
Matrix Algebra and Error-Correcting Codes

Aaron Fenyes

afenyes@math.utexas.edu

October, 2015

Abstract

These notes started off as an enrichment piece for computer science and

electrical engineering majors studying matrix algebra at UT Austin. They’re

meant to show how the tools you pick up in a first matrix algebra course—

things like matrix multiplication, linear equations, column spaces, null spaces,

bases, pivots, column operations, and inversion—can be used to design and

implement error-correcting codes. A lot of the material is in the exercises,

some of which are harder than others, so the notes are probably best read

in the company of a more experienced guide.

I learned most of what I know about coding theory from lecture notes by

Guruswami [3], Kaplan [4], and others. I’m presenting some of the material

in a somewhat original way, however, and I apologize for any errors I’ve

introduced. If you detect or correct any, please let me know.

To stay close to the mindset of elementary matrix algebra, I’ve occasion-

ally deviated from the conventions of coding theory. Instead of thinking of

linear codes as subspaces, for example, I identify them with their generators,

and my generators, like Guruswami’s, are transposed relative to the usual

presentation.

1 Linear algebra with bits

You’ve already learned a lot about vectors and matrices whose entries are real

numbers. In certain areas of computer science, it’s very useful to know that pretty

much everything you’ve learned (and, in fact, pretty much everything you’re going

to learn in M 340L) also applies to vectors and matrices whose entries are bits.

1.1 What are bits?

Bits are like real numbers, but different. There are infinitely many real numbers,

but there are only two bits: 0 and 1. You can add and multiply bits, using the

1



addition and multiplication tables below.

0 + 0 = 0 0 · 0 = 0

0 + 1 = 1 0 · 1 = 0

1 + 0 = 1 1 · 0 = 0

1 + 1 = 0 1 · 1 = 1

If you think of the bits 0 and 1 as the logical values FALSE and TRUE, you can

think of addition and multiplication as the logical operations XOR and AND.

We’ve been calling the set of real numbers R, so let’s call the set of bits B.

Similarly, we’ve been calling the set of n-entry real vectors Rn, so let’s call the set

of n-entry bit vectors Bn.

1.2 Algebra with bits

All the algebraic properties of real numbers (in particular, the associative, commu-

tative, and distributive properties) also hold for bits, so you can do algebra with

bits just by doing what you’d normally do. There’s one thing, however, that you

might find a little disconcerting.

The negative of a number a is defined as the solution to the equation x+a = 0.

So, what’s the negative of the bit 1? Well, 1 + 1 = 0, so the negative of 1 is 1.

In other words, 1 is its own negative. In fact, every bit is its own negative. That

means, for bits, addition is the same as subtraction!

For example, let’s say we have the equation

x + y = 1,

and we want to write x in terms of y . Normally, we’d do it by subtracting y from

both sides of the equation. If we’re working with bits, however, subtraction is the

same as addition, so we might as well just add y to both sides:

x + y + y = 1 + y

x + 0 = 1 + y

x = 1 + y

Weird.

1.3 Matrix arithmetic with bits

Once you know how to do arithmetic with real matrices, arithmetic with bit ma-

trices is a breeze.

2



P Try working out the matrix-vector product below, just to make sure you’ve

got the hang of it.

[
1 1 1

0 1 1

] 1

1

0

 = 1

[
1

0

]
+ 1

[
1

1

]
+ 0

[
0

1

]

=

[
1

0

]
+

[
1

1

]
+

[
0

0

]
=

[
1 + 1 + 0

0 + 1 + 0

]
=

[
0

1

]
P Solve the equation

x1

 1

1

0

+ x2

 0

1

1

+ x3

 1

1

0

 =

 1

0

1


by putting the associated augmented matrix in reduced echelon form.

2 Error-correcting codes

When you send a string of bits over a communication channel, there’s a chance

that some of them might get corrupted; a 1 might become a 0, or vice versa. You

can deal with this possibility by adding redundant information to your message, so

the intended bit string can be recovered even if a few bits get flipped. A scheme

for adding this kind of redundancy is called an error-correcting code.

2.1 Repetition codes

One of the simplest ways to protect your message against errors is to just repeat

each bit three times: [
x
]
7→

 x

x

x


If you receive the block  0

1

0

 ,

3



and you’re willing to assume that at most one bit got flipped, you can conclude

that the block must have been sent as 0

0

0

 .
Of course, if two bits got flipped, you’re out of luck.

