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Introduction
B 1 Stitch Patterns in Knitting

= tters use specialized stitch dictionaries to create dis-
“nctive cables, lacy patterns, and other interesting tex-
Each stitch dictionary has many entries, with
=by-line instructions indicating the knits, purls, and
er stitches that must be used to achieve the desired
s=ttern. Knitters or knitwear designers can scan through
“ese dictionaries when they want decorative elements
. extures for a knitted object.

. Each entry in a stitch dictionary usually starts with
= =tle, a picture, and a statement of how many stitches
o= required. For example, a particular stitch may be
wzmed “Braided Six-Stitch Cable,” followed by a stan-
=rd picture of one of the cables, and then the words
~Wultiple of 8 plus 2." This final instruction means that
~or each copy of the cable pattern, you would need eight
= ches, plus for the whole piece, you need an additional
o stitches. To repeat the pattern once would require
. stitches (8 + 2), while to repeat it three times re-
~aures 26 stitches (8 x 34 2). Finally, a stitch dictio-
m includes instructions on how to knit the stitch, ei-
 mer written out line-by-line using standard abbreviations
“or knitting instructions or in a chart. As an example,
== Figure 1. Further examples can be found in [3,5,7,8].

A multiple of 6 stitches plus 1.
Row 1: *k2, yo, ssk, p2* rep from * to *, end k1.

Figure 1. A typical stitch dictionary entry.
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There are many online examples as well, such as
[1,4,6,9].

If a pattern designer wants to use a stitch-dictionary
design to create a scarf, sweater, or hat, she can search
the dictionaries for a pattern that catches her eye. Then
she must adjust her stitch count to fit the pattern. A
designer may have a basic hat construction that starts
with 80 stitches for the brim. But to use the Braided
Six-Stitch Cable, she would need either 8 x 10 +2 = 82
or 8 X 9+ 2 = 74 stitches. It is usually not too much of
a problem to modify the stitch count by a small number
to accommodate the pattern in this way. After all, knit-
ting is stretchy and forgiving. Most likely, the designer,
knowing that the cables might pull in and make the hat
a little tighter, would choose to start with 82 stitches.

However, what if a designer wants to incorporate
several stitch patterns? To illustrate the problem, sup-
pose that the designer wants to make a stole. The width
of a stole can be highly variable, so maybe the designer
chooses some number of stitches from 70 to 130. She
has chosen a lacy design that is a multiple of 5 stitches
plus 4, a second textured pattern that is a multiple of 4
stitches plus 2, and finally a cable pattern that is a mul-
tiple of 9 stitches plus 4. While the designer has a great
deal of flexibility in choosing the number of stitches to
start with, she does not want to change the number of
stitches partway through the stole, because she would
like her stole to be a proper rectangle. The problem
is to find a single number that satisfies all three condi-
tions: a multiple of 5 plus 4, a multiple of 4 plus 2, and
a multiple of 9 plus 4.

The situation is still more complicated than the ex-
ample above might lead one to believe. The same num-
ber of stitches in different knitted textures will not al-
ways create a rectangle, as the different fabrics may pull
in or stretch out. A ribbed fabric with 100 stitches will
be much narrower than a garter stitch fabric with 100
stitches. For example, Figure 2 on page 103 shows three
swatches that are each 30 stitches across and 30 rows
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tall, but whose actual knitted sizes differ because of the
stitches used. Taking into account this difference in the
inherent width of different stitch patterns is the topic of
Section 3.

1.2 Translating the Needlework into
Mathematics

Given divisors and associated remainders, the Chinese
Remainder theorem solves the problem of finding a com-
mon dividend. For example, a common dividend that
gives a remainder of 1 when divided by 10 and a re-
mainder of 3 when divided by 7 is 31. The theorem is
named for Sun Tsu, and other Chinese mathematicians
from the first century AD onwards, who posed puzzles
that can be solved with the theorem.

Mathematicians have a different language with
which to describe these concepts. To express the idea
that a number x is a “multiple of 8 plus 2,” mathemati-
cians write

x =2 mod 8.

Formally, the congruence x = a mod m, which is read
aloud as “x is congruent to a mod m" or “x and a are
congruent mod m,” means that x — a is divisible by m.
The number m is called the modulus or the mod. The
congruence can be interpreted as saying that x and a
have the same remainder when divided by m. For ex-
ample, 21 = 13 mod 4, because 21 — 13 = 8, which is
also divisible by 4, or because 21 and 13 have the same
remainder when divided by 4, namely 1. If a happens
to be a positive number less than m, then a itself is
the remainder when x is divided by m. As an exam-
ple, 21 = 1 mod 4 because 21 — 1 is divisible by 4, or
because 4 goes into 21 with remainder 1.

Now we can reframe the knitting designer's problem
in terms of modular arithmetic. The phrase “multiple of
m stitches plus a” in the knitting dictionaries is trans-
lated into modular arithmetic as x = a mod m. So
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the designer of our stole pattern above is looking for z
number x that simultaneously satisfies the three con-

gruences:
X =4 mod 5,
x =2 mod 4, (1)
x =4 mod 9.

Congruences can be treated much like equations in
algebra—you can add, subtract, or multiply both sides
of a congruence by the same quantity (or by congruent
quantities). For example, because 37 = 2 mod 5 anc
14 = —1 mod 5, then 37-14 = —2 mod 5.

Linear congruences have the form ax = b mod m.
The process of solving a linear congruence for x is cov-
ered in any elementary number theory textbook, see [2.
ch. 4], for example. Generally, when we refer to the
solution (or solutions) to a linear congruence, the as-
sumption is that we list only the positive integer solu- -
tions less than the modulus m. So while x = 25 is =z
solution to 4x = 10 mod 18, the default is to write this
solution as x = 7 (note that 25 = 7 mod 18), because
25 is greater than 18. However, when x = 7 is given as
a solution, the reader should understand that any num-
ber which is congruent to 7 mod 18 is also a solution.
so 25,43,61,... are all solutions, as are —11, —29,....
If a congruence has any solution, then it has infinitely
many solutions. When we say a congruence has a finite
number of solutions, we will always be referring to the
number of nonnegative solutions less than the modulus
m.

