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CHAPTER SEVEN

Solutions for Section 7.1

1. 5x

2. 5
2
t2

3. 1
3
t3 + 1

2
t2

4. 1
3
x3

5.
x5

5
.

6.
t8

8
+

t4

4
.

7. 6(
x4

4
) + 4x =

3x4

2
+ 4x.

8.
5q3

3
.

9. We break the antiderivative into two terms. Since y3 is an antiderivative of 3y2 and −y4/4 is an antiderivative of −y3, an

antiderivative of 3y2 − y3 is

y3 − y4

4
.

10. 10x + 8(
x4

4
) = 10x + 2x4

.

11. x3 + 5x.

12. Antiderivative F (x) =
x2

2
+

x6

6
− x−4

4
+ C

13.
x3

3
− 6(

x2

2
) + 17x =

x3

3
− 3x2 + 17x.

14. 2
3
z

3
2

15.
5

2
x2 − 2

3
x

3
2

16. Since (
√

z)3 = z3/2, an antiderivative of (
√

z)3 is

z(3/2)+1

(3/2) + 1
=

2

5
z5/2.

17. ln |z|

18.
t4

4
− t3

6
− t2

2

19. − 1

2z2

20.
y5

5
+ ln |y|

21. F (x) =
x7

7
− 1

7
(
x−5

−5
) + C =

x7

7
+

1

35
x−5 + C

22. ln |x| − 1

x
− 1

2x2
+ C

23.
e−3t

−3
=

−e−3t

3
.
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24. sin t

25. G(t) = 5t + sin t + C

26. G(θ) = − cos θ − 2 sin θ + C

27. f(x) = 3, so F (x) = 3x + C. F (0) = 0 implies that 3 · 0 + C = 0, so C = 0. Thus F (x) = 3x is the only possibility.

28. f(x) = −7x, so F (x) = −7x2

2
+ C. F (0) = 0 implies that − 7

2
· 02 + C = 0, so C = 0. Thus F (x) = −7x2/2 is the

only possibility.

29. f(x) = 2 + 4x + 5x2, so F (x) = 2x + 2x2 + 5
3
x3 + C. F (0) = 0 implies that C = 0. Thus F (x) = 2x + 2x2 + 5

3
x3

is the only possibility.

30. f(x) = x2, so F (x) =
x3

3
+C. F (0) = 0 implies that

03

3
+C = 0, so C = 0. Thus F (x) =

x3

3
is the only possibility.

31. f(x) = x1/2, so F (x) = 2
3
x3/2 + C. F (0) = 0 implies that 2

3
· 03/2 + C = 0, so C = 0. Thus F (x) = 2

3
x3/2 is the

only possibility.

32. Since
d

dx
(ex) = ex

, we take F (x) = ex + C. Now

F (0) = e0 + C = 1 + C = 0,

so

C = −1

and

F (x) = ex − 1.

33. 5
2
x2 + 7x + C

34. 3x3 + C.

35. 2x3 + C.

36.
t13

13
+ C.

37.

∫

(x + 1)2 dx =
(x + 1)3

3
+ C.

Another way to work the problem is to expand (x + 1)2 to x2 + 2x + 1 as follows:

∫

(x + 1)2 dx =

∫

(x2 + 2x + 1) dx =
x3

3
+ x2 + x + C.

These two answers are the same, since
(x + 1)3

3
=

x3 + 3x2 + 3x + 1

3
=

x3

3
+ x2 + x +

1

3
, which is

x3

3
+ x2 + x,

plus a constant.

38.

∫

(x2 + x−2) dx =
x3

3
+

x−1

−1
+ C =

x3

3
− 1

x
+ C

39.

∫

(t2 + 5t + 1) dt =
t3

3
+ 5 · t2

2
+ t + C

40. 5ez + C

41.

∫

(t3 + 6t2) dt =
t4

4
+ 6 · t3

3
+ C =

t4

4
+ 2t3 + C

42.
x6

6
− 3x4 + C

43.

∫

3w1/2 dw = 3 · w3/2

3/2
+ C = 2w3/2 + C

44.
x3

3
+ 2x2 − 5x + C
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45. 3 ln |t| + 2

t
+ C

46.
e2t

2
+ C.

47.
x2

2
+ 2x1/2 + C

48.

∫

(x3 + 5x2 + 6)dx =
x4

4
+

5x3

3
+ 6x + C

49. ex + 5x + C

50.
x3

3
+ ln |x| + C.

51.

∫

e3r dr =
1

3
e3r + C

52. sin θ + C

53. − cos t + C

54.