2.2 Parity codes

Here’s a slightly more sophisticated code:

[
x

y

]
7→


x

x

y

y

x + y


This code takes your message two bits at a time and spits out five-bit blocks.

That x+y at the end of the error-protected block is called a “parity bit,” because

it tells you whether the number of 1s in the unprotected block was even or odd.

P If you receive the block 
0

0

1

0

1

 ,
and you’re willing to assume that at most one bit got flipped, can you figure

out what the block must have been sent as?

3 Linear codes

An error-correcting code is called linear if it turns each k-bit block of your message

into an n-bit error-protected block by doing the transformation

x 7→ Gx,

where G is an n × k matrix. The matrix G is called the generator of the code.

Vectors in the range of x 7→ Gx are called codewords.

Keep in mind that the transformation x 7→ Gx has domain Bk and codomain

Bn. In particular, every codeword is a vector in Bn. However, not every vector in

Bn is necessarily a codeword. In fact, we’ll soon see that if every vector in Bn is a

codeword, x 7→ Gx is totally useless as an error-correcting code.

4



If you need to get a message out fast, linear codes are your friends, because

most CPUs can do bit matrix arithmetic really quickly. We’ll see later that with

linear codes, you can also use matrix arithmetic to speed up the error-correction

process.

P The codes described in Section 2 are both linear. Find the generator and

codewords of each one.

P Write a routine to multiply a 16-entry vector by a 32 × 16 matrix in your

favorite programming language. See how fast you can make it. Bonus points

if your favorite language is an assembly language.1

3.1 Do you have what it takes?

Let’s say you have a linear code with generator G. Can this code actually be used

to correct errors? You won’t know until you try, so you take a bit vector x ∈ Bk ,

turn it into the codeword y = Gx, and send it over a communication channel. On

its way across the channel, y has its ith entry flipped, becoming y + ei .

P As usual, ei is the ith column of the identity matrix. Why does adding ei to

y flip the ith entry of y?

At the other end of the channel, I receive the vector y + ei . If this vector is a

codeword, it’s game over: I’ll never even know that an error occurred.

P Why?

Now we know the first thing it takes for x 7→ Gx to be an error-correcting code:

1. If y is a codeword, then y + ei is not a codeword, regardless of i .

Let’s say your code satisfies this requirement, so y + ei is not a codeword. I

immediately realize that an error must have occurred.

P Why?

Crossing my fingers, I assume that only one entry of y got flipped. If I knew it was

the ith entry, I could just add ei to the vector I received, flipping the corrupted

entry back to its original value:

(y + ei) + ei = y.

Unfortunately, I don’t know which entry got flipped, so all I can do is look at the

vector (y + ei) + ej for each j . If I’m lucky, there will only be one value of j that

makes this vector a codeword. In that case, I’ll be able to recover y.

P Why?

1No bonus points if you use the BMM instruction on a Cray X1 supercomputer.

5



On the other hand, if there’s more than one value of j that makes (y + ei) + ej
a codeword, I won’t be able to figure out which value to use. Now we know the

second thing it takes for x 7→ Gx to be an error-correcting code:

2. If y is a codeword, and y + ei + ej is also a codeword, then y + ei + ej = y.

Let’s say your code satisfies this requirement, so I can recover y. All I have to

do now is work out the vector x that you started with! In other words, I have to

solve the equation y = Gx, where x is the unknown. If this equation has a unique

solution, I’m done. If it doesn’t, I’m out of luck. Now we know the last thing it

takes for x 7→ Gx to be an error-correcting code:

3. For each codeword y, the equation y = Gx has a unique solution.

By giving it a try, and thinking about what could go wrong at every step along

the way, we’ve found three requirements that tell us whether or not the linear code

x 7→ Gx can be used to correct errors. Even better, it turns out that each of the

three requirements can be simplified a little bit. Here they are, all cleaned up and

packed in a fancy box:

bc

Theorem 1. The linear code with generator G is an error-correcting code if and

only if it satisfies the following three requirements.

1. The vector ei is not a codeword, regardless of i .

2. If ei + ej is a codeword, then ei + ej = 0.

3. The transformation x 7→ Gx is one-to-one.

bc

P Prove that each of the simplified requirements in Theorem 1 is logically

equivalent to the corresponding unsimplified requirement.

HINT: Remember that 0 is always a codeword. This makes it really easy to

prove that the first two unsimplified requirements imply the corresponding

simplified ones.

P Use Theorem 1 to decide whether the codes from Section 2 are error-

correcting codes.

P Prove that if every vector in Bn is a codeword of x 7→ Gx, then x 7→ Gx is

not an error-correcting code.

