Some vocabulary:

Rank of matrix $\mathbf{A}=$ dimension of column space of $\mathrm{A}=$ dimension of range of $\mathrm{A}=$ dimension of row space of A.

Nullity $=$ dimension of null space of $\mathrm{A}=$ number of independent parameters in solution to $\mathrm{AX}=0$.
Null space of $\mathbf{A}=$ set of all solutions to $\mathrm{AX}=0=$ "kernel" of A .

Changing from one basis to another:

Let $S=\left\{\binom{1}{0},\binom{0}{1}\right\}$ be the so-called "standard basis," and let $B=\left\{\binom{1}{-1},\binom{-2}{1}\right\}$ be a second basis for \mathbf{R}^{2}. How do we change from one basis to another? Let $\binom{x}{y}_{S}$ represent the vector $\binom{x}{y}$ in the standard basis, and let $\binom{x}{y}_{B}$ represent the same vector in basis B .

For example, $\binom{1}{1}_{S}$ represents (1) $\binom{1}{0}+(1)\binom{0}{1}$, while $\binom{-3}{-2}_{B}$ represents $(-3)\binom{1}{-1}+(-2)\binom{-2}{1}=\binom{1}{1}_{S}$.
Note that the matrix $\left(\begin{array}{cc}1 & -2 \\ -1 & 1\end{array}\right)$ allows us to change from basis B to S, since

$$
\binom{x}{y}_{B}=x\binom{1}{-1}+y\binom{-2}{1}=\left(\begin{array}{cc}
1 & -2 \\
-1 & 1
\end{array}\right)\binom{x}{y}=\binom{x-2 y}{-x+y}_{S}
$$

To indicate that it allows us to make a transition from basis B to S , we sometimes write this matrix as

$$
\left(\begin{array}{cc}
1 & -2 \\
-1 & 1
\end{array}\right)_{\mathrm{B} \text { to } \mathrm{S}}
$$

Homework (1): What are the entries in $\left(\begin{array}{ll}? & ? \\ ? & ?\end{array}\right)$ S to B
Homework (2): Let $[\mathrm{T}]=\left(\begin{array}{ll}2 & 3 \\ 0 & 4\end{array}\right)$ be the matrix representation for the linear transformation T,
represented using the standard basis S . That is [T] X takes vector X , expressed in standard basis S , and gives result of applying transformation T , with the result also expressed in standard basis S . Sometimes we write
$[T]_{\mathrm{S} \text { to } \mathrm{S}}=\left(\begin{array}{ll}2 & 3 \\ 0 & 4\end{array}\right)_{\mathrm{S} \text { to } \mathrm{S}}$. Find the entries in $[T]_{\mathrm{B}}$ to $\mathrm{B}=\left(\begin{array}{ll}? & ? \\ ? & ?\end{array}\right)_{\mathrm{S} \text { to } \mathrm{S}}$.

