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Coding Theory

2or: Kenneth H. Rosen, AT&T Bell Laboratories.

- ®e=requisites:  The prerequisites for this chapter are the basics of logic, set
e=ory, number theory, matrices, and probability. See, for example, Sections 1.1,
¢ 23, 2.5, and 4.4 of Discrete Mathematics and Its Applications, Second
= tion, by Kenneth H. Rosen.

Introduction

~ Tue= usual way to represent, manipulate, and transmit information is to use
- o strings, that is, sequences of zeros and ones. It is extremely difficult, and
- % impossible, to prevent errors when data are stored, retrieved, operated
o= or transmitted. Errors may occur from noisy communication channels,
- wectrical interference, human error, or equipment error. Similarly, errors are
~ weroduced into data stored over a long period of time on magnetic tape as the
- Lzpe deteriorates.

It is particularly important to ensure reliable transmission when large com-
suter files are rapidly transmitted or when data are sent over long distances,
wuch as data transmitted from space probes billions of miles away. Similarly, it

= often important to recover data that have degraded while stored on a tape.
"o zuarantee reliable transmission or to recover degraded data, techniques from
~ woding theory are used. Messages, in the form of bit strings, are encoded by
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Solution:  Since the string 1110011 contains an odd number of 1s, it cannot
he a valid codeword (and must, therefore, contain an odd number of errors).
On the other hand, the string 10111101 contains an even number of 1s. Hence
il 18 either a valid codeword or contains an even number of errors. O

Another simple way to detect errors is to repeat each bit in a message
lwice, as is done in the following example.

Encode the bit string 011001 by repeating each bit twice.

Example 2
Repeating each bit twice produces the codeword 001111000011. ]

Solution:

What errors can be detected when we repeat each bit of a codeword twice?
Since the codewords are those bit strings that contain pairs of matching bits,
that is, where the first two bits agree, the third and fourth bits agree, and so
on, we can detect errors that change no more than one bit of each pair of these
matching bits. For example, we can detect errors in the second bit, the third
bit, and the eighth bit of when codewords have eight bits (such as detecting
that 01101110, received when the codeword 00001111 was sent, has errors). On
the other hand, we cannot detect an error when the third and fourth bit are
both changed (such as detecting that 00111111, received when the codeword
00001111 was sent, has errors).

So far we have discussed codes that can be used to detect errors. When
errors are detected, all we can do to obtain the correct codeword is to ask for
retransmission and hope that no errors will occur when this is done. However,
there are more powerful codes that can not only detect but can also correct
errors. We now turn our attention to these codes, called error correcting codes.

Error Correcting Codes

We have seen that when redundancy is included in codewords, such as when a
parity check bit is added to a bit string, we can detect transmission errors. We
can do even better if we include more redundancy. We will not only be able
to detect errors, but we will also be able to correct errors. More precisely, if
sufficiently few errors have been made in the transmission of a codeword, we
can determine which codeword was sent. This is illustrated by the following

example.

Example 3 To encode a message we can use the triple repetition code. We

repeat a message three times. That is, if the message is 22223, we encode it
—a:4:z7,:vg=:c5::c3,andz3:x6=

as T TaT3T4T5r6T728T9 Where x4
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Example 4
11011 and the Hamming distance between the bit strings 00000 and 11111.

Solution:
d(01110,11011) = 3. Since 00000 and 11111 differ in all five bits, we conclude

that d(00000,11111) = 5.

of changes in individual bits needed to change one of the strings into the other.

We will find this observation useful later.

Find the Hamming distance between the bit strings 01110 and

Since 01110 and 11011 differ in their first, third, and fifth bits,
O

The Hamming distance satisfies all the properties of a distance function
(or metric), as the following theorem demonstrates.

Theorem 1 Let d(x,y) represent the Hamming distance between the bit

strings x and y of length n. Then
(i) d(x,y) >0 for all x, y
(ii) d(x,y) =0 if and only if x = y
(iii) d(x,y) = d(y,x) for all x, y
(iv) d(x,y) < d(x,2) + d(z,y) for all x, y, z.