6



3.2 Check, please

When we tried out your code in Subsection 3.1, the error-correction procedure I

used involved a lot of checking whether things were codewords. First, I had to

check the block y +ei you sent me, so I could find out if there was an error. Then,

when I saw there was an error, I had to check all the vectors (y + ei) + ej as well.

We can streamline this process by using a gadget called a check matrix. A

check matrix for a linear code is a matrix H with the property that Hz = 0 if and

only if z is a codeword.

With a check matrix, error detection and correction is a snap. Let’s say you

send me the codeword y, and I receive the vector z. The first thing I do is compute

the vector Hz.2 If there was no error, z = y, so

Hz = Hy

= 0.

If the ith entry of y got flipped, z = y + ei , so

Hz = H(y + ei)

= Hy +Hei

= Hei ,

which is the ith column of H. To figure out which bit got flipped, all I have to do

is look through the columns of H until I find Hz.

P Wait a minute! What if H has two columns that are the same? Then I’m

in trouble. Fortunately, if H is a check matrix for an error-correcting code,

all the columns of H have to be different. Prove it.

HINT: Show that if columns i and j of H are the same, then ei + ej is a

codeword.

Here’s another use for check matrices—one you probably never expected. If

you have a check matrix for a linear code, you can use it to help figure out whether

or not the code is error-correcting!

bc

Theorem 2. Let’s say H is a check matrix for a linear code.

1. The code satisfies the first requirement of Theorem 1 if and only if all the

columns of H are nonzero.

2. The code satisfies the second requirement of Theorem 1 if and only if all

the columns of H are different.

bc

2People call this vector the syndrome of z, possibly just because it sounds cool.

7



P Prove Theorem 2.

P The matrix  1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1


is a check matrix for a one-to-one linear code called the Hamming code. Use

Theorem 2 to decide whether or not the Hamming code is error-correcting.

HINT: I told you the code is one-to-one, so you already know it satisfies the

third requirement from Theorem 1.

P Notice that the ith column of the check matrix above is the number i written

in binary. Hamming did that on purpose. Why?

3.3 Cutting checks

Okay, great: check matrices are magic. But how do we get our hands on one?

As it turns out, there’s a step-by-step procedure you can use to construct a check

matrix for any one-to-one linear code. I’ll outline the basic strategy first, and then

go back to hammer out the details.

We start with a code whose generator G is an n × k matrix. We complete G

by finding an invertible n × n matrix C whose first k columns are the columns of

G.

P Show that G can be completed if and only if x 7→ Gx is one-to-one.

Since the first k columns of C are the columns of G, let’s call them g1, . . . ,gk .

We’ll call the last n − k columns sk+1, . . . , sn. The columns of C are a basis for

Bn, so any vector z ∈ Bn can be written as

z = a1g1 + . . .+ akgk + bk+1sk+1 + . . .+ bnsn,

and the weights a1, . . . , ak , bk+1, . . . , bn are unique. Multiplication by C−1 turns

each column of C into the corresponding column of the identity matrix, so

C−1z = a1e1 + . . .+ akek + bk+1ek+1 + . . .+ bnen =



a1
...

ak
bk+1

...

bn


If z is a codeword, all the weights b• are zero. If z is not a codeword, at least one

of the weights b• is nonzero. Hence, the last n − k entries of C−1z are all zero if

8



and only if z is a codeword. That means we can use the last n − k rows of C−1

as a check matrix for our code.

Now that we know what we’re doing, let’s work out the details. First, how do

we complete G?

P Show that if x 7→ Gx is one-to-one, throwing away the non-pivot columns

of the block matrix [
G In

]
leaves you with an invertible n × n matrix whose first k columns are the

columns of G.

Next, let’s think about the most efficient way to find the inverse of C. We can

save time by only computing the last n − k rows of C−1, since those are the only

rows we actually need.

P Show that if you use column operations to turn the upper block of[
C

In

]
into the identity matrix, the lower block will become C−1. If you only start

with a few rows of In in the lower block, you’ll end up with the corresponding

rows of C−1.

And that’s all there is to it. Now you’ve got a way to find a check matrix for any

one-to-one linear code.

P Decide whether the codes described in Section 2 are one-to-one. If they are,

find check matrices for them, and use Theorem 2 to decide whether they’re

error-correcting.

P The matrix 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 1 1

1 0 1 1

1 1 0 1


is the generator of the Hamming code—the one you heard about at the end

of Subsection 3.2. Find a check matrix for the Hamming code. Is yours the

same as the one Hamming found?

