Solutions to Spring, 2008 final exam practice problems

(1) Here are three different solutions, with the vertex degree shown inside the vertex:

- (2) See handout.
- (3) See first exam.
- (4) Here are pigeonhole assignments which help explain each property:
 - (a) $\{1,-1\}$, $\{2,-2\}$, $\{4,-4\}$, $\{8,-8\}$, $\{16,-16\}$, $\{32,-32\}$ If you choose seven numbers, at least two will fall in one of these six pigeonholes, and those two will have sum of 0.
 - (b) (b) $\{1,-1\}$, $\{2,-2\}$, $\{4,-4\}$, $\{8,-8\}$, $\{16,-16\}$, $\{32,-32\}$ The same assignments prove this property also!
 - (c) $\{1,2\}$, $\{4,8\}$, $\{16,32\}$, $\{-1,-2\}$, $\{-4,-8\}$, $\{-16,-32\}$
 - (d) $\{1,-32\}$, $\{2,-16\}$, $\{4,-8\}$, $\{-1,32\}$, $\{-2,16\}$, $\{-4,8\}$
 - (e) $\{1,-1\}$, $\{2,-2\}$, $\{4,-4\}$, $\{8,-8\}$, $\{16,-16\}$, $\{32,-32\}$
 - (f) in (a), (b), (d), and (e) you can use 1,2,4,8,16, and 32; in (c) use 1,-1.4,-4,16,-16
- (5) We didn't do this field trip, sorry!!
- (6) See the pictures in the text
- (7) 180 degree rotation of p gives d Reflection of p gives q Translation of p gives another p Glide reflection of p gives b
- (8) This was also like the exam problem.
- (9) See the first exam
- (10) We did the string figures, but not the flea market problem!
- (11) Both of the graphs are actually Hamiltonian; Hamiltonian cycles are shown here in blue.

The one on the left has no Euler cycle since 4 of the vertices have odd degree. The graph on the right has an Euler cycle since all vertices have even degree.

- (12) See the exam or homework problems.
- (13) Poinsot stars are also called star polygons, which we worked on.
- (14)-(16) Like classwork, homework, handouts.

See next page

Spring 2009 Final Exam study guide

- (1) Many varying answers.
- (2) Below is a Hamiltonian cycle in this graph. An example of an Eulerian cycle is ABCFBGFEGAEDA

(3)

(4) There are three lines of reflection symmetry shown. The 3 lines intersect in a point of 20 degree rotation symmetry.

- (5) We didn't have problems like this, don't worry.
- (6) $100 \equiv 1 \pmod{3}$, so box (100,1) is a triangle and column 100 is just like column 1
- $30 \equiv 0 \pmod{3}$, so box (100,30) is like box (1,0) or box (1,3) and is a square.
- $50 \equiv 2 \pmod{3}$, so box (100,50) is like box (1,2) and is a circle.
- (7) (a) Let x be 3. (b) Let x be 12, 6, 4, 3, or 2 (all divisors of 35 23).

(c)

(0)				
	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

- (8) Fractal dimension is log(5)/log(3)
- (9) $F_2 + F_4 + F_6 + F_8 + ... + F_{2n} = F_{2n+1} 1$
- (10) (a) What do you think?
- (11) Skip