
How to change coins, M&M’s, or chicken nuggets:
The linear Diophantine problem of Frobenius

Matthias Beck
San Francisco State University

Summary

Let’s imagine that we introduce a new coin system. Instead of using pennies, nickels, dimes, and quarters, let’s say

we agree on using 4-cent, 7-cent, 9-cent, and 34-cent coins. The reader might point out the following flaw of this

new system: certain amounts cannot be exchanged, for example, 1, 2, or 5 cents. On the other hand, this deficiency

makes our new coin system more interesting than the old one, because we can ask the question: “which amounts

can be changed?” In the next section, we will prove that there are only finitely many integer amounts that cannot

be exchanged using our new coin system. A natural question, first tackled by Ferdinand Georg Frobenius and James

Joseph Sylvester in the 19th century, is: “what is the largest amount that cannot be exchanged?” As mathematicians,

we like to keep questions as general as possible, and so we ask: given coins of denominations a1; a2; : : : ; ad , which are

positive integers without any common factor, can you give a formula for the largest amount that cannot be exchanged

using the coins a1; a2; : : : ; ad ? This problem is known as the Frobenius coin-exchange problem. One of the appeals

of this famous problem is that it can be stated in every-day language and in many disguises, as the title of these notes

suggests. To be precise, suppose we’re given a set of positive integers

A D fa1; a2; : : : ; adg

with gcd .a1; a2; : : : ; ad / D 1 and we call an integer k representable (in terms of A) if there exist nonnegative integers

m1; m2; : : : ; md such that

k D m1a1 C � � � Cmdad :

In the language of coins, this means that we can exchange the amount k using the coins a1; a2; : : : ; ad . The Frobenius

problem (often called the linear Diophantine problem of Frobenius) asks us to find the largest integer that is not

representable. We call this largest integer the Frobenius number and denote it by g.a1; : : : ; ad /. In the worksheet

questions we will outline a proof for the folklore result for d D 2:

g.a; b/ D ab � a � b :

This simple-looking formula for g.a; b/ inspired a great deal of research into formulas for the Frobenius number

g.a1 ; a2; : : : ; ad /, with limited success: While it is safe to assume that the d D 2 solution has been known for more

than a century, no analogous formula exists for d � 3. The case d D 3 is solved algorithmically, i.e., there are efficient

algorithms to compute g.a; b; c/ [7, 9, 10], and in form of a semi-explicit formula [8, 14]. The Frobenius problem for

fixed d � 4 has been proved to be computationally feasible [1, 11], but not even an efficient practical algorithm for

d D 4 is known.

A second classic theorem for the case d D 2, which Sylvester posted as a math problem in the Educational Times

[18], concerns the number of non-representable integers. Sylvester proved that exactly half of the integers between

1 and .a � 1/.b � 1/ are representable (in terms of a and b). In other words, there are exactly 1
2
.a � 1/.b � 1/

non-representable integers. We will also outline a proof of Sylvester’s Theorem.
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66 Part I Classroom-tested Projects

Notes to the instructor

The first nine worksheet questions are suitable for any course in which the students discuss gcd’s and the Euclidean

algorithm. The next few questions assume some basic number theory, in particular, knowledge about the greatest-

integer function and inverses in Zn. The different projects naturally vary in depth. Most problems in the Euclidean

algorithm section are elementary; the slightly more complicated ones have a hint attached to them. The problems in

the counting function section are a bit more advanced but should be doable in, e.g., an elementary number theory class.

Further extensions and student research projects are discussed below.

The idea of the proofs hidden in the projects of the Euclidean algorithm section first appeared in [12], to the best of

my knowledge. The questions in the counting function section are from [4].

Extensions: Beyond d D 2

This section includes an outline of what is known for the general Frobenius problem and some open problems, many of

which are suitable for computational exploration and undergraduate research projects. One such extension was already

mentioned in Question 11. For more, we refer to the research monograph [15]; it includes more than 400 references to

articles written about the Frobenius problem.