9



3.4 Cashing checks

Check matrices are so useful that code designers sometimes work backwards,

starting with a check matrix and building a code around it. Given a matrix H, let’s

try to find a one-to-one linear code that H is a check matrix for.

Turning around the definition of a check matrix in Subsection 3.2, we see that

we’re looking for a code with the property that z is a codeword if and only if

Hz = 0. In other words, we’re looking for a code whose set of codewords is the

null space of H.

If the null space of H contains only the zero vector, we’re looking for a code

that has only one codeword, which would be totally useless for communication.

So we’re stuck.

On the other hand, if the null space of H contains more than just the zero

vector, we can use a standard linear algebra trick to find a matrix G whose columns

are a basis for the null space of H.

P Show that x 7→ Gx is a one-to-one code whose set of codewords is the null

space of H—which is exactly what we wanted.

P Show that doing row operations on a check matrix gives you another check

matrix for the same code.

To see some examples of linear codes that are defined backwards like this, check

out Subsections 5.2 and 5.4.

4 Detecting and correcting multiple errors

Until now, we’ve only been thinking about whether our codes can be used to detect

and correct a single error in each protected block. As our blocks get longer and

longer, however (and they will, in Section 5), multiple errors will get more likely.

How do we figure out how many errors a code can handle?

In Subsection 3.1, we took a linear code and tested it out by encoding a

message, flipping a single bit, and then trying to recover the original message

without knowing which bit got flipped. We discovered that we could be sure

of detecting the error if and only if no standard basis vector was a codeword,

and we could be sure of correcting it if and only if summing two standard basis

vectors would never give a codeword other than zero. Using the same kind of

testing procedure, it’s not too hard to find conditions for detecting and correcting

multiple errors with a linear code:

1. We can detect up to q errors if and only if summing q or fewer standard

basis vectors will never give a codeword other than zero.

2. We can correct up to q errors if and only if summing 2q or fewer standard

basis vectors will never give a codeword other than zero.

10



The minimum number of standard basis vectors you have to sum to get a codeword

other than zero is called the minimum distance of a linear code.

P Prove the conditions I just gave for detecting and correcting multiple errors.

P Show that if H is a check matrix for a linear code, the minimum number

of columns of H you have to sum to get zero is the same as the minimum

distance of the code.

P If you turn H into a new matrix H̃ by rearranging its columns, do codes with

check matrices H and H̃ always have the same minimum distance?

P What if you turn H into H̃ by doing column operations?

P Find the minimum distance of each of the three codes we’ve seen so far.

(Two are in Section 2, and one is mentioned in Subsections 3.2 and 3.3.)

5 Families of codes

The matrix 

1 1 1 0 1 1 0 1 0 0 0

1 1 0 1 1 0 1 0 1 0 0

1 0 1 0 0 1 0 0 0 1 0

1 0 0 1 0 0 1 0 0 0 1

0 1 1 0 0 0 0 1 0 0 0

0 1 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 1 1 0 1 0 0 0

0 0 0 0 1 0 1 0 1 0 0

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1


is the generator of an error-correcting code called the (2, 4) Reed-Muller code.

What makes this code work? How did someone come up with it? It’s probably

hard to imagine. A typical error-correcting code doesn’t make much sense if you

see it in isolation.

Things often become clearer if you look at a family of codes that are all

constructed in basically the same way. In this section, I’ll introduce you to some

well-known families of error-correcting codes.

11



5.1 Repetition codes

The first error-correcting code we talked about was the one where you repeat each

bit three times: [
x
]
7→

 x

x

x


But why stop at three?

P Find the minimum distance of the code

[
x
]
7→

 x
...

x


 n rows

Every extra repetition gives us more protection against errors—but every extra

bit we send gives another chance for an error to happen. We can investigate the

tradeoff by encoding a bit and sending the resulting n-bit block across a channel

that has probability ε of flipping each bit. If the bit flips are independent—that

is, if knowing whether one bit got flipped doesn’t help us guess whether another

bit got flipped—the probability of accumulating more errors than the code can

correct turns out to be at most [
ε(1− ε)

4

]n/2
.

That means our chances of guessing the original bit wrong shrink exponentially

as the number of repetitions grows, as long as ε ≤ 1/2. If you know a little

probability theory, or you’re willing to learn some, you can see where this estimate

comes from in Appendix A.1.