Proof:  Properties (i), (ii), and (iii) follow immediately from the definition of
the Hamming distance. To prove (iv), we use the fact that d(x,y) is the number
of changes of bits required to change x into y. Note that for every string z of
length n the number of changes needed to change x into y does not exceed the
number of changes required to change x into z and to then change z into y-H

How can the Hamming distance be used in decoding? In particular, sup-
pose that when a codeword x from a code C is sent, the bit string y is received.
If the transmission was error-free, then y would be the same as x. But if errors
were introduced by the transmission, for instance by a noisy line, then Y is not
the same as x. How can we correct errors, that is, how can we recover x?

One approach would be to compute the Hamming distance between y
and each of the codewords in C. Then to decode y, we take the codeword
of minimum Hamming distance from y, if such a codeword is unique. If the
distance between the closest codewords in C is large enough and if sufficiently
few errors were made in transmission, this codeword should be x, the codeword
sent. This type of decoding is called nearest neighbor decoding.
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We will now show that nearest neighbor decoding gives us the most likely
tudeword sent, so that it is also maximum likelihood decoding.

Theorem 2 Suppose codewords of a binary code C' are transmitted using
A binary symmetric channel. Then, nearest neighbor decoding of a bit string
received produces the most likely codeword sent.

Proof: To prove this theorem we first need to find the probability that when
i codeword of length n is sent, a bit string with k errors in specified positions
In received. Since the probability each bit is received correctly is 1 — p and the
probability each bit is received in error is p, it follows that the probability of k
errors in specified positions is p*(1 — p)*~*. Since p< 1/2 and 1 — p > 1/2, it
follows that

FPl-p)" " > p'(1-p)i

whenever ¢ < j. Hence, if i < j, the probability that a bit string with
specified errors is received is greater than the probability that a bit string
with j specified errors is received. Since is more likely that errors were made
in fewer specified positions when a codeword was transmitted, nearest neighbor
decoding produces the most likely codeword. ]

The Hamming distance between codewords in a binary code determines its
ability to detect and/or correct errors. We need to make the following definition
before introducing two key theorems relating to this ability.

Definition 2 The minimum distance of a binary code C' is the smallest
distance between two distinct codewords, that is,

d(C) = min{d(x,y)|x,y € C,x # y}. O

Example 7 Find the minimum distance of the code

C = {00000,01110,10011,11111}.

Solution:  To compute the minimum distance of this code we will find the
distance between each pair of codewords and then find the smallest such dis-
tance. We have d(00000,01110) = 3, (00000, 10011) = 3, (00000, 11111 =5,
d(01110,10011) = 4, d(01110,11111) = 2, and d(10011,11111) = 2. We see
that the minimum distance of C is 2. O
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b1 = 4 errors. For example, when we use C to detect errors, we can de-

lect the four errors made in transmission when we receive 11110000 when the
codeword 00000000 was sent.

By Theorem 4, it follows that C can correct up to [(5 — 1)/2] = 2 errors.
I'or example, when we use C to correct errors, we can correct the two er-
rors introduced in transmission when we receive 11100000 when the codeword

11111000 was sent. O

Perfect Codes

To allow error correction we want to make the minimum distance between
codewords large. But doing so limits how many codewords are available. Here
we will develop a bound on the number of codewords in a binary code with a

given minimum distance.

Lemma 1 Suppose x is a bit string of length n and that k is a nonnegative
integer not exceeding n. Then there are

C(n,0)+ C(n,1)+ - -+ C(n, k)

bit strings y of length n such that d(x,y) < k (where d is the Hamming dis-
tance).