Theset {0,1,2,..., m—1}, together with arithmetic
operations mod m, is called Z,,. Because we only neec
to consider possible solutions in Z,, one easy way to
solve a congruence with a small modulus is to simply
try all possible values. Consider 3x = 2 mod 7. Becaus=
the modulus is 7, we try the numbers x = 0,1,2,...¢
for x until we find the values that make the equation ‘
true. In this case, x = 3 is the only solution in Z7, so
we say this congruence has one solution. ’




timeters) or simply in stitches per inch (spi). Thus, in

r = When we have a system of congruences as in Equa-
or- =on (1) above, the Chinese Remainder Theorem allows  this yarn on these needles, the garter stitch has u = %
_s to find simultaneous solutions to systems of congru-  spi and the ribbing has v = % spi. If a knitwear designer
znce equations. That is, by using the Chinese Remain- was going to start with the garter stitch and wanted to
1 2=r Theorem, we can find a number that simultaneously ~ create a rectangular item by following it with the 1 x 1
sztisfies all three of these congruences. ribbing on the right, she would want to increase the
- ) number of stitches by the factor ¥ = % : 1—30 = % Be-
: 1.3 A Khnitting-inspired Extension of cause the ribbing pattern pulls in to become narrower,
:f the Mathematics the number of stitches needed in the ribbing pattern to
e 41l of the above discussion presupposes that our knit- miake/the;same/widin asikthe igarter stitch;is greater.
ting designer wants the same number of stitches on each More generally, suppose stitch pattern A, at u spi,
-~ saction of stitch pattern. However, the fact is that knit- uses a multiple of m stitches plus a, while pattern B, at
Ov- ©ng stitch patterns often distort the knitted fabric, so v spi, uses a multiple of n stitches plus b. Further as-
2 that a number of stitches in, say, ribbing, will be much ~ sume that pattern B is inherently narrower than pattern
the narrower than the same number of stitches in a lace A Which means that v > u. Now 7 is the factor that
as- sattern. As an example, consider the three swatches in adjusts for the difference between the widths of of the
e Sigure 2. two patterns.
s a All three swatches are 30 stitches wide and 30 rows Figure 3 was knit by first casting on 30 stitches and
his =all, knit with the same yarn on the same size needles, knitting 30 rows in garter stitch, seen at the bottom of
use 5ut their finished measurements are clearly different. On  the swatch. Then, without changing the stitch counts,
a8 the far left of Figure 2, the garter stitch is nine inches 30 rows of 2 x 2 ribbing followed. Since ribbing has a
m- wide. The 1 x 1 ribbing on the right is only five-and-  higher spi than garter, the resulting fabric is narrower
on one-half inches wide. The most common way to measure and pulls in. Above the narrower ribbing, there are
zauge is in number of stitches per four inches (or 10 cen-  another 30 rows of garter, and the fabric is wider again.
=
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Figure 2. Different knitting stitch patterns with the same number of stitches give different widths.
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Figure 3. Keeping the stitch count constant will not neces-
sarily keep the width constant. Starting at the bottom, the
first three stitch patterns are 30 stitches wide, but the width
in inches varies. The topmost portion is 37 stitches wide
and roughly the same width in inches as the garter stitch
just below it.

Finally, on the uppermost portion of the swatch, we in-
creased the total number of stitches to compensate for
the difference in gauge and maintain a constant width
and began the 2 x 2 ribbing again. In Figure 3 we have

u = % for the garter stitch and v = 271 for the rib-

21
17"

M stitches across, we must increase to M() stitches

bing, giving { = If the garter stitch portion is
when starting the ribbing if we want the width to stay
constant. Since the garter is 30 stitches across, the
ribbing required roughly 30(%—%) = 37.06 stitches. We
rounded this to 37, so that we needed to increase seven
stitches total. This was done by first noticing that seven
new stitches will split the 30 existing stitches into eight
groups. The quotient of 30 by 8 is 3 with remainder 6.
That means six groups of 4 stitches each and two groups
of 3 stitches each. In the usual knitting terminology, this
becomes

k3, *M1, kd4*, repeat from * to * until the last 3 stitches,
M1, k3.
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The upper two sections in Figure 3 are roughly the same
width, even with no blocking or stretching.

In general, it is reasonable to assume that v and v
are rational numbers, so % can be reduced to a fraction
5 > 1 in lowest terms. In other words, p and g are rel-
atively prime, meaning that they satisfy ged(p, q) = 1.
Then, in order to make a rectangle that consists of pat-
tern A followed by pattern B, our designer needs to solve
the following system of equations:

X = a mod m,

EXE b mod n.

Unfortunately, gx might not be an integer, so we must
round off to an integer somehow. We could round up,
round down, or round to the nearest integer. For sim-
plicity here, we will always round down to the nearest
integer by using the floor function EXJ . Then we must
solve the system

X = a mod m,

)

We show that when m and n are relatively prime,

b mod n.

Il

this system can be rewritten so that we may apply the
Chinese Remainder Theorem as before. However, even
when m and n are not relatively prime, the system may
have solutions though the standard Chinese Remainder
Theorem problem does not. We will consider some spe-
cial cases of this type of system and investigate the ex-
istence of solutions.

2 Mathematical Work

We begin with some background on linear congruences
and an exposition of the Chinese Remainder Theorem.
This material is found in most elementary number the-

ory textbooks, see Burton [2, ch. 4], for example. The
Chinese Remainder Theorem is Theorem 4.8 in [2].