∫

25e−0.04q dq = 25
(

1

−0.04
e−0.04q

)

+ C = −625e−0.04q + C

55. 25e4x + C

56. 2ex − 8 sin x + C

57. 3 sin x + 7 cos x + C

58. −1

3
cos(3x) + C

59. We use the substitution w = x2 + 4, dw = 2xdx:

∫

x cos(x2 + 4)dx =
1

2

∫

cos w dw =
1

2
sin w + C =

1

2
sin(x2 + 4) + C.

60. 2 sin(3x) + C

61. 10x − 4 cos(2x) + C

62. −6 cos(2x) + 3 sin(5x) + C

63. An antiderivative is F (x) = 3x2 − 5x + C. Since F (0) = 5, we have 5 = 0 + C, so C = 5. The answer is F (x) =
3x2 − 5x + 5.

64. An antiderivative is F (x) =
x3

3
+ x + C. Since F (0) = 5, we have 5 = 0 + C, so C = 5. The answer is F (x) =

x3/3 + x + 5.

65. An antiderivative is F (x) = −4 cos(2x) + C. Since F (0) = 5, we have 5 = −4 cos 0 + C = −4 + C, so C = 9. The

answer is F (x) = −4 cos(2x) + 9.

66. An antiderivative is F (x) = 2e3x + C. Since F (0) = 5, we have 5 = 2e0 + C = 2 + C, so C = 3. The answer is

F (x) = 2e3x + 3.

67. The marginal cost, MC, is given by differentiating the total cost function, C, with respect to q so

dC

dq
= MC.

Therefore,

C =

∫

MC dq

=

∫

(

3q2 + 4q + 6
)

dq

= q3 + 2q2 + 6q + D,
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where D is a constant. We can check this by noting

dC

dq
=

d

dq

(

q3 + 2q2 + 6q + D
)

= 3q2 + 4q + 6 = MC.

The fixed costs are given to be 200 so C = 200 when q = 0, thus D = 200. The total cost function is

C = q3 + 2q2 + 6q + 200.

68. (a) The marginal revenue, MR, is given by differentiating the total revenue function, R, with respect to q so

dR

dq
= MR.

Therefore,

R =

∫

MR dq

=

∫

(20 − 4q) dq

= 20q − 2q2 + C.

We can check this by noting
dR

dq
=

d

dq

(

20q − 2q2 + C
)

= 20 − 4q = MR.

When no goods are produced the total revenue is zero so C = 0 and the total revenue is R = 20q − 2q2.
(b) The total revenue, R, is given by pq where p is the price, so the demand curve is

p =
R

q
= 20 − 2q.

Solutions for Section 7.2

1. We use the substitution w = x3 + 1, dw = 3x2dx.

∫

3x2(x3 + 1)4dx =

∫

w4dw =
w5

5
+ C =

1

5
(x3 + 1)5 + C.

2. We use the substitution w = x2 + 1, dw = 2xdx.

∫

2x

x2 + 1
dx =

∫

1

w
dw = ln |w| + C = ln(x2 + 1) + C.

3. We use the substitution w = x + 10, dw = dx.

∫

(x + 10)3dx =

∫

w3dw =
w4

4
+ C =

1

4
(x + 10)4 + C.

Check:
d

dx
(
1

4
(x + 10)4 + C) = (x + 10)3.

4. We use the substitution w = x2 + 9, dw = 2xdx:

∫

x(x2 + 9)6dx =
1

2

∫

w6dw =
1

2

w7

7
+ C =

1

14
(x2 + 9)7 + C.
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5. We use the substitution w = q2 + 1, dw = 2qdq.

∫

2qeq2+1dq =

∫

ewdw = ew + C = eq2+1 + C.

6. We use the substitution w = 5t + 2, dw = 5dt.
∫

5e5t+2dt =

∫

ewdw = ew + C = e5t+2 + C.

Check:
d

dt
(e5t+2 + C) = 5e5t+2

.

7. Make the substitution w = t2, dw = 2t dt. The general antiderivative is
∫

tet2 dt = (1/2)et2 + C.

8. We use the substitution w = −x, dw = − dx.

∫

e−xdx = −
∫

ewdw = −ew + C = −e−x + C.

Check: d
dx

(−e−x + C) = −(−e−x) = e−x.

9. We use the substitution w = t3 − 3, dw = 3t2 dt.

∫

t2(t3 − 3)10 dt =
1

3

∫

(t3 − 3)10(3t2dt) =

∫

w10
(

1

3
dw
)

=
1

3

w11

11
+ C =

1

33
(t3 − 3)11 + C.

Check:
d

dt
[
1

33
(t3 − 3)11 + C] =

1

3
(t3 − 3)10(3t2) = t2(t3 − 3)10.