Proof: Let i be a nonnegative integer. The number of bit strings y with
d(x,y) = i equals the number of ways to select the i locations where x and y
differ. This can be done in C(n, i) ways. It follows that there are

C(n,0)+ C(n,1)+ - -+ C(n, k)

bit strings such that d(x,y) < k. 0

We can describe the statement in Lemma 1 in geometric terms. By the
sphere of radius k centered at x we mean the set of all bit strings y such
that d(x,y) < k. Lemma 1 says that there are exactly Zf:o C(n,1) bit stings
in the sphere of radius k centered at x. Hrengs

Lemma 2 Let C be a binary code containing codewords of length n and
let d(C) = 2k + 1. Then given a bit string y of length n, there is at most one
codeword x such that y is in the sphere of radius k centered at x.

Proof: Suppose that y is in the sphere of radius k centered at two different
codewords x; and x3. Then d(x;,y) < k and d(x2,y) < k. By the triangle
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The sphere packing bound gives us an upper bound for the number of
codewords in a binary code with a given minimum distance where codewords
are bit strings of length n. The codes that actually achieve this upper bound,
that is, that have the most codewords possible, are of special interest because
they are the most efficient error correcting codes. Such codes are known as
perfect codes.

Example 11 Show that the code consisting of just two codewords 00000
and 11111 is a perfect binary code.

Solution:  The minimum distance between codewords in this code is 5. The
sphere packing bound states that there are at most

25/[C(5,0) + C(5,1) + C(5,2)] = 32/16 = 2

codewords in a code consisting of 5-tuples with minimum distance 5. Since
there are 2 codewords in this code, it is a perfect binary code. O

The code in Example 11 is called a trivial perfect code since it only consists
of the two codewords, one containing only Os and the other containing only 1s.
As Exercise 8 demonstrates, when n is an odd positive integer there are trivial
perfect codes consisting of the two codewords which are bit strings of length n
consisting of all Os and of all 1s. Finding perfect binary codes different from
the trivial codes has been one of the most important problems in coding theory.
In the next section we will introduce a class of perfect binary codes known as
Hamming codes.

Generator Matrices

Before describing Hamming codes, we need to generalize the concept of a parity
check bit. When we use a parity check bit, we encode a message x1z3 ...y as
T2y ...2xxrs1 Where zpy1 = (21 + 22 + -+ + 2x) mod 2. To generalize this
notion, we add more than one check bit. More precisely, we encode a message
TiTy...T AS T1Ty...TpTk41 - .- Tn, Where the last n — k bits z441,...,z,, are
parity check bits, obtained from the k bits in the message. We will describe
how these parity check bits are specified.

Consider a k-bit message z,29 -2 as a 1 x k matrix x. Let Gbeak xn
matrix that begins with the k x k identity matrix Iy. That is, G = (Ix]|A),
where A is a k x (n — k) matrix, known as a generator matrix. We encode x
as E(x) = xG, where we do arithmetic modulo 2. Coding using a parity check
bit and using the triple repetition code are special cases of this technique, as
illustrated in Examples 12 and 13.



TEETEAR AMIVERAET R L/\(A) = Ay, WIilere

IR0 (o)l
Gam kil o0 1
0250010

Note that to obtain G we add a column o
That is, G = (I3|A), where

A=|1

Example 13 We can represent encodin

. using the tri iti
three-bit messages as F(x) = xG, where 3 : pie TeRctition cude 18

1 001000100
G=[010010010
00100100 1

Note that G is formed by repeatin

the i . ]
tireih, Aot 1o g the identity matrix of order three, I, three

G = (I3|I5]15). 0

We now consider an exam

i ple which we will use to develop some important

Example 14 Suppose that

1001 1 1
Gl 059 401 g
00110 1
that is, G = (I3/A), where
I Lol
A=111 0
1 0 1

What are the codewords in the code generated by this generator matrix?

f 1s to I3, the 3 x 3 identity matrix.

WYV Ve WL T Y SEETIAR WU o PRI e\ T N U e e W e e s T R TV S o
I/(x) = xG. This produces the codewords 000000, 001101, 010110, 011011,
100111, 101010, 110001, and 111100. For example, we get the third of these by

computing

[

b Boulia b dacd
E(010)=(010)G=(010){0 1 0 1 1 0]=(010110). O
001101

It is easy to see that we can find the codewords in a binary code generated
by a generator matrix G by taking all possible linear combinations of the rows
of G (since arithmetic is modulo 2, this means all sums of subsets of the set
of rows of G). The reader should verify this for codewords in the code in
Example 14.