5.2 Hamming codes

In Subsections 3.2 and 3.3, you met the Hamming code, a one-to-one code with a

check matrix whose columns are the numbers 1 through 7 written in binary. Let’s

say an r -digit Hamming code is any one-to-one code with a check matrix whose

columns are the numbers 1 through 2r − 1 written in binary.

P Show that every r -digit Hamming code is error-correcting.

P List all the 2-digit Hamming codes. Do they look familiar?

5.3 Reed-Muller codes

Block matrices give us an elegant way of building new codes from old ones.

12



P Let’s say A and B are matrices with the same number of rows. Show that

if the codes with generators A and B are both error-correcting, the code

whose generator is the block matrix

G =

[
A B

0 B

]
is also error-correcting.

P Suppose HA is a check matrix for the code with generator A, and HB is a

check matrix for the code with generator B. Show that[
HA HA
0 HB

]
is a check matrix for the code with generator G.

P Suppose the code with generator A has minimum distance dA, and the code

with generator B has minimum distance dB. Show that the minimum dis-

tance of the code with generator G is the minimum of dA and 2dB.

HINT: Apply the second exercise of Section 4 to the check matrix above.

That last exercise may sound rather dry, but it shows that the block matrix con-

struction we’ve been thinking about has a remarkable property, best illustrated

through an example.

The code with generator

A =

[
1

1

]
is pretty boring. It’s a repetition code that can detect one error in each two-bit

output block, at the cost of doubling the length of your message. It’s hardly worth

pointing out that dA = 2.

The code with generator

B =

[
1 0

0 1

]
is totally useless: it “encodes” a block of two bits by not doing anything to it. It

obviously can’t correct, or even detect, errors. If you’re a hopeless pedant, you

can prove this by observing that dB = 1.

Now that we know dA and dB, the last exercise tells us that the code with

generator 
1 1 0

1 0 1

0 1 0

0 0 1


has a minimum distance of 2. This code is neither boring nor useless! It only

increases the length of your message by a factor of 4/3, but it can still detect

13



up to one error in each four-bit output block. By themselves, the codes with

generators A and B are unimpressive: one uses a lot of extra space just to detect

one error, and the other is very space-efficient but doesn’t do anything. Through

the block matrix construction, the two codes can pool their strengths and cover

each other’s weaknesses, becoming a more sophisticated code.

This idea can be taken much further, leading to a family of codes called Reed-

Muller codes. Each member of the family is labeled by a pair of numbers. The

(0, m) Reed-Muller code is the 2m repetition code, and the (m,m) Reed-Muller

code is the 2m identity code. Their generators are

F (0, m) =


1

1
...

1


 2m F (m,m) =


1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1


 2m

The other Reed-Muller codes are built from these ones using the block matrix

construction we’ve been studying. For positive numbers r < m, the (r,m) Reed-

Muller code is given by the generator

F (r,m) =

[
F (r − 1, m − 1) F (r,m − 1)

0 F (r,m − 1)

]
.

If you think of the (•, m) codes as the “mth generation,” you can say that each

code is a combination of two codes from the previous generation—except for the

repetition and identity codes, of course, which were there from the start. The first

few generations of Reed-Muller codes are shown in Figure 1, on the next page.

You might find it helpful to refer to the figure while doing the exercises below.

P Write down formulas for the output block size and the minimum distance of

the (r,m) Reed-Muller code.

P On the (r,m) grid, connect the dots that label Reed-Muller codes with the

same minimum distance. Using a different color or line style, connect the

dots that label codes with the same ratio of minimum distance to output

block size.

P Calculate the input block sizes of the (0, 1), (1, 3), (2, 5), and (3, 7) codes.

P If you’re into combinatorics, try to write down a formula for the input block

size of the (r,m) code.

HINT: Binomial coefficients obey the identity
(
n
k

)
=
(
n−1
k−1
)

+
(
n−1
k

)
.

Looking through the Reed-Muller family, we can find sequences of codes with

steadily growing input block size and minimum distance, but more or less constant

space efficiency. This can be very useful for certain applications, as illustrated by

the case studies in Appendix A.2.

14



3210

5

4

3

2

1

0

Figure 1: The generator matrices for the first few generations of Reed-Muller codes, with

ones and zeros drawn as dark and light pixels. The colored blocks and arrows highlight

the way each code is built from two codes in the previous generation.