2.1 Background

As discussed above, congruences can be manipulated in
much the same way as equations in algebra. One can

Furthermore, if nj = M/m; and y; satisfies njy; =
a; mod m;, then a solution is given by

x = ny1 + Maya + - NkYk mod M.

T add, subtract, or multiply congruent quantities to both Proof- First we prove existence by showing that the
g sides of a congruence, for example. The exception IS given formula for x is indeed a solution. We have
J +hat division of both sides of a congruence is generally n = M/mj = mymy---mi- - M1y my. There-
3 not valid. Division by an integer a can be thought of  fore. m; and n; are relatively prime, guaranteeing the
as multiplying by the number’s inverse % but % is not  eyistence of y; by Proposition 1. For i # j, mj|n; and
defined in Z,,. However, we shall see below that when sonj =0 mod m;. As a result, niy; = aj mod m;, while
gcd(a, m) = 1, Proposition 1 gives us an interpretation  for j £ i, we have njy; =0 ot i
of the symbol a~! in Zp, that serves the same role as % On the other hand, suppose xi and x; are two Sl
in the integers, namely that a- a~'=1mod m. tions in Zum, so that 0 < x3 < < M. Then for each
2 The notation .a]b means that a divides b; that'is., i we have mj|x, — x1. Because the moduli are rela-
- b = ak for some llnteger k. The gr.eatest g divi- tively prime, we can conclude that their product divides
o sor, ged(a, b), of integers a and b is the largest integer o _ x;. Thus M divides xo — xi, which is a number be-
a that divides both a and b. Proposition 1 [2, p. 76]  tween 0 and M — 1. This is only possible if 30— =0}
- formalizes the above discussion of division and inverses. o x, = x;. O
Proposition 1 The congruence ax = b mod m has in- As an example, let's go back to our knitwear designer
teger solutions if and only if gcd(a, m)|b. If the con- and her stole. The system of congruence equations she
gruence has any solutions, then it has exactly gcd(a, m) needs to solve is
solutions. x = 4 mod 5,
In particular, if ged(a, m) =1, then ax =1 mod m x =2 mod 4,
me, has integer solutions. In that case, there is exactly one ie
the solution for x, which we can define as the inverse of a e mod 2.
ven mod m. For example, the congruence 4x = 1 mod 9has  We follow these steps:
may solution x = 7, so the inverse of 4 in Zg is 7 Whenever 1 M =5-4-.9 = 180. Because the moduli 4, 5, and 9
nder we wish to divide by 4, we can instead multiply by 7. are relatively prime, we know that there is an answer
t Theorem 1 (Chinese Remainder Theorem) less than or equal to 180.
Suppose my, My, ..., Mk are pairwise relatively prime. o Next, np = M/my = 180/5 = 36, nx = M/my =
Let M = myma - - - mp. Then the system of congruences 180/4 = 45, and n3 = M/m3 = 180/9 = 20.
x = a; mod mi, 3 This is the hardest step. We have to solve three dif-
ferent congruence equations. The first equation is
X = ap, mod my,
o ny, = ap mod my,
":; 36y, = 4 mod 5,
x = a, mod my. :
The ly; =4 mod 5, as 36 is congruent to 1 mod 5

Aas a unique solution between 0and M—1.

y1=4.
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Similarly, the second equation is 45y, = 2 mod 4
with solution y, = 2. The third equation is 20y; =
4 mod 9, resulting in y3 = 2.

- Finally, we find the number x by computing

X = my1 + my> + n3ys mod M

x = 36(4) + 45(2) + 20(2) mod 180
X = 144 4+ 90 + 40 mod 180

Xx =274 mod 180

Then divide 274 by 180, and find that the remainder
is 94.

To conclude, the number that our designer is looking
for is 94. If she wants a smaller number, she will have
to change her plans; this is the smallest positive num-
ber that will work with these conditions. If she wants
a bigger number, she can add the number M as many
times as necessary to get her desired amount to cast on.
Because M = 180, the next smallest possible number of
stitches is 274.

The Chinese Remainder Theorem will work for any
number of congruence equations, as long as the mod-
.my are all relatively prime. However, if
the moduli are not relatively prime, a few things can

uli my, my, ..

go wrong. First of all, the formula in the steps above
will not give us the correct answer. Even worse, there
may not even be an answer. Consider as an example the
problem of two stitch patterns, one of which is a mul-
tiple of 5 stitches plus 2, while the other is a multiple
of 5 stitches plus 3. This would mean finding a number
that when divided by 5 has a remainder of 2 and also a
remainder of 3, which is a logical contradiction.

A solution may fail to exist in less obvious exam-
2 mod 6 and
x = 3 mod 4. The Chinese Remainder Theorem for-

ples as well.  We cannot solve x =
mula cannot be used, because the moduli 6 and 4 share
a common factor 2, so that the moduli are not rela-
tively prime. Furthermore, if x = 2 mod 6, that means

106 » CHAPTER 5

that x is a multiple of 6 stitches plus 2. A moment's
thought will reveal that x must be even. On the other
hand, x = 3 mod 4 means that x is a multiple of £
plus 3, which implies that x is odd. Our desired sol.-
tion x would have to be both even and odd, which =
impossible.

Even if the moduli are not relatively prime, there m:
be a solution, but we cannot use the Chinese Remaind=
Theorem to find it. We can get around this difficuls
through a couple of tricks. First, a congruence equation
with a modulus that has more than one prime factor cz
be decomposed into several congruence equations wit
smaller moduli. Second, when several congruence equ
tions are redundant, we can eliminate some of the
thereby simplifying our system.

Proposition 2 Let m, n > 2 and let a and b be integers

it (Decomposition) Let m = mym,, where my, my > 2
and gcd(my, mp) = 1. Then x = a mod m if and on'
if x = a mod m; and x = a mod m,.