It is easy to see that the binary codes formed using generator matrices have
the property that the sum of any two codewords is again a codeword. That
is, they are linear codes. To see this, suppose that y; and y, are codewords
generated by the generator matrix G. Then there are bit strings x; and x5 such
that E(x;) = y1 and E(x2) = y2, where F(x) = xG. It follows that y; + y2
is also a codeword since E(x; + x2) = y1 +y2. (Here we add bit strings by
adding their components in the same positions using arithmetic modulo 2.)

We will see that there is an easy way to find the minimum distance of a
linear code. Before we see this, we need to make the following definition.

Definition 3 The weight of a codeword x, denoted by w(x), in a binary
code is the number of 1s in this codeword. O

Example 15 Find the weights of the codewords 00000, 10111, and 11111.

Solution:  Counting the number of 1s in each of these codewords we find that
w(00000) = 0, w(10111) = 4, and w(11111) = 5. O

Lemma 3 Suppose that x and y are codewords in a linear code C. Then
d(x,y) = w(x+y).

Proof: The positions with 1s in them in x +y are the positions where x and y
differ. Hence d(x,y) = w(x +y). ']

We also will need the fact that 0, the bit string with all Os, belongs to a
linear code.
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We can express this system of equations as
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Note that H = (A*|I,—x). With this notation we see that x = z12223742576 is
n codeword if and only if Hx' = 0, since checking this equation is the same as
checking whether the parity check equations hold. !

In general, suppose that G is a k x n generator matrix with

G = (Ix|A),

where A is a k x (n — k) matrix. To G we associate the parity check matrix H,
where
H= (Atun_k).

Then x is a codeword if and only if Hx' = 0. Note that from a generator
matrix G we can find the associated parity check matrix H, and conversely,
given a parity check matrix H, we can find the associated generator matrix G.
More precisely, note that if H = (B|I,), then G = (I,_,|B").

We have seen that the parity check matrix can be used to detect errors.
That is, to determine whether x is a codeword we check whether

th =0.

Not only can the parity check matrix be used to detect errors, but when the
columns of this matrix are distinct and are all nonzero, it also can be used
to correct errors. Under these assumptions, suppose that the codeword x is
sent and that y is received, which may or may not be the same as x. Write

= x + e, where e is an error string. (We have e = 0 if no errors arose in
the transmission). In general, the error string e has 1s in the positions where y
differs from x and Os in all other positions. Now suppose that only one error has
been introduced when x was transmitted. Then e is a bit string that has only
one nonzero bit which is in the position where x and y differ, say position j.
Since Hx' = 0, it follows that

Hy' = H(x' +e)

= Hx' + &'

= et

= Cj
where ¢; is the jth column of H.

Hence, if we receive y and assume that no more than one error is present,

we can find the codeword x that was sent by computing Hy*. If this is zero,
we know that y is the codeword sent. Otherwise, it will equal the jth column

of H for some integer j. This means that the jth bit of y should be changed
to produce x.

Example 16 Use the parity check matrix to determine which codeword from
the code in Example 14 was sent if 001111 was received. Assume that at most
one error was made.
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Example 18

Find the codewords in a Hamming code of order 3
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Hamming Codes

We define them using parity check

Solution:  For the parity check matrix of this code we use .
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We have H = (B|I3) where
01 11
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11 01

Hence the generator matrix G of this code equals

[l o
o O =

1000011
0100101
G==sB)=|y o 1 011 0
0001111

The 16 codewords in this code C' can be found by taking all possible sums of
the rows of G. We leave this as an exercise at the end of the chapter. O

To show that the Hamming codes are perfect codes we first need to establish

two lemmas.

Lemma 5 A Hamming code of order r contains 2"~" codewords where n =
2" — 1.

