regular

hexagon. Notice that this condition forces all vertex degrees in a hexagonal system to be 3 or 2, and only 2 on the

exterior boundary. Moreover, every pair of adjacent hexagons have exactly one edge in common. For convenience,

all hexagonal systems illustrated in this article will be drawn with two vertical edges. We leave it as an exercise to

show that every hexagonal system is bipartite which can be proved using induction on the number of hexagons in the

hexagonal system. Hence, we may partition the vertices into subsets of black vertices B D fbig and white vertices

W D fwj g which is illustrated in Figure 2. Clearly G must have an even number of vertices in order for it to contain

a perfect matching M . Moreover, ifG has 2n vertices, then M must have exactly n edges.

A hydrocarbon is a substance consisting only of carbon and hydrogen atoms. A benzenoid is a special type of

hydrocarbon that has a benzene like structure. Every benzenoid has a unique corresponding hexagonal system H

obtained by removing the edges representing carbon-hydrogen bonds and letting the remaining edges of H represent

either single or double carbon-carbon bonds. In Figure 2 the hexagonal system obtained from naphthalene is given.

Observe that there are eight carbon-hydrogen bonds that have been suppressed, all resulting in degree 2 vertices. It is

known that all hexagonal systems that arise from benzenoids contain a perfect matching.

For any graph G, the number of perfect matchings in G is denoted by �.G/. For example, in Figure 2 the bold

edges illustrate a perfect matching, and the reader should confirm that �.H/ D 3. For general graphs G, computing

�.G/ is known to be an NP-hard problem (see [6]). That is, for an arbitrary graph with n vertices, there is no known

algorithm to compute �.G/ involvingO.nk/ operations where k is a fixed constant. This remains true even when G

is a bipartite graph. However, as we shall see, there are efficient methods that can be used to compute �.G/ for special

classes of planar graphs such as hexagonal systems, and also explicit formulas for special types of hexagonal systems.
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Figure 2. The hexagonal system associated with naphthalene.

Counting Perfect Matchings for Special Classes

A linear chain of length h, denoted by L, consists of h hexagons such that all adjacent pairs of hexagons share exactly

one vertical edge and no nonvertical edges. A linear chain of length 2 is given in Figure 2. Observe that for any linear

chain there is a one-to-one correspondence between perfect matchings in L and the vertical edges in L. Thus every

linear chain of length h has exactly hC 1 perfect matchings. Linear chains are very important because they are used

as building blocks of more complex hexagonal systems.

Given any hexagon in a hexagonal system, we refer to its six edges using the terms northeast, east, southeast,

southwest, west and northwest. The northern edges consist of both the northwest and northeast edges; southern edges

are defined similarly. In Figure 2 the bold edges are precisely the two northeast edges, the two southeast edges and the

western edge in the western-most hexagon. A rectangular hexagonal system, denoted by RŒh; v�, consists of v linear

chains, L1; : : : ; Lv , each of length h, together with v � 1 linear chains L1; : : : ; Lv�1 each of length h � 1, such that

for i D 1; : : : ; v � 1, all northern edges of Li are southern edges of Li , and all southern edges of Li are northern

edges of LiC1. For example, a linear chain with h hexagons is RŒh; 1�, and RŒ5; 4� appears in Figure 3.

Figure 3. The rectangular hexagonal system RŒ5; 4�.

Theorem 1. For a rectangular hexagonal system RŒh; v�, we have �.RŒh; v�/ D .hC 1/v .

Proof. Every perfect matching of RŒh; v� contains only edges in the v linear chains L1, . . . , Lv (i.e., the odd in-

dexed/longer rows of hexagons), and none of the vertical edges in the v � 1 linear chains L1, . . . , Lv�1 (i.e., the even

indexed/shorter rows). To see this suppose that we color every other vertex in the top linear chain L1 white, and the

remaining vertices black, where the vertical edges in L1 are incident to the black vertices. If one or more of the vertical

edges from L1 is part of a perfect matching, then finding matching edges for the remainder of L1 is impossible, since

there will be more white vertices available than black. The fact that none of the vertical edges from L1 can be used

in a perfect matching forces the same for L2; : : : ; Lv�1: Hence, any perfect matching from Li can be used with any

perfect matching of any of the other linear chains Lj ; j ¤ i , and hence, �.RŒh; v�/ is the product of �.L1/, �.L2/,

. . . , �.Lv/: Since �.Li / D hC 1; for all i D 1; 2; : : : ; v, we have that �.RŒh; v�/ D .hC 1/v .