2. (Redundancy) Suppose n/m and n|a — b. Then x
a mod m implies that x = b mod n.

The proofs of these two statements are typical of the
kind of arguments made in any introduction to eleme
tary number theory.

Proof: The forward direction of the decomposition st=
follows immediately from the statements that m divice
x —a and m; divides m. By the transitivity of divis
bility, m; divides x — a for i = 1,2. For the converss
suppose x = amod m; and x = a mod my, so t
x — a is divisible by both m; and m,. We can conc!
that mym; divides x — a because m; and my have =
common factors. :

Now suppose n|m, nja—b, and x = a mod m. The

x —a is divisible by m. Thus we have integers k, ¢, anz
such that m=nk,a—b=n¢, and x —a = mj. Al
algebra yields x — b = (x — a) + (a — b) = mj + nf




2kj + nt, showing that n divides x — b. Then we have
“ = b mod n, completing the proof of redundancy. O

‘ The corollary to the redundancy statement is that
we can find a solution to the system x = a mod m and
* = b mod n by solving only x = a mod m. The con-
" zruence x = b mod n is redundant.
‘ As an example, consider the system x = 5 mod 6
and x = 3mod 4. The congruence equation x =
3 mod 6 can be decomposed into the two equations
*=5mod 2 and x =5 mod 3. Both equations can be
simplified, giving us the two equations x = 1 mod 2 and
=2mod 3. The congruence equation x = 3 mod 4
cannot be further decomposed. But we can observe
hat x = 1mod 2 is implied by x = 3 mod 4. Hence,
* we found a solution to X = 3 mod 4, we would au-
“omatically also have a solution to x = 1 mod 2, so we
may safely omit the equation x = 1 mod 2. Our origi-
- nal problem has been reduced to the problem of solving
*=2mod 3 and x = 3 mod 4. The Chinese Remain-
- der Theorem can now be used to guarantee that there is
2 solution less than or equal to 12. In fact, the solution
turns out to be 11. Any number that is congruent to
11 mod 12 will work, so the number of stitches could
e 11, 23, 35, 47, and so on.

This next variation of the Chinese Remainder The-
orem gives a necessary and sufficient condition under
- which there is at least one solution of a system of two
congruences with moduli that are not relatively prime.

Theorem 2 The system of congruences

X =amod m

X =b mod n
has a solution if and only if ged(m, n)|a — b.

Proof: Let d = ged(m, n) and assume that dla — b.
Let j be an integer such that 2 — b — dj. By Proposi-
tion 1, there is an integer Y such that ny 2 d mod m.
Define x = jny + b. In order to check that x is a
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solution to the given system, we immediately observe
that x = jny + b = bmod n. Next notice that
X = jny +b = jd + b mod m. Substituting for dj,
we find that x = a2 mod m.

On the other hand, if x = amodm and x =
b mod n, then there are integers k and ¢ satisfying
X—4a = mk and x — b = nl. Then a—b =
(x = b) = (x —a) = nt — mk. Clearly, d divides both n
and m, so d divides nf — mk — a—b. O

2.2 Some Examples Applied to Knitting

Let's consider a couple of examples to demonstrate how
a knitwear designer could use the Chinese Remainder
Theorem.

Example 1 (A hat.) A knitwear designer has some col-
orwork designs for a hat. One is 3 large 18-stitch
panel of a star that she wants featured on the front
of the hat. The second design, which requires a
multiple of 11 stitches plus 1, will fill in the sides
and back with decorative stripes of small stars. This
means that the number of stitches must have the
form of y + 18, where Y = 1mod 11. This means
that y = 11k + 1 for some integer k and so y +
18 = 11k +1 418 = 11k +19. In other words,
the total number of stitches needed is congruent to
19 modulo 11.

In addition to the colorwork, she has some structural
requirements for the hat. She wants to start with some
2-by-2 ribbing at the brim in a solid color. Then she
will change into plain knitting (stockinette stitch), work
the large 18-stitch pattern for the front, and repeat the
11-stitch colorwork design around the sides and back.
Finally, she has a standard system for making the crown
decreases, which requires a multiple of 6 stitches, so that
the crown decreases can be spaced at six even intervals
around the hat. She needs to solve the three congruence



equations

x =0 mod 4
x =19 mod 11
x =0 mod 6

for the ribbing,
for the colorwork,

for the crown decreases.

Because 4 and 6 share a common factor, she first must
decompose the third equation by factoring 6. At the
same time, the second equation can be simplified by
realizing that 19 = 8 mod 11. Then she gets

x =0 mod 4,
x = 8 mod 11,
x =0 mod 2,

x = 0 mod 3.

The first equation implies the third equation, so she
can safely omit the third equation. She applies the
steps of the Chinese Remainder Theorem to find that
x = 96 mod 132 is a solution. If she casts on 96 stitches
for her hat, she will be able to use all three stitch pat-
terns without modifications.

Example 2 (A scarf.) For this scarf, our hypothetical
designer would like to use three lace patterns from stitch
dictionaries. She wants to start with the Flower Eye-
let [5, p. 54], which uses a multiple of 16 plus 8, fol-
lowed by Tulip Lace [5, p. 54], a multiple of 8, and end
with All-over Eyelets [3, p.54], which uses a multiple of
10 plus 1. This gives us the three equations

x = 8 mod 16,
x =0 mod 8,
x =1 mod 10.

Right away, she can see that the first two equations
require an even number, while the third requires an odd
number. She decides to add a single extra plain knit
stitch on the right side of the All-over Eyelets pattern,
so that this equation becomes x = 2 mod 10. Because
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10 has the two distinct prime factors 2 and 5, she fur-
ther decomposes this equation into x = 2 mod 2 and
x =2 mod 5. Then she has

x = 8 mod 16,
x =0 mod 8,
x =0 mod 2,

x =2 mod 5.