15



5.4 Low-density parity check codes

Matrix multiplication is a lot easier when one of the matrices is mostly zeros—or

sparse, if you like technical terms. In Section 3.2, the first step of our streamlined

error-correction process was to multiply the received block by a check matrix, so

you might wonder if having a sparse check matrix would let us speed up the process

even more. It does, and codes with sparse check matrices are remarkable for more

than just that. These codes, called low-density parity check codes, can approach

the theoretical limit of error correction efficiency, but the principles of their design

remain baffling, even after more than two decades of intense research.

There are lots of different kinds of low-density parity check codes. We’ll focus

on the ones called Gallager codes, which were among the first to be discovered,

although their significance wasn’t appreciated until much later. For 3 ≤ j < k ,

an (n, j, k) Gallager code is any one-to-one code with a check matrix that has n

columns, j ones in each column, and k ones in each row.

P How many rows does an (n, j, k) check matrix have?

There are lots of (n, j, k) Gallager codes. Some are pretty good, some are pretty

bad, and I don’t know of any easy way to say for sure which is which. When

Gallager studied these codes, however, he discovered a remarkable fact: when

n is really big, picking (n, j, k) check matrices at random gives you codes with

consistently large minimum distances. When n is large enough, for example, a

random (n, 3, 4) check matrix is almost sure to give you a code with a minimum

distance of at least 0.122 n, and a random (n, 5, 6) check matrix is almost sure to

give a minimum distance of at least 0.255 n [1, Figure 4]. Gallager’s proof, which

is not for the faint of heart, gives a practical way to calculate these floors. See

Section 2.2 of [2] for details, if you dare; the key result is Theorem 2.4.

P Come up with a practical way to pick (n, j, k) check matrices at random so

that each one has the same chance of being chosen.

HINT: There are lots of practical ways to put a bunch of things in a random

order so that each order is equally likely. One good one is called the Knuth

shuffle. Another involves a bag of Scrabble tiles.

P In the exercises from Sections 3.4 and 4, you learned that rearranging the

rows and columns of a check matrix doesn’t affect the minimum distance

of the corresponding codes. Using this fact, show that if you want to take

advantage of the minimum distance floor for (n, j, k) Gallager codes, you

don’t have to pick the whole check matrix at random: you can fix the first

n/k rows and randomize the rest.

P Write a computer program that will spit out a random (n, j, k) check matrix

and a generator to go with it. Write another program that can use the

generator and check matrix to encode and decode messages.

16



6 A flight of fancy

The tools and ideas we’ve been using to learn about error-correcting codes come

from matrix algebra. These methods, at heart, are all about pushing bits around.

They tend to feel very concrete, and they translate quite naturally into computer

programs. They make it easy, however, to get bogged down in implementation

details, obscuring the big picture. Reading about a complicated construction in

the language of matrix algebra, I often feel like I’m trying to learn how a computer

chip works by cracking it open and looking at the wires.

If you take matrix algebra and boil off the details, leaving only the concepts

behind, you end up with a subject called abstract linear algebra. All the tools of

matrix algebra have parallels there, often appearing in a more visual and intuitive

way. Vectors become points in space, matrices become geometric transformations,

and bases become evenly spaced grids. The minimum distance of a code appears

as a literal distance, the shortest walk from the zero vector to a codeword.

As a teaser, let’s revisit the task of finding a check matrix for a given linear

code. There’s a matrix algebra procedure for doing this, outlined in Section 3.3.

The procedure itself, described at the end of the section, is a mysterious dance

of pivot-finding and column operations. The preceding discussion of how the

procedure works is long and unwieldy, and it probably doesn’t leave you feeling like

you could have found the right moves on your own.

If you learn enough abstract linear algebra, you can boil all of Section 3.3

down to the sentence below. It gives both a conceptual explanation of how the

procedure works and a fairly concrete recipe for carrying it out. If you’re used to

cokernels, whatever those are, it’s probably also one of the the first things you’d

try if you set out to find a check matrix.

To get a check matrix for a linear code whose generator G is a matrix

with n rows, just take the canonical projection of Bn onto the cokernel

of x 7→ Gx and write it as a matrix with respect to the standard basis

for Bn.

You don’t have to learn a bunch of fancy math to solve practical engineering

problems, but you can find a lot of shortcuts up in the clouds. And besides—one

of the nice things about learning to walk is that someday, you can learn to fly.

A Reliability

Evaluating the reliability of error-detecting and error-correcting codes can be sur-

prisingly tricky, especially if you want to understand how it changes as you move

through a family of increasingly sophisticated codes. In Appendix A.1, we’ll see

how this kind of analysis plays out for repetition codes, which are simple enough

to be studied as a family without bringing in too much heavy machinery.

