Some vocabulary:

Rank of matrix A = dimension of **column space** of A = dimension of range of A = dimension of **row space** of A.

Nullity = dimension of null space of A = number of independent parameters in solution to AX=0.

Null space of A = set of all solutions to AX=0 = "kernel" of A.

Changing from one basis to another:

Let $S = {\binom{1}{0}, \binom{0}{1}}$ be the so-called "standard basis," and let $B = {\binom{1}{-1}, \binom{-2}{1}}$ be a second basis for \mathbb{R}^2 . How do we change from one basis to another? Let $\binom{x}{y}_S$ represent the vector $\binom{x}{y}$ in the standard basis, and let $\binom{x}{y}_B$ represent the same vector in basis B. For example, $\binom{1}{1}_S$ represents $(1)\binom{1}{0} + (1)\binom{0}{1}$, while $\binom{-3}{-2}_B$ represents $(-3)\binom{1}{-1} + (-2)\binom{-2}{1} = \binom{1}{1}_S$. Note that the matrix $\binom{1}{-1} = \binom{1}{-1} + y\binom{-2}{1} = \binom{1}{-1} = \binom{1}{-1} + \binom{x}{y} = \binom{x-2y}{-x+y}_S$.

To indicate that it allows us to make a transition from basis B to S, we sometimes write this matrix as

$$\begin{pmatrix} 1 & -2 \\ -1 & 1 \end{pmatrix}_{B \text{ to } S}$$

Homework (1): What are the entries in $\begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix}_{S \text{ to } B}$?

Homework (2): Let $[T] = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix}$ be the matrix representation for the linear transformation T,

represented using the standard basis S. That is [T] X takes vector X, expressed in standard basis S, and gives result of applying transformation T, with the result also expressed in standard basis S. Sometimes we write

$$[T]_{S \text{ to } S} = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix}_{S \text{ to } S}.$$
 Find the entries in $[T]_{B \text{ to } B} = \begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix}_{S \text{ to } S}.$