Further, she notices that the first equation implies both
the second and third, so she can omit those. This leaves
her with

x = 8 mod 16,

x =2 mod 5.

Now she has just two equations with relatively prime
moduli, so she uses the Chinese Remainder Theorem for-
mula to find x = 72 mod 80. She decides to use x = 72,
as that seems like a good amount for a wide scarf. If
she wanted a wider stole or wrap, she could add any
multiple of 80: 152, 232, or 312, etc.

3 Rescaling for Different
Gauges

As explained in Section 1.3, our knitwear designer might
need to rescale her stitch count if the stitch patterns
have different gauges. To compensate for the different
gauges, we apply a scaling factor p/q, and then solve =
system of congruences of the form

x = a mod m,
2)
[ng = b mod n. 2

We may assume that p/q is a rational number iz
lowest terms, so that p and g are relatively prime. Fur
thermore, we choose m to be the modulus corresponding
to the wider stitch pattern, so that p/q > 1.
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In order to simplify this system, we write x = gk+r,
where 0 < r < g, and 7= |pr/q]|. This yields

gk = a—r mod m,
pk = b —F mod n, (3)
x=qk—+r.

As an example, consider the system

X =a mod 6

FZSXJ = b mod 10.

3y making the substitution x = 4k + r, we obtain

4k =a—r mod6
15k = b — F mod 10.

In a given problem, we know a, and r comes from the
division algorithm, so we need only consider 0 < r < 4.
However the corresponding values of 7 do not increase
by a set amount for each unit increase in r. The values
of 7 as r increases in the example above are shown in
Table 1. In particular, if we look at the values of 7 mod-
ulo 4, we observe something alarming: two values of r
that are congruent modulo 4 result in values of 7 that
are different modulo 4! For example, n =1and n =5
are congruent mod 4, but the corresponding values of 7
are = 3 and » = 18, which are not congruent mod
4. However, if we consider the values of ¥ mod 15, we
see that 7, and 7, are equivalent mod 15. In fact, this
is generally true.

rflol2]12] 3 | 4] 5] 617
Fi{{O0|3|7|11|15| 18| 22| 26

Table 1. The values of 7 = [15r/4] for p = 15,q = 4.

Lemma 1 If n = r», mod g, then i = » mod p.

Proof: The congruence 1 = r, mod g implies that
rn = gk + r for some integer k. Then n — R =
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lpri/q] = |lpr2/q] = lpn/al — Lp(gk + n)/q] =
lpri/q| — Pk + pri/q| = |pri/q] — pk — |pri/q] =
—pk. Thus p|A — F. a

In other words, the map r — f;r is well-defined as
a function from Z, to Z,. Therefore, a full set of solu-
tions to the system of equations (3) can be obtained by
considering only values of r with 0 < r < gq.

3.1 Other Versions of the Standard
Chinese Remainder Theorem

To investigate whether or not the general system (2) has
solutions, we return to the standard Chinese Remainder
Theorem with two equations and consider what happens
when we weaken the hypotheses to allow coefficients on
x and consider the case when m and n are not relatively
prime. We consider general systems of the form

cx = a mod m,

(4)

dx = b mod n.

The next few results on this general system are cer-
tainly already known, but we will sketch the proofs here.

Theorem 3 Suppose ged(c, m) = ged(d, n) = 1. The
system of congruences (4) has a solution if and only if
gecd(m, n) divides bc — ad.

Proof: Let g = ged(m, n) and suppose that g divides
bc — ad. Because gcd(c, m) = ged(d, n) = 1, there
exist integers a’ and b’ such that ca’ = a mod m and
db’ = b mod n. This means that for some integers k
and j, we have ca’ = mk + a and db’ = nj + b. Mul-
tiplying the first equation by d, the second by ¢, and
subtracting yields

cd(a’ — b") = mdk — ncj + (bc — ad). (5)

Because g divides the right-hand side of this equation,
then glcd(a’ — b’). However, g is relatively prime to
both ¢ and d, so that g must divide a’ — b’. By Theo-
rem 2, the system x = a’ mod m and x = b’ mod n has
a solution, and such a solution is also a solution to (4).




-

On the other hand, suppose that the given system
has a solution xy. Then there are integers k and J
such that cxp = mk + 3 and dxy = nj + b. As
in the previous paragraph, multiply the first equation
by d and the second by ¢, and then subtract to get
0 = mkd — njc — (bc — ad). Knowing that g divides
both m and n allows us to conclude that g also divides
bc — ad. O

Next, what happens if ged(c, m) or ged(d, n) is not
1?7 We now have three different greatest common divi-
sors to keep track of:

g = gcd(m, n),
&1 = ged(c, m),
&2 = gcd(d, n).

Luckily the theorem above can be used to handle the
cases when g7 and g, are any positive integers.

Corollary 1 The system of congruences in (4) has a so-
lution if and only if

1. ged(c, m) divides a:
2. ged(d, n) divides b; and

=),

m
3 : : ged(c, m)
ecd(c.m) - ged(d, ) ged (o ged(d. )

divides bc — ad.

Proof: As above, let 81 = ged(c, m), go = ged(d, n),
and g = ged(m, n). According to Proposition 1, each
congruence individually has a solution if and only if g
divides a and g, divides b. Then the given system of
congruences is equivalent to

€ a m

—X = — mod —,

&1 &1 &1

b

—X = — mod 1.