17



Fortunately, when it comes to specific applications, it’s usually enough to com-

pare codes on a case-by-case basis. We’ll work through an example in Appendix

A.2.

A.1 A family analysis of repetition codes

The n repetition code, discussed in Section 5.1, is one of the simplest error-

correcting codes. Let’s find out how reliable it is, with an eye toward seeing how

its reliability changes as n grows. I’ll encode a single bit and send you the resulting

n-bit block. If fewer than half of the bits get flipped on their way across the

communication channel, you’ll correctly reconstruct the bit I started with. If half

or more of the bits get flipped, however, your reconstruction will be wrong. We’ll

discover that, under suitable conditions, your chances of incorrectly reconstructing

my bit shrink exponentially as n grows.

Let’s say our channel flips each bit with probability ε, and the bit flips are

independent: knowing whether one bit got flipped won’t help us guess whether

another bit got flipped. Call the total number of bit flips R. We’re uncertain about

the value of R, although we can calculate the probabilities of its possible values,

so R is an example of a random variable. We want to estimate the probability

that R ≥ n/2, which I’ll abbreviate as Pr(R ≥ n/2).

We can simplify our calculation using a sneaky trick. Pick a positive number

λ, and consider the random variable λR. Although it looks more complicated than

R, this new random variable will prove easier to work with, and it contains the

same information.

P Explain why the probability that R ≥ n/2 is equal to the probability that

λR ≥ λn/2.

Let’s count errors bit by bit, defining Ri to be one if the ith bit got flipped, and

zero otherwise. The numbers R1, . . . , Rn are random variables too, and

R = R1 + . . .+ Rn.

It follows that

λR = λR1+...+Rn

= λR1 · · ·λRn .

The expectation value E(U) of a random variable U is, roughly speaking, the

value you should guess it has if you want to minimize how wrong you are. If the

possible values of U are u1 through uk , the expectation value of U is given by the

formula

E(U) = u1 Pr(U = u1) + . . .+ uk Pr(U = uk).

The random variable λRi has the value λ with probability ε, and the value 1 with

probability 1− ε, so

E(λRi ) = λε+ 1(1− ε).

18



Let’s pick λ = 1−ε
ε , so this expression simplifies to

E(λRi ) = 2(1− ε).

Because we’re assuming the bit flips are independent, the values of the ran-

dom variables λR1 , . . . , λRn are independent too: knowing the value of one variable

doesn’t help us guess the values of the others. When phrased in a more mathe-

matically precise way, this turns out to mean

E(λR1 · · ·λR1) = E(λR1) · · ·E(λRn).

P Using our previous calculations, deduce from the statement above that

E(λR) = 2n(1− ε)n.

If U is a random variable that never takes negative values, Markov’s inequality

says that for any constant c ,

Pr(U ≥ c) ≤
1

c
E(U).

P Use Markov’s inequality, together with our other calculations, to show that

Pr(λR ≥ λn/2) ≤
[
ε(1− ε)

4

]n/2
.

The probability that λR ≥ λn/2, as you argued earlier, is the same as the probability

that R ≥ n/2, so this bound is just the one we wanted:

Pr(R ≥ n/2) ≤
[
ε(1− ε)

4

]n/2
.

This result is a special case of Hoeffding’s inequality, and the reasoning we used

to prove it is an example of a Chernoff bound.

P See if you can use the methods from this section to investigate the reliability

of a more complicated family of codes.

A.2 A case study of Reed-Muller codes

Let’s say someone’s going to send us a 16-bit message, and we want to be really,

really sure we received it correctly. It’s an all-or-nothing game: one undetected

error in the received message is as bad as eleven. We can afford to double the

length of the message to add redundancy, and hopefully catch any errors. The

(0, 1), (1, 3), and (2, 5) Reed-Muller codes from Section 5.3 sound like good tools

for the job, but which one is the best?

Here are the details of the three codes under consideration.

19



Code (0, 1) (1, 3) (2, 5)

Input block size 1 4 16

Output block size 2 8 32

Minimum distance 2 4 8

It will take sixteen blocks of the (0, 1) code, four blocks of the (1, 3) code, or one

block of the (2, 5) code to carry the message.

If you’re lazy, you could try using the ratio of a code’s minimum distance

to its output block size as a rough measure of reliability. This ratio, you might

figure, tells you how many errors per bit the transmission can sustain without

overwhelming the code’s error-detection capabilities, so bigger is better.

P Based on this reasoning, which of our candidates should be the most reliable

code?