Proof: The parity check matrix of the Hamming code is an r x n matrix. It
follows that the generator matrix for this code is a (n — r) X n matrix. Recall
that the codewords are the linear combinations of the rows. As the reader can
show, no two linear combinations of the rows are the same. Since there are
on—r different linear combinations of row, there are 2"~" different codewords in

a Hamming code of order r.

Lemma 6 The minimum distance of a Hamming code of order r is 3 when-
ever 7 is a positive integer.

Proof: The parity check matrix H, has columns which are all nonzero and
no two of which are the same. Hence, from our earlier discussion, a Hamming
code of order r can correct single errors. By Theorem 3 we conclude that the
minimum distance of this code is at least 3. Among the columns of H, are the




tollowing three columns:

1
0
1 0 1
C = 0 ) Co = 0 ) c3 = 0
0 0 0

Theore i
m 7 The Hamming code of order r is a perfect code
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I'or example, pictures of the planets taken by space probes have been en-

toded using powerful codes, such as a code known as the Reed-Muller code
(wee [5] for details). This code has been used to encode the bit string of length 6
tepresenting the brightness of each pixel of an image by a bit string of length 32.
I'his Reed-Muller code consists of 64 codewords, each a bit string of length 32,
with minimum distance 16. Another interesting example is the use of a family of
todes known as Reed-Solomon codes used in digital audio recording (see [5] for
details). Finally, many concepts and techniques from both linear algebra and
nbstract algebra are used in coding theory. Studying coding theory may con-
vince the skeptical reader about the applicability of some of the more abstract

nreas of mathematics.
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Exercises

1. Could the following bit strings have been received correctly if the last bit

is a parity bit?
a) 1000011
b) 111111000
¢) 10101010101
d) 110111011100

2. Find the Hamming distance between each of the following pairs of bit

strings.



a) 00000,11111

b) 1010101,0011100

¢) 000000001,111000000
d) 1111111111,010010001 1

a) 01011, the bit strin i

. g sent, is ived?
b) 11011 is receiveq? i
¢) 01101 is received?
d) 10111 is received?

many can it correct?
a) {0000000,1111111}
b) {00000,00111, 10101, 11011}
c) {00000000, 11111000,01100111, 100101101}

# 5. Suppose that the probabili
ility of a bit €error i i
In transmission over i
a binary

{
| *6. Show that if the minj w
€ minimum distance betw
een codewords ig four it j i
18 possible

to correct an error i i
or in a :
DS el single bit and to detect two bit errors without

10. Find the i
parity check matrix associ i
B ’ clated
parity check bit to a bit string of length ;Vlth the code formed by adding a

11. Illld the parlty CheCk matl‘lx aSSOCIated Wlth the tIlpIe IepetlthII COde IOI
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12. Suppose that the generator matrix for a binary code is

00 0 1 lgsl
L0000 1001
0, 10000 Ll
050011150

(oo i =

What is the parity check matrix H for this code?

13. Suppose that the parity check matrix for a binary code is

1 00
04120
0 0 1

—_—— O

1
1
0

What is the generator matrix G for this code?
Find the 16 codewords in the Hamming code of order 3 described in Ex-

ample 18.

x15. Sometimes, instead of errors, bits are erased during the transmission of a
message or from a tape or other storage medium. The position, but not the
value, of an erased bit is known. We say that a code C' can correct r erasures
if a message received with no errors and with no more than r erasures can
be corrected to a unique codeword that agrees with the message received

in all the positions that were not erased.
a) Show that a binary code of minimum distance d can correct d — 1

erasures.
b) Show that a binary code of minimum distance d can correct t errors

and r erasures if d = 2t +r + 1.

Computer Projects

1. Given a binary code, determine the number of errors that it can detect and
the number of errors that it can correct.

2. Given a binary code with minimum distance k, where k is a positive integer,
write a program that will detect errors in codewords in as many as k — 1
positions and correct errors in as many as |(k — 1)/2] positions.
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