&2 &2 &2
By the previous theorem, this system has 3 solution if
and only if condition 3 holds. ]
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Lemma 2 Suppose 81/m and gz|n. Then ged(m, n) di-

vides g1 g gcd (gﬂl, ;’;)

Proof: The equation mx + ny = k has integer solu-
tions if and only if ged(m, n) divides k. Thus there are
integers x and y for which

m i ny cd(m n)
=Xt —y= o Gkt 1P
81 82 E 81 &

Now we multiply both sides of this equation by g1g> to
get

m n
m(g2x) + n(gry) = 8182 ged <—v —) ,
81 &

implying that gcd(m, n) divides the right-hand side. O

Combining the last corollary and lemma and then
taking the contrapositive gives our final result.

Corollary 2 If gcd(m, n) does not divide bc — ad, then

the system (4) has no solutions.

3.2 Results on the Knitting-inspired
System

Now we return to our knitting-inspired system (3), re-
stated here:

gk=a—rmod m

Pk = b — F mod n,  where F = [EJ
q
XGRS, e r<u

If this system has a solution, then the Chinese Re-
mainder Theorem guarantees at least one solution with
k <lem(m, n). Naively, we can estimate that if there
is a solution, then there is at least one solution with =
X < gk +r < glem(m, n) + q. However, we can im-
prove this bound by taking advantage of the fact that for
integers, x < n is equivalent to x < n—1. So if there
is a solution, there is at least one solution with X =




en

gk+r < g(lem(m,n) —1)+ (g —1) = glem(m, n) — 1.
In other words, there is a solution x < glem(m, n).

We can simplify the results of Corollary 1(3) by defin-
ing s = pr mod g with 0 < s < g, so that pr — s = gr.
The quantity bc — ad in Corollary 1 is computed to
be pla—r)—q(b—F) = ap— pr — gb + qF =
ap—pr—qb+pr—s=ap—bg—s.

Let g2 = gcd(g, m), g = gecd(p,n) and d =
gcd (g—"l’, é% . To summarize, applying Corollary 1 yields
the fact that solutions to the system (3) exist if and only
if

g1 divides a — r,
g» divides b —F, (6)
g182d divides ap — bg — s.

Because s varies as r ranges over Zg, it is entirely
possible for the gauge-corrected knitting-inspired system
o have solutions when a standard system with fewer pa-
rameters would not. For given values of p, g, m, and n,
the ability to select different values of r between 0 and
g — 1 allows for a greater variety of possible solutions,
as shown in the example below.

Example 3 Consider again the system in (2) with
m=6,n=10, and p/q = 15/4. Such a system would
arise if a knitter had two stitch patterns, A and B, where
pattern A uses a multiple of 6 plus some number, a, and
pattern B uses a multiple of 10 plus some number, b.
Furthermore, 4 stitches in pattern A is the same width
as 15 stitches in pattern B. (Admittedly, the large dif-
ference between p and ¢ is unlikely in a real knitting
scenario, but for ease of computation in this example,
we will use these numbers.)

With these values for m,n,p and g, we get gy =
2,8 =5 and d = gcd(3,2) = 1. With the substitution
x = 4k + r, the system becomes

4k = a— r mod 6,

il s ok (7)
15k = b — F mod 10.
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Solutions exist if and only if

2la—r,
5/b— F,
10/15a — 4b —s.

On the other hand, if 2|a —r and 5|b — 7, we may write
a=2l+rand b =5j+F Then 15a—4b — s =
15(2¢04r) —4(5j + F) — s = 300 — 20 + 15r — 4F — s.
Recall that s = 15r — 47, so we have 30/ — 20/, which
is clearly divisible by 10. In this example, the third con-
dition is always satisfied; solutions will exist precisely
when 2|a — r and 5|b — 7. Now it is a simple matter to
compute 7 for each r, as in Table 1, and then determine
which values of a and b satisfy the necessary conditions.
Table 2 summarizes the computations.

From Table 2, we see that if a = 5, for example,
then r can be 1 or 3 and b can be 1, 3, 6, or 8. If
pattern A were a multiple of 6 stitches plus 5, then the
knitter needs pattern B to be a multiple of 10 stitches
plus b, where b =1, 3,6, or 8. If b does not equal one of
these numbers, then she will have to change her plans or
adapt one of the stitch patterns to fit her requirements.

r F a b
0].0:10,2 41.0,5
1 3 1..3..5 13,8
2 7 0.2 4127
34111 3.5 1 .1.40

Table 2. A summary of the calculations for the example
m=6,n=10,p/q = 15/4.

This example shows two things: First, the degree of
freedom granted to us by allowing the remainder r to
range from 0 to g — 1 allows solutions to more systems
than can be solved in the traditional Chinese Remainder
Theorem systems (as in Theorem 3). For example, sys-
tem (7) would have solutions only for b = 0 and 5 if we
were forced to have r = 7 = 0, but allowing r to vary




R iadd

lets us solve it for other values of p. Second, even with
that freedom, there are still examples of systems with

no solutions. In (7), there are no solutions when b = 4
or9.

For the first point, consider only the equation gk =
a—r mod m. This has solutions if and only if ged(q, m)
divides a—r, so it is conceivable that for some choices of
a there might be no solution. However, a—r ranges over
g consecutive integers, meaning that exactly gcd(JE,,m) of
the g choices of r lead to an equation which is soly-
able. Each r for which gk = a—r mod m has solu-

tions yields exactly ged(q, m) solutions for k. If m >q
then the values of 2 — , are distinct. Thus,

there are
m " q-ged(q, m) = q values of k that solve the
equation for some value of r. On the other hand, if
m < g, then a simijlar argument establishes that there
are m such values of k. We have now shown the follow-
ing:

Lemma 3 There are exactl

y min(m, q) distinct values
of k such that

L 0<k<m

2. gk=a—r mod m, forsomeO§r<q.

In particular, if m < g, then all values

of k between 0
and m — 1 satisfy the second condition.