A parallelogram hexagonal system, denoted by P Œh; v�, consists of v linear chains L1; : : : ; Lv , each of length h,

such that for i D 1; : : : ; v � 1, all southern edges of hexagons in Li , except for the southeast edge of the eastern-

most hexagon in Li , are also northern edges of hexagons in LiC1, except for the northwest edge of the western-most

hexagon in LiC1; Figure 4 shows P Œ5; 3�. To count perfect matchings in parallelogram hexagonal systems we need

the well-known function for counting combinations, C.n; r/ D nŠ
rŠ.n�r/Š

; where n and r nonnegative integers, with

0 � r � n.
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Figure 4. The parallelogram hexagonal system P Œ5; 3�.

Theorem 2. For a parallelogram hexagonal system P Œh; v�, we have �.P Œh; v�/ D C.hC v; v/.

Proof. The proof is by induction on k D hC v. Clearly, the formula holds for P Œ1; 1� (which corresponds to benzene

and is given in Figure 1). Notice that P Œh; 1� and P Œ1; h� are linear chains of length h. Hence, �.P Œh; 1�/ D hC 1 and

the formula holds for both P Œh; 1� and P Œ1; h�. Assume that the result holds for all parallelogram hexagonal systems

P Œh; v� with hC v D k.

Consider P Œh; vC 1� (the case P ŒhC 1; v� is similar). Let L be the northern-most linear chain of P Œh; vC 1�, and

let M be a perfect matching of P Œh; v C 1�. Suppose that M contains the eastern-most vertical edge of L (see the

graph on the left in Figure 5). Then M must also contain the northwest edge of every hexagon in L. The remaining

edges in M can be any perfect matching of the hexagonal system P Œh; vC 1� with L removed; that is, P Œh; v�. By the

inductive assumption, there are C.hC v; v/ such perfect matchings.

Suppose that M contains the eastern-most northeast edge of L (see the graph on the right in Figure 5.). Then M

must also contain the southeast edge of every hexagon in the eastern-most hexagon of every linear chain in P Œh; vC1�.
The remaining edges ofM can now be any perfect matching of the hexagonal system P Œh; vC1�with the eastern-most

hexagon removed from every row; that is, P Œh�1; vC 1� By the inductive assumption, there are C.hCv; vC 1/ such

perfect matchings.

Every perfect matching in P Œh; v C 1� contains either the eastern-most vertical edge of L or the eastern-most

northeast edge of L, but not both. Therefore, �.P Œh; vC 1�/ D C.hC v; v/CC.hC v; vC 1/. By Pascal’s Identity,

�.P Œh; v C 1�/ D C.hC v C 1; v C 1/.

Figure 5. An illustration of the proof of Theorem 2.

Example 1.

(a) Use Theorem 1 to compute the number of perfect matchings for RŒ5; 4�.

(b) Use Theorem 2 to compute the number of perfect matchings for P Œ5; 3�.

(c) Determine the number of perfect matchings in Figure 6 which is obtained from RŒ5; 4� by deleting the interior

hexagons.

Figure 6. RŒ5; 4� with the interior hexagons deleted.
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Solution.

(a) �.RŒ5; 4�/ D 64 D 1296.

(b) �.P Œ5; 3�/ D C.8; 3/ D 56.

(c) Consider the two hexagons adjacent to the linear chain on top, and label them H1 and H2; with H1 on the left

side. As in the proof of Theorem 1, none of the four vertical edges in H1 and H2 can be part of a perfect matching.

Moreover, the southeast edge of H1 must be in every perfect matching, and this forces a sequence of eight edges that

must also be in every perfect matching until we get to the linear chain on the bottom. A similar sequence of eight

edges starting with the southwest edge ofH2 must be in every perfect matching. But again, no vertical edges from the

two hexagons adjacent to the linear chain on the bottom can be used in a perfect matching. Consequently, any perfect

matching can be used for the linear chain on the bottom. Since there are six possible perfect matchings for the linear

chain on top which can be used with any of the six perfect matchings for the linear chain on the bottom we get a total

of 62 D 36 perfect matchings. �

A hexagonal system is called a fibonaccene chain if it consists of a chain of hexagons H1; : : : ; Hv, with H1 on

top, and only the following shared edges: For i even and 1 < i < v, Hi shares its northwest edge with Hi�1 and its

southwest edge with HiC1; H1 shares only its southeast edge and Hv shares only its northeast edge when v is odd,

and only its northwest edge when v is even. The name is due to the fact that � satisfies a Fibonacci-style recurrence

relation, given in Theorem 3. The proof is left as an exercise.

Figure 7. Fibonaccene chains with 5 and 6 hexagons, and a fibonaccene chain with an additional hexagon.

Theorem 3. Let H be a fibonaccene chain with h hexagons and let ah D �.H/. Then a1 D 2; a2 D 3; and

ah D ah�1 C ah�2 for h � 3.