There’s a subtle problem with this analysis, though. Suppose the message is

encoded using sixteen blocks of the (0, 1) code. The transmission can accumulate

as many as sixteen errors without overwhelming the code, but that’s only in the

best case, when the errors all fall in different blocks. In the worst case, the code

is much more fragile: all it takes is two errors in the same block to corrupt the

transmission beyond detection. The (2, 5) code, by comparison, can detect up to

seven errors anywhere in the transmission.

It looks like the reliability contest will come down to a balance between best-

case and worst-case performance. To find out which way it goes, we’ll need to

do a more detailed calculation. Let’s say a block has been transmitted safely

if the number of transmission errors is less than the code’s minimum distance,

making it impossible for the errors to slip through undetected. Our goal is to

avoid missing even a single transmission error, so we’ll call the whole transmission

safe if every block is sent safely. For each candidate code (r,m), we want to know

the probability Pall(r,m) of a safe transmission.

As usual, let’s say our channel flips each bit with probability ε, and errors in

different bits are independent. Each probability Pall will turn out to be a polynomial

function of ε. For a typical communication channel, ε is somewhat small, making

Pall close to one. In this situation, it’s convenient to look instead at the probability

Qall = 1 − Pall of an unsafe transmission. Since ε is small, we can hope to get a

reasonable approximation of Qall by computing it “to leading order” in ε, ignoring

all the terms except the one with the lowest power of ε. This technique paints

a misleading picture in some cases,3 but those cases tend to feel somewhat con-

3Suppose, for example that Qall is the polynomial

1−
199

100
(1− ε)50 +

99

100
(1− ε)100.

There’s nothing inherently wrong with imagining this; as ε varies from zero to one, Qall does

the same, as it should. Observing that Qall = ε/2 + [higher powers], we’d typically expect Qall
to be near ε/2 when ε is small. When ε = 0.01, for instance, we’d expect Qall to be around

0.005—but in fact, it’s over 0.15!

20



trived, so we can take our leading-order approximations of Qall as good preliminary

indications of how reliable our candidate codes are.

The probability Qall(0, 1) is the most straightforward to approximate, because

the probability Pblock(0, 1) of safely sending a single block with the (0, 1) code is

very simple. Let Qblock = 1− Pblock.

P Explain why Qblock(0, 1) = ε2.

P Explain why Pall(0, 1) = Pblock(0, 1)16.

P Deduce that Qall(0, 1) = 16 ε2 + [higher powers].

The probability Qall(2, 5) is the next most straightforward, because the (2, 5) code

can fit the whole message in a single block. That means Qall(2, 5) = Qblock(2, 5).

P Explain why

Qblock(2, 5) =

(
32

8

)
ε8(1− ε)24 + . . .+

(
32

32

)
ε32(1− ε)0,

and fill in a bit of the . . . while you’re at it.

P Deduce that Qall(2, 5) ≈ 107 ε8 + [higher powers].

To approximate Qall(1, 3), we combine the techniques we used for the other two

probabilities.

P Explain why

Qblock(1, 3) =

(
8

4

)
ε4(1− ε)4 + . . .+

(
8

8

)
ε8(1− ε)0.

P Explain why Pall(1, 3) = Pblock(1, 3)4.

P Deduce that Qall(1, 3) ≈ 300 ε4 + [higher powers].

Now that we’ve approximated the relevant probabilities, we can compare our can-

didate codes.

P Based on our leading-order approximations, decide which candidate has the

best chance of safely transmitting the message when ε is small—around

0.01, say.

P To get some indication of how valid our leading-order approximation is,

compute the probabilities Qall out to the next-lowest powers of ε, and check

whether the extra terms are really negligible compared to the lowest order

terms.

P Use a computer algebra system like SymPy to compute the probabilities Pall
numerically for various values of ε. Now you can say for sure which candi-

date is the best for the job when ε is around 0.01. Did our leading-order

approximations lead us to the right conclusion?

21



References

[1] R. G. Gallager. Low-density parity-check codes. IRE Transactions on Infor-

mation Theory, 8(1):21 – 28, 1962.

[2] Robert G. Gallager. Low-Density Parity-Check Codes. M.I.T. Press, 1963.

[3] Venkatesan Guruswami. Introduction to coding theory. Carnegie Mellon

University, Spring 2010. http://www.cs.cmu.edu/˜venkatg/teaching/

codingtheory/.

[4] Nathan Kaplan and members of the tutorial. Coding theory lecture notes.

Harvard, Summer 2011. http://users.math.yale.edu/˜nk354/teaching.

html.

22