10. We use the substitution w = 1 + 2x3, dw = 6x2 dx.

∫

x2(1 + 2x3)2 dx =

∫

w2(
1

6
dw) =

1

6
(
w3

3
) + C =

1

18
(1 + 2x3)3 + C.

Check:
d

dx

[

1

18
(1 + 2x2)3 + C

]

=
1

18
[3(1 + 2x3)2(6x2)] = x2(1 + 2x3)2.

11. We use the substitution w = x2 − 4, dw = 2x dx.

∫

x(x2 − 4)7/2 dx =
1

2

∫

(x2 − 4)7/2(2xdx) =
1

2

∫

w7/2 dw

=
1

2

(

2

9
w9/2

)

+ C =
1

9
(x2 − 4)9/2 + C.

Check:
d

dx

(

1

9
(x2 − 4)9/2 + C

)

=
1

9

(

9

2
(x2 − 4)7/2

)

2x = x(x2 − 4)7/2.

12. We use the substitution w = x2 + 3, dw = 2x dx.

∫

x(x2 + 3)2 dx =

∫

w2(
1

2
dw) =

1

2

w3

3
+ C =

1

6
(x2 + 3)3 + C.

Check:
d

dx

[

1

6
(x2 + 3)3 + C

]

=
1

6

[

3(x2 + 3)2(2x)
]

= x(x2 + 3)2.

13. We use the substitution w = 4 − x, dw = −dx.

∫

1√
4 − x

dx = −
∫

1√
w

dw = −2
√

w + C = −2
√

4 − x + C.

Check:
d

dx
(−2

√
4 − x + C) = −2 · 1

2
· 1√

4 − x
· −1 =

1√
4 − x

.
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14. We use the substitution w = y + 5, dw = dy, to get

∫

dy

y + 5
=

∫

dw

w
= ln |w| + C = ln |y + 5| + C.

Check:
d

dy
(ln |y + 5| + C) =

1

y + 5
.

15. We use the substitution w = x3, dw = 3x2dx.

12

∫

x2 cos(x3)dx =
12

3

∫

cos(w)dw = 4 sin(w) + C = 4 sin(x3) + C.

16. We use the substitution w = 2t − 7, dw = 2 dt.

∫

(2t − 7)73 dt =
1

2

∫

w73 dw =
1

(2)(74)
w74 + C =

1

148
(2t − 7)74 + C.

Check:
d

dt

[

1

148
(2t − 7)74 + C

]

=
74

148
(2t − 7)73(2) = (2t − 7)73.

17. In this case, it seems easier not to substitute.

∫

(x2 + 3)2 dx =

∫

(x4 + 6x2 + 9) dx =
x5

5
+ 2x3 + 9x + C.

Check:
d

dx

[

x5

5
+ 2x3 + 9x + C

]

= x4 + 6x2 + 9 = (x2 + 3)2.

18. In this case, it seems easier not to substitute.

∫

y2(1 + y)2 dy =

∫

y2(y2 + 2y + 1) dy =

∫

(y4 + 2y3 + y2) dy

=
y5

5
+

y4

2
+

y3

3
+ C.

Check:
d

dy

(

y5

5
+

y4

2
+

y3

3
+ C

)

= y4 + 2y3 + y2 = y2(y + 1)2.

19. We use the substitution w = 3 − t, dw = − dt.
∫

sin(3 − t)dt = −
∫

sin(w)dw = −(− cos(w)) + C = cos(3 − t) + C.

Check: d
dt

(cos(3 − t) + C) = − sin(3 − t)(−1) = sin(3 − t).

20. We use the substitution w = cos θ + 5, dw = − sin θ dθ.

∫

sin θ(cos θ + 5)7 dθ = −
∫

w7 dw = −1

8
w8 + C

= −1

8
(cos θ + 5)8 + C.

Check:

d

dθ

[

−1

8
(cos θ + 5)8 + C

]

= −1

8
· 8(cos θ + 5)7 · (− sin θ)

= sin θ(cos θ + 5)7
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21. We use the substitution w = cos 3t, dw = −3 sin 3t dt.

∫ √
cos 3t sin 3t dt = −1

3

∫ √
w dw

= −1

3
· 2

3
w

3
2 + C = −2

9
(cos 3t)

3
2 + C.

Check:

d

dt

[

−2

9
(cos 3t)

3
2 + C

]

= −2

9
· 3

2
(cos 3t)

1
2 · (− sin 3t) · 3

=
√

cos 3t sin 3t.

22. We use the substitution w = 1 + 3t2, dw = 6t dt.

∫

t

1 + 3t2
dt =

∫

1

w
(
1

6
dw) =

1

6
ln |w| + C =

1

6
ln(1 + 3t2) + C.

(We can drop the absolute value signs since 1 + 3t2 > 0 for all t).

Check:
d