Example 2.

(a) Use Theorem 3 to determine the number of perfect matchings for the two fibonaccene chains given on the left in

Figure 7.

(b) Determine the number of perfect matchings for the fibonaccene chain with an additional hexagon given in Figure

7.

Solution.

(a) We need to find the terms a5 and a6 in the sequence 2, 3, 5, 8, 13, 21. Hence the chain on the left contains 13

perfect matchings and the chain in the middle of Figure 7 contains 21.

(b) Let H1 be the additional hexagon. Every perfect matching must contain either the northwest edge of H1 or its

western vertical edge. If a perfect matching contains the northwest edge of H1, then this forces eight edges that must

be in the perfect matching, and leaves two possibilities for matching edges in the hexagon on the bottom. So there

are two perfect matchings with this edge. If a perfect matching contains the western vertical edge, then any perfect

matching of the fibonaccene chain with five hexagons can be used. Thus, there is a total of 2 C 13 D 15 perfect

matchings. �

The final special class we consider arises from tubular benzenoids which were discovered in the early 1990s. A

tubulene is a benzenoid whose carbon skeleton is a rectangular hexagonal system embedded in a cylinder with open

ends (top and bottom). There are several different types of tubulene structures depending on how much they are

“twisted,” but here we consider only the untwisted variety (for more information on tubulenes and perfect matchings,

see [5] and [11].) Let T Œh; k� denote the tubulene obtained from RŒh; v� embedded in a cylinder, where k D 2v � 1,
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i.e., k is the number of rows of hexagons. For example, if T Œ5; 1� is drawn on paper it would look like a linear chain

of length 5 with its left most vertical edge and its right most vertical edge “glued” together. Notice that as a result

of the glued edges, the number of perfect matchings is reduced from 6 to 4. It is left for the reader to show that

�.T Œ5; 1�/ D 4. In Figure 8 an illustration of T Œ5; 7� is given. The long vertical lines are used to indicate the edges

that are glued together; or equivalently, the vertical line used to cut the cylinder.

Figure 8. The tubulene hexagonal system T Œ5; 7�.

Theorem 4. For a tubulene hexagonal system T Œh; k�, we have �.T Œh; k�/ D 2kC1.

A proof of Theorem 4 is left as an exercise. By applying the theorem we see that �.T Œ5; 7�/ D 28 D 256. It is

interesting to note that �.T Œh; k�/ is independent of h, but dependent only on k. Thus �.T Œh; k�/ will increase if the

tubulene is extended in the vertical direction, but does not change at all when it is extended horizontally. What does

this imply in terms of chemical properties of tubulene?

To analyze stability levels and obtain a measure of energy, chemists have investigated a graph parameter based on

� defined as follows. Given a hexagonal system H , let �.H/ denote the number of hexagons in H . Then the Kekulé

index is defined by �.H/ D log2 �.H /

�.H /
. This index is considered by some chemists as an “average resonance energy per

hexagon,” and is known to satisfy 0 � �.H/ � 1. For more details, see [11]. If we now compare the Kekulé index of

T Œ5; 7� and RŒ5; 4�; we see that �.T Œ5; 7�/ D 28, which implies that �.T Œ5; 7�/ D 8=35 D 0:2286. From Theorem 1,

we know that �.RŒ5; 4�/ D 64, and consequently �.RŒ5; 4�/ D 10:3399=32 D 0:3231. As a general rule higher energy

implies less stability. Since the benzenoid associated with RŒ5; 4� has a higher energy level compared to T Œ5; 7�, we

conclude that it is less stable than the benzenoid associated with T Œ5; 7�.

The Determinant Formula

Next we discuss a method of computing �.H/ for all hexagonal systems. Since every hexagonal system is bipartite,

they can be represented with matrices defined as follows. Let H be a hexagonal system and let E denote the set of

edges inH . Let B[W be the set of vertices ofH , whereB D fb1; : : : ; bng andW D fw1; : : : ; wng. We assume thatB

and W contain the same number of vertices since this is a necessary condition for the existence of a perfect matching.

Now define the n� n biadjacency matrixA.H/ D Œaij �; by aij D 1 if fbi ; wj g 2 E and aij D 0 if fbi ; wj g … E . The

biadjacency matrix for the hexagonal system in Figure 2 is given below where the columns represent w1; : : : ; w5; and

the rows represent b1; : : : ; b5.