Lemma 3 tells us that the first equation in (3)

always has solutions for some r. Now, fix one of those

solutions, say k = mod m, and fix the correspond-

ing r. Then we can count the number of solutions to

k = k" mod m, 8)
Pk =b —F mod n. (

This has solutions when

L. ged(p, n) divides b — 7 and

2. ged(p, n) - ged (m, W,;.n)) divides pk’ — b + 7.
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Unfortunately, the values of p
secutive integers, so even as r ranges from 0 to ¢ — 1,

the values of 7 may erratically skip, repeat (modul
or otherwise be badly behaved.

when r =0, 1, 2,3, then F = 0,3,7 11.

However, there is one special case in which 7 s well-
behaved—when p =

— 7 may not be con-

o n),
In the example above,

g9 + 1. In practice, this special
case is arguably the most common situation that a knit-

ter might face. Differences in gauge between different

stitch patterns are generally not large. For example, the
scaling factor for the differences in gauge between the
samples of garter stitch and the 1 % 1 ribbing in Figure 2
is about 3/2, and these two patterns were chosen be-
cause garter is known to be especially wide and ribbing
to be especially narrow. Generally, the scaling factor be-
tween any two stitch patterns is usually between 1 and

1.5, Thus the scaling factor often can be approximated

by a = 9;’—1. As another example, in Figure 3, we have

P/q =21/17. Since 21/17 is between 6/5 and 5/4, we

could attempt to use either of those quotients as our
approximation, giving us a ratio with p = g+ 1. Thus,
We now conclude this chapter with 3 brief investigation
of the special case pP=qg+1.

Fp=q+1, then [pr/g| = |(q + Ur/q] = |r+
r/q] = r, because 0 <r/qg<1l Thuss=F— r. With
&1 =gcd(q, m), g = ged(g+1, n) and d = ged(Z 2),
we see that (6) becomes

& divides a — r,
& divides b — r, (9)
8182d divides ap — bq — r,

These statements can be thought of as congruences in
the variable r:

r=amod g,
r = b mod &2,
r'=ap—bg mod gig>d.

However, if r is a solution to the third equatior
then r is congruent to ap — bg modulo both g1 anc
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2. Also, g divides q, so bg = 0 mod gi. Conse-
suently, r = ap mod g1. Remember that p = g +1
sere, so r = a mod gi. Similarly it can be shown that
- = bmod gp. Thus in this special case, we only need

5 select r so that r = ap — bg mod g1g2d.

Example 4 Let's consider a last example. The knitwear
dssigner has two stitch patterns, pattern A and pat-
=rn B. Stitch pattern A has a gauge of 20 stitches per 4
‘nches, while pattern B has 24 stitches per 4 inches. This
means that to get the same width of fabric in the two
stitches, the scaling factor is % — g. Thuswelet p=2©6
and g = 5. Also, pattern A uses a multiple of 12 stitches
olus 2, while pattern B uses a multiple of 9 stitches plus
% To summarize, we have m = 12,n = 9,a = 2, and
5 = 4. Now we compute the various greatest com-
mon divisors: g1 = ged(q, m) = 1,82 = ged(p, n) = 3
and d = ged(z. ) = gcd(12,3) = 3. Thus we
need r to be congruent to ap — bg mod 9, which gives
r= -8 mod 9. We use r = 1 and the two equations to

solve are:

5k=2—1 mod 12
6k=4—1mod9

These can be solved and simpified either by using tech-
niques from number theory or by simply trying values
between 0 and the modulus for k. The unique solution
for the congruence modulo 12 is k = 5 mod 12. Us-
ing Proposition 2, this is equivalent by decomposition to
k=1 mod 4 and k = 2 mod 3. The second congruence
squation has the three solutions k = 2, 5, or 8 mod 9.
These three together are equivalent to k = 2 mod 3.
Putting it all together, the system to be solved is

k=1 mod 4,
k =2 mod 3.

Finally, the Chinese Remainder Theorem is applied to
find that k = 5 mod 12 is a solution, meaning that k

could equal 5, 17, 29, and so on. Then x = gk + r, so
x = 26, 86, 146, and so on.

3.3 Conclusion

This exploration of an interesting variation of the Chi-
nese Remainder Theorem was inspired by realizing the
connection the theorem has to knitting stitch patterns.
It has been, and will continue to be, true that profes-
sional knitwear designers probably solve these problems
in an ad hoc way, not using the Chinese Remainder The-
orem. The actual numbers involved tend to be fairly
small and amenable to an approach of just “puzzling it
out” with paper and pencil. Nevertheless, the investi-
gation itself is of interest and not something that would
have occurred to me without the knitting inspiration.
Thinking about the scaling factor for the stitch patterns
led me to a rich investigation of a topic that, as far as
| know, has never been considered before. It is a re-
minder that mathematics can be found in, or inspired
by, a great variety of topics. Being open to the connec-
tions between mathematics and needlework can lead to
new and fun mathematical ideas.

4  The Needlework
4.1 Using the CRT to Design a Cowl

We now present a sample pattern for a cowl. The cowl,
modeled by the author in Figure 4, is a study in striping
patterns and works up quickly in worsted weight yarn
in two colors. Experiment with high-contrast colors, or
with more subtle blendings of color. You can even try
making it with a variety of scraps. The changing stitch
patterns keep interest high as you observe the different
color combinations.

The first pattern consists of the bold zigzag stripes of
the Garter Stitch Chevron from The Harmony Guide to
Knitting Stitches [3, p. 35]. The second striped pattern
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is the Little Tents from Barbara Walker's A Treasury of
Knitting Patterns [7, p. 103], adapted for use with two
colors. The Garter Stitch Chevron uses a multiple of 11
stitches. The Little Tents pattern uses a multiple of 8
stitches plus 1. Thus we need to solve

X =1 mod 8,

x =0 mod 11.