To give the state of the art for the case d D 3 and beyond, we define the generating function of all representable

integers, given some fixed parameters a1; a2; : : : ; ad with no common factor, as F.x/ WD
P

k representable x
k . One can

prove that this generating function can always be written as a rational function of the form

F.x/ D
X

k representable

xk D p.x/

.1 � xa1/ .1 � xa2/ � � � .1 � xad /
:

Furthermore, in the case d D 2 one can show that F.x/ D 1� xa1a2 . Denham [8] recently discovered the remarkable

fact that for d D 3, the polynomial p in the numerator has either 4 or 6 terms. He gave semi-explicit formulas

for p, from which one can deduce a semi-explicit formula for the Frobenius number g.a; b; c/. This formula was

independently found by Ramı́rez-Alfonsı́n [14]. As we already remarked in the introduction, there is no “easy” formula

for d D 3 that would parallel Theorem 2. However, Denham’s theorem implies that the Frobenius number in the case

d D 3 is quickly computable, a result that is originally due, in various guises, to Herzog [10], Greenberg [9], and

Davison [7].

As much as there seems to be a well-defined border between the cases d D 2 and d D 3, there also seems to be

such a border between the cases d D 3 and d D 4: Bresinsky [6] proved that for d � 4, there is no absolute bound

for the number of terms in p, in sharp contrast to Denham’s theorem.

On the other hand, Barvinok and Woods [1] proved recently that for fixed d , the rational generating function F

can be written as a “short” sum of rational functions; in particular, F can be efficiently computed when d is fixed. A

corollary of this fact is that the Frobenius number can be efficiently computed when d is fixed; this theorem is due

to Kannan [11]. On the other hand, Ramı́rez-Alfonsı́n [13] proved that trying to efficiently compute the Frobenius

number is hopeless if d is left as a variable. While these results settle the theoretical complexity of the computation

of the Frobenius number, practical algorithms are a completely different matter. Both Kannan’s and Barvinok-Woods’

ideas seem complex enough that nobody has yet tried to implement them. The fastest known algorithm is due to

Beihoffer, Nijenhuis, Hendry and Wagon [5]; it is currently being improved by Einstein, Lichtblau, and Wagon.

We conclude with a few projects. These differ distinctively from the questions of the worksheet in that they constitute

open research problems. I list them in what I find decreasing order of difficulty (an estimate that is naturally subjective);

the later projects are most suitable for undergraduate research and computational experiments that should bring new

insights.

Project 1. Come up with a new approach or a new algorithm for the Frobenius problem in the d � 3 cases.

Project 2. There is a very good lower [7] and several upper bounds [15, Chapter 3] for the Frobenius number. Come

up with improved upper bounds.

Project 3. Study vector generalizations of the Frobenius problem [16, 17], which seem for the most part unexplored.
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Project 4. There are several special cases of A D fa1; a2; : : : ; ad g for which the Frobenius problem is solved, for

example, arithmetic sequences [15, Chapter 3]. Extend these special cases and come up with new ones.

Project 5. Study the generalized Frobenius number gj (defined in Question 11): Derive formulas for special cases,

e.g., arithmetic sequences.
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Worksheet on how to change coins, M&M’s, or chicken nuggets:

The linear Diophantine problem of Frobenius

1 The Euclidean algorithm and its consequences

We approach the Frobenius problem through the following important consequence of the Euclidean algorithm.

Theorem 1. Suppose a and b are relatively prime positive integers. Then there exist m; n 2 Z such that 1 D maCnb.

What we really need is the fact that one can find such an integral linear combination of a and b for any integer:

Corollary 2. Suppose a and b are relatively prime positive integers. Given an integer k, there exist m; n 2 Z such

that k D maC nb.

Students who just learned about the Euclidean algorithm might find the Frobenius problem amusing, since this last

corollary almost solves the Frobenius problem: in the latter, we’re “only” asking that m; n 2 Z are nonnegative. It

is this tiny additional condition that makes the Frobenius problem so hard (and interesting!). Let’s put the Euclidean

algorithm to good use.

Question 1. Suppose a and b are relatively prime positive integers. Show that a given integer k can be uniquely written

as

k D ma C nb ;

where m; n 2 Z and 0 � m < b � 1.

This gives a simple but useful criterion for k to be representable — recall that this means that k can be written as a

nonnegative integral linear combination of a and b.

Question 2. Suppose a and b are relatively prime positive integers, and write k 2 Z as k D maCnb wherem; n 2 Z

with 0 � m � b � 1. Show that k is representable (in terms of a and b) if and only if n � 0.

This observation allows us to conclude, among other things, that the Frobenius problem is well defined:

Question 3. Suppose a and b are relatively prime positive integers. Show that every sufficiently large integer is

representable (in terms of a and b).

Question 4. Prove that the general Frobenius problem is well defined. That is, show that, given relatively prime

a1; a2; : : : ; ad , every sufficiently large integer is representable (in terms of a1; a2; : : : ; ad ).

Question 2 can be taken a step further to solve the Frobenius problem for d D 2:

Question 5. Prove that g.a; b/ D ab � a � b.

Hint: Try to maximize possible non-representable integers, using Question 2.

Question 2 can also be used to prove Sylvester’s Theorem. We start with the following:

Question 6. Suppose a and b are relatively prime positive integers and 0 < k < ab is not divisible by a or b. Prove

that k is representable (in terms of a and b) if and only if ab � k is not representable.

Hint: Use Question 2 for a representable integer k. Think about how you can strengthen the conditions of Question 2

using the divisibility properties.

Question 6 allows us to prove Sylvester’s Theorem:

Question 7. Prove that there are 1
2
.a � 1/.b � 1/ non-representable integers.
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2 A counting function

Now we study the counting sequence

rk D #
˚

.m; n/ 2 Z
2 W m; n � 0; maC nb D k

	

where a and b are fixed relatively prime positive numbers. In words, rk counts the representations of k 2 Z�0 as

nonnegative linear combinations of a and b. Question 3 states that this sequence has only finitely many rk’s that are 0,

and the Frobenius problem asks for the largest among the rk’s that is 0.

Question 2 gives us the following almost-periodicity identity for rk .

Question 8. Suppose a and b are relatively prime positive integers, and let rk be given as above. Then

rkCab D rk C 1 :

Remark: There is no analogous formula in the general case of d parameters a1; a2; : : : ; ad . This is one reason why the

Frobenius problem seems to be intractable for d � 3.

Let’s take a moment to look at a geometric interpretation of rk . As usual, fix two relatively prime positive integers a

and b. Consider the line segment Lk D f.x; y/ 2 R2 W x; y � 0; ax C by D kg. The parameter k acts like a dilation

factor of the line segment L1 given by

L1 D
˚

.x; y/ 2 R
2 W x; y � 0; ax C by D 1

	

:

Our counting sequence rk enumerates integer points in Z2 that lie on the line segment Lk . As k increases, the line

segment gets dilated. It is not too far fetched1 to expect that the likelihood for an integer point to lie on the line segment

Lk increases with k. In fact, one might even guess that this “probability” increases linearly with k, as the line segments

are one-dimensional objects. Below we will give a formula (Theorem 3) which shows that this is indeed the case. Figure

1 shows the geometry behind the counting function rk for the first few values of k in the case a D 4; b D 7. Note that

Figure 1. 4x C 7y D k ; k D 1; 2; : : :

the thick line segment for the Frobenius number k D 17 D 4 � 7�4�7 is the last one that does not contain any integer

point.

Similar geometric pictures can be associated to the general Frobenius counting functions

#
n

.m1; m2; : : : ; md / 2 Z
d W allmj � 0; m1a1 C � � � Cmd ad D k

o

:

Now the line segments get replaced by triangles (d D 3), tetrahedra (d D 4), and higher-dimensional simplices, but

the general picture, namely that these counting functions enumerate integer points in Zd in dilates of nice geometric

1However, one should be careful with such a statement—we invite the reader to prove that if a and b are not relatively prime, there are infinitely

many line segmentsLk that do not contain any integer point.
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objects, stays the same. This geometric interpretation gives a glimpse into a subfield of discrete geometry called

Ehrhart theory. It concerns the study of integer-point enumeration in polytopes, of which line segments, triangles,

tetrahedra, etc., are special cases. The reader interested in these topics may consult [3]. There one can find a proof of

the following beautiful formula for rk due to Tiberiu Popoviciu, which we will use to re-derive some results on the

Frobenius problem. First we need to define the greatest-integer function bxc, which denotes the greatest integer less

than or equal to x. A close sibling to this function is the fractional-part function fxg D x � bxc.

Theorem 3 (Popoviciu). If a and b are relatively prime, the counting function

rk D #
˚

.m; n/ 2 Z
2 W m; n � 0; maC nb D k

	

is explicitly given by

rk D k

ab
�
�
b�1k

a

�

�
�
a�1k

b

�

C 1 ;

where b�1b � 1 mod a and a�1a � 1 mod b.

Remark: There are analogous formulas for the general Frobenius counting functions

#
n

.m1; m2; : : : ; md / 2 Z
d W all mj � 0; m1a1 C � � � Cmdad D k

o

but they are not as simple as in Popoviciu’s Theorem, even if d D 3. These “higher-dimensional” counting functions,

nevertheless, give rise to generalized Dedekind sums, finite arithmetic sums that appear in various other mathematical

contexts [2].

Question 9. Using Popoviciu’s Theorem 3, give an alternative proof of formula g.a; b/ D ab�a�b for the Frobenius

number by proving that rab�a�b D 0 and that rk > 0 for every k > ab � a � b.

Hint: Use the periodicity of fxg and the inequality
˚

m
a

	

� 1 � 1
a

for integersm; a.

Question 10. Using Popoviciu’s Theorem 3, give an alternative proof that rk C rab�k D 1 for any integer 1 � k �
ab � 1 that is not divisible by a or b (cf. Question 6), and use this to give another proof of Sylvester’s Theorem.

Recall that Question 6 allowed us to prove Sylvester’s Theorem, so Question 10 gives an alternate proof of Sylvester’s

Theorem.

Question 11. Given two relatively prime positive integers a and b, we say the integer k is j -representable if there are

exactly j solutions .m; n/ 2 Z2
�0 to ma C nb D k. We define gj as the largest j -representable integer. (So g0 is the

Frobenius number.) Prove:

(a) gj is well defined.

(b) gj D .j C 1/ab � a � b.

(c) Given j � 2, the smallest j -representable integer is ab.j � 1/.

(d) There are exactly ab � 1 integers that are uniquely representable.

(e) Given j � 2, there are exactly ab j -representable integers.
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Solutions

1. We mentioned already in Corollary 2 that any integer k can be written as

k D ma C nb

for some m; n 2 Z. From this representation we get others, for example,

k D .mC b/a C .n � a/b or k D .m � b/aC .nC a/b :

In fact, because a and b are relatively prime, all possible representations of k as integral linear combinations of

a and b are given precisely by the expressions

k D .mC jb/a C .n � jb/b ; j 2 Z :

By choosing j accordingly, we can force the coefficient of a to be in the interval Œ0; b � 1�.

2. If n � 0, then k is representable by definition, since both coefficientsm and n in k D maCnb are nonnegative.

Conversely, suppose k is representable, say k D jaClb for some nonnegative integers j and l . If 0 � j � b�1,

we are done; otherwise, we subtract enough multiples of b from j such that 0 � m D j � qb � b � 1. Then

the coefficient l has to be adjusted to n D l C qa, which is positive.

3. Question 2 implies that every integer k � ab is representable, since when writing k D maC nb with 0 � m �
b � 1, n has to be positive.

4. Given an integer k, the Euclidean algorithm asserts the existence of integersm1; m2; : : : ; md such that k can be

represented as k D m1a1 Cm2a2 C� � �Cmdad . With the same argument as in the solution to Question 1, we can

demand that in this representation 0 � m2; m3; : : : ; md < a1, and by extension of Question 2, k is representable

if and only if m1 � 0. Hence certainly all integers beyond a1 .a2 C a3 C � � � C ad / are representable in terms

of a1; a2; : : : ; ad .

5. By Question 2, we have to maximize the integral coefficients m and n in

k D ma C nb ;

subject to 0 � m � b � 1 and n < 0 (so that k is not representable). The maximal choice is apparently

k D .b � 1/aC .�1/b D ab � a � b :

6. Suppose k is representable, so by Question 2 we can write

k D ma C nb

for some nonnegative integersm and n with 0 � m � b � 1. Since k is not divisible by a or b, we have m ¤ 0

and n is not divisible by a; in particular, n is positive. But then

ab � k D ab �ma � nb D .b �m/a � nb ;

and we note that 0 < b�m < b and n > 0. This means that ab�k can be written in the form ab�k D jaC lb

with 0 � j � b � 1 and l < 0, and by Question 2, ab � k is not representable.

7. Question 6 implies that, for k between 1 and ab � 1 and not divisible by a or b, exactly one of k and ab � k is

representable. There are

ab � a � b C 1 D .a � 1/.b � 1/
integers between 1 and ab � 1 that are not divisible by a or b. Finally, if k is divisible by a or b then it is

representable, simply by writing k as a multiple of a or b. Hence the number of nonrepresentable integers is
1
2
.a � 1/.b � 1/.
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8. Question 2 implies that if k is representable then it can be written as

k D ma C nb

for some nonnegative integers m and n with 0 � m � b � 1. If n � a then we get another representation,

namely,

k D .mC b/a C .n � a/b :

We can continue the process of adding b to the coefficient of a and subtracting a from the coefficient of b,

until the latter becomes negative, and those will be precisely the different representations of k. Suppose j is the

largest integer such that n � ja � 0. That is, k has the j C 1 representations

k D maC nb D .mC b/aC .n � a/b D .mC 2b/aC .n � 2a/b D � � � D .mC jb/aC .n � ja/b :

Then k C ab has the j C 2 representations

kC ab D maC .nC a/b D .mC b/aC nb D .mC 2b/aC .n� a/b D � � � D .mC .j C 1/b/aC .n� ja/b ;

precisely one representation more than k has.

9. We have to show that rab�a�b D 0 and that rab�a�bCn > 0 for any positive n. To prove the first assertion, we

compute with Popoviciu’s Theorem 3,

rab�a�b D ab � a � b

ab
�
�
b�1.ab � a � b/

a

�

�
�
a�1.ab � a � b/

b

�

C 1

D 2 � 1

a
� 1

b
�
� �b�1b

a

�

�
� �a�1a

b

�

:

Since b�1b D 1C ja for some integer j ,
n

�b�1b
a

o

D
˚

�1
a

	

D 1 � 1
a

. With essentially the same argument, we

conclude that
n

�a�1a
b

o

D 1 � 1
b

, which implies that rab�a�b D 0.

To prove that rab�a�bCn > 0 for n > 0, we note that for any integer m,
˚

m
a

	

� 1 � 1
a

. Hence Popoviciu’s

Theorem 3 gives for any positive integer n,

rab�a�bCn � ab � a � b C n

ab
�
�

1 � 1

a

�

�
�

1 � 1

b

�

C 1 D n

ab
> 0 :

10. By Popoviciu’s Theorem 3,

rab�k D ab � k
ab

�
�
b�1.ab � k/

a

�

�
�
a�1.ab � k/

b

�

C 1

D 2 � k

ab
�
� �b�1k

a

�

�
� �a�1k

b

�

.?/D � k

ab
C
�
b�1k

a

�

C
�
a�1k

b

�

D 1 � rk :

Here, .?/ follows from the fact that f�xg D 1 � fxg if x 62 Z.

11. (a) Since every integer beyond ab�a�b has at least one representation, every integer beyond .jC1/ab�a�b
has at least j C 1 representations, by Question 8.

(b) As we just showed, every integer beyond .j C1/ab�a�b has at least j C1 representations. Furthermore,

by the formula for g.a; b/ and Question 8, .j C 1/ab � a � b has exactly j representations, and so

gj D .j C 1/ab � a � b.
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(c) Let n be a nonnegative integer. Then

rab.j �1/�n D ab.j � 1/ � n
ab

�
�
b�1.ab.j � 1/� n/

a

�

�
�
a�1.ab.j � 1/� n/

b

�

C 1

D j � n

ab
�
� �b�1n

a

�

�
� �a�1n

b

�

:

If n D 0, this equals j . If n is positive, we use the fact that fxg � 0 to see that

rab.k�1/�n � j � n

ab
< j :

(d) In the interval Œ1; ab�, there are, by Sylvester’s Theorem and the fact that ab is the smallest 2-representable

integer,

ab � .a � 1/.b � 1/
2

� 1

1-representable integers. With Question 8 and again Sylvester’s Theorem, we see that there are

.a � 1/.b � 1/
2

1-representable integers above ab. Hence there is a total of ab � 1 uniquely representable integers.

(e) It suffices to prove this result for j D 2; then the general statement follows by induction with Question 8.

By the previous proof and Question 8, there are ab� .a�1/.b�1/
2

�1 integers with two representations in the

interval ŒabC 1; 2ab�, and .a�1/.b�1/
2

such integers beyond 2ab. Hence, together with the 2-representable

integer ab, there are precisely ab integers with two representations.