A.H/ D

2

6
6
6
6
6
4

1 1 0 0 0

0 1 1 0 0

1 0 0 1 0

0 1 0 1 1

0 0 1 0 1

3

7
7
7
7
7
5

Recall that given an n � n matrix A, the determinant of A is defined by

det.A/ D
X

�

.sgn �/a1�.1/a2�.2/ : : : an�.n/
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where the sum runs over all nŠ permutations � of f1; 2; : : : ; ng, and sgn � is C1 or �1, according to whether �

is an even permutation or an odd one (for a reference on determinants, see [4].) By storing the adjacency data of a

hexagonal system H with 2n vertices in an n � n matrix, we can establish a one-to-one correspondence between

perfect matchings in H and the nonzero terms in the expansion of det.A.H//. For example, the perfect matching M

below corresponds to the permutation � shown.

M D ffb1; w2g; fb2; w3g; fb3; w1g; fb4; w4g; fb5; w5gg � D
�
1 2 3 4 5

2 3 1 4 5

�

Observe that when the term associated with � is used in calculating the determinant of A.H/, the product of the bold

numbers in the A.H/ given above is computed and gives a result of 1. This is true in general, the nonzero terms of

det.A.H// whose permutations correspond to a perfect matching will either be 1 or �1, and it can be proven that

every nonzero term will have the same sign (for a proof, see [9].) The terms whose associated permutation do not

correspond to a perfect matching will yield a 0 in the determinant expansion. Hence, jdet.A.H//j counts the number

of permutations in H . This fact was first proven by Kasteleyn [7].

Theorem 5. For a hexagonal system H , �.H/ D jdet.A.H//j.

Theorem 5 may be implemented using many different technologies. Most of the time required is in labeling the

vertices, finding the biadjacency matrix and entering data. For example, to compute �.H/ for the hexagonal system

given in Figure 9, the computation requires finding the biadjacency matrixA.H/ which is a 32� 32matrix. Calculating

the determinant gives �.H/ D 1; 764.

Example 3.

Use the determinant formula to compute the number of perfect matchings contained in the hexagonal system given

in Figure 9.

Figure 9. A hexagonal system with 1,764 perfect matchings.

We conclude this article by noting that computing �.G/ is an important problem in many areas of science and

mathematics. For example, perfect matching enumeration is used in the famous dimer problem in physics and to help

solve many tiling problems. Counting perfect matchings in the parallelogram hexagonal system P Œh; v� can also be

used to count non-decreasing sequences of length v with elements from f0; 1; : : : ; hg, and lattice paths in a rectangular

lattice (see [3]).
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Exercises on Counting Perfect Matches and Benzenoids

1. (a) Draw all three perfect matchings contained in the linear chain of length 2 given in Figure 2.

(b) Show that there is a one-to-one correspondence between the perfect matchings in the linear chain of length

2 and its vertical edges.

2. (a) Draw all perfect matchings in the rectangular hexagonal system RŒ3; 2�.

(b) Draw all perfect matchings in the parallelogram hexagonal system P Œ3; 2�.

In exercises 3 to 7 determine the number of perfect matchings contained in each of the following hexagonal

systems.

3.

4.

5.
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6.

7.

8. Determine if the given hexagonal systems contains a perfect matching. If so, determine exactly how many.

(a)

(b)

(c)

9. Use induction on the number of hexagons to show that every hexagonal system is bipartite.
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In exercises 10, 11, 12 and 13 use the determinant formula to calculate the number of perfect matchings

in the given hexagonal systems.

10.

11.

12.

13.

14. (a) Draw all of the perfect matchings in a fibonaccene chain of length 4, 5 and 6.

(b) Prove Theorem 3.

15. (a) Show that a linear chain with five hexagons contains six perfect matchings.

(b) Show that the tubulene T Œ5; 1� satisfies �.T Œ5; 1�/D 4.

(c) Show that �(T Œh; 1�/ D 4, for all h � 2.

16. Prove Theorem 4.

17. Show that limh!1 �.T Œh; k�/ D 0 and limk!1 �.T Œh; k�/ D 1
2h
:

18. Find limv!1 �.RŒ7; v�/:
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Selected solutions

1. Notice that each vertical edge corresponds to a unique perfect matching.

3. 11

4. 7; 776

5. 377

6. 792

7. 1; 024

8. (a) 0, (b) 29, (c) 0

9. Figure 1 shows that the result is true for a hexagonal system with one hexagon. For the inductive step remove a

hexagon with edges on the boundary and consider cases defined by the number of boundary edges removed.

10. 105

11. 980

12. 130

14. (b) See [9].

15. (a) A linear chain with five hexagons contains six vertical edges, and hence, six perfect matchings. The tubulene

T Œ5; 1� contains the four perfect matchings given below (assume that the vertical edges on the ends are glued

together.)

16. See [11].

17. The result follows from �.T Œh; k�/ D log2 2kC1

hk
D kC1

hk
.

18. 3
13