Using the Chinese Remainder Theorem, we get x =
33 + 88k for any integer k. To make a relatively small
cowl in a light worsted weight, 33 stitches is a good
width. For a wide stole, one could use 33 + 88 = 121
stitches.

After | began knitting with the two patterns above, |
decided that one more pattern was needed to balance the
colors. Luckily, | hit upon the Two-Color Star Stitch [8,
pP- 92], which happened to be a multiple of 3. As 33 is
already a multiple of 3, it was easy to incorporate this
pattern as well. Finally, | added 3 stitches on each side
for a garter-stitch border, increasing the cast-on number
of stitches to 39 and modifying the stitch instructions
to include these border stitches.

4.2 The Chinese Remainder Theorem
Cowl—A Striping Stitch Sampler
Notes

« The pattern is written using a provisional cast-on,
from which stitches are picked up and then joined to
the other end of cowl using a 3-needle bind-off. Al-
ternatively, the stitches could be kitchenered instead
of the 3-needle bind-off. Finally, if a long-tail or other
standard cast-on is used, the cowl can be bound off
normally and then seamed with a darning needle.

« Which color is considered the main color and which is

the contrast color switches between color A and color
B as the pattern progresses.
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« US 7 circular needles, or size needed to obtain gauge.

~ Darning needle, for seaming or grafting.

« The Little Tents pattern requires the use of a circular
needle or a double-pointed needle, because the con-
trasting color is worked in only one row at a time.
Sometimes you may have to turn the work and slide
the stitches to the other end of the circular needle in
order to pick up the contrasting color and knit.

« The instructions for the three-stitch garter border are
integrated into the row-by-row instructions.

o

Figure 4. The author modeling her Chinese Reminder The-
orem Cowl

Gauge
18 stitches per 4 inches on size 7 needles in stockinette
stitch (gauge not crucial for this project).

Supplies

< Worsted or light worsted weight yarn in two colors,
one skein in color A and one skein in color B. Purple
and green sample shown was knit in Berroco Vintage,
using less than 50 g of each color, with purple for A
and green for B. The teal and mustard sample is made
from Cascade 220.
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Garter Chevron Two-Color Star Stitch Little Tents

Figure 5. The three stitch patterns in the Chinese Remainder Theorem cowl, knit in Cascade 220.

Abbreviations

yo yarn over needle

MC Main color

CC Contrasting color

k2tog knit 2 together (right-leaning decrease)

ssk slip 2 stitches knitwise to right hand needle. Then slip these two stitches back to
left-hand needle and knit 2 together through the back loop (left-leaning decrease)

sl1 at beginning of row, slip one stitch knitwise with yarn in back.
sl5 pwise wyib | hold working yarn in back, slip 5 stitches purlwise.
sl5 pwise wyif | hold working yarn in front, slip 5 stitches purlwise.

kfb knit into the front and then the back of the next stitch (one stitch increased)

Pull up stitch | On RS, put tip of right-hand needle under slipped strand from 2 rows below. Knit the
next stitch, pulling new stitch under the slipped strand as well. On WS, put tip of right-
hand needle under slipped strand from 2 rows below. Lift this strand onto left-hand
needle, then purl together with next stitch on left-hand needle.

Stitch Patterns

« Garter Stitch Chevrons (starting on WS). A multiple
of 11 stitches plus 6.
Rows 1-5: (in CC) SI1, Knit across.

Rows 6, 8, 10: (in MC) SI1, k2, *K2tog, k2, kfb,
kfb, k3, ssk*. Repeat from * to * across to last three
stitches, k3.

Rows 7, 9, 11: (in MC) SI1, k2, purl to last three
stitches, k3.

Row 12: (in CC) SI1, k2, *K2tog, k2, kfb, kfb, k3,
ssk*. Repeat from * to * across to last three stitches,
k3.

Little Tents (starting on WS, worked over 39 stitches).
A multiple of 8 stitches plus 7. This pattern alternates
3 rows of MC with 1 row of CC. Because these are
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An easy way to change the circumference of the cowl http://www knittingonthenet.com /stitches.htm
= to increase the number of repeats of the Two-color (accessed June 14, 2016).
Star Stitch starting at Row 75. If the Star Stitch is
- worked k times, let o = 75 + 4k. Then the modified [2] Burton, David M. Elementary Number Theory,

- ~ow numbers are as follows. McGraw-Hill, Boston, 2011.
o Hlbinal Rove Niimber | Msdified ResrNinibes [3] The Harmony Guide to Knitting Stitch Patterns, 4
118 5 Lyric, London, 1983. ;
119 +1 ) :
120-121 Z+ Siiaiie [4] Lyons, Elaine, “Knitting Stitch Dictionary*Sweater ]
o 122-162 ol i Pattern Generator*Knitting Reference,” www.
. 163 o4 45 Knittingfool.com (accessed 14 June 14, 2016).
= 164-191 + 46 t 73
32 102-197 Z+ 4 tz Zi 20 [5] Vogue Knitting: The Ultimate Knitting Book, Pan-
theon Books, New York, 1989.
Undo the provisional cast on and place live stitches [6] “Stitchionary” Vogue Knitting,  http://www
x from cast-on edge to the second needle. Using a third vogueknitting.com /resources /stitchionary
= 3 needle, bind off using a 3-needle bind-off to seam the (accessed June 14 2016)
5 ] cast-on and bind-off edges together. (Alternatively, if :
2 standard cast-on like the long-tail cast-on was used, [7] Walker, Barbara G. A Treasury of Knitting Pat-
oind off and seam the cast-on edge to the bind-off edge. terns, Schoolhouse Press, Pittsville, WI, 1998.
See Notes.)

[8] Walker, Barbara G. A Second Treasury of Knitting

Patterns, Schoolhouse Press, Pittsville, WI, 1998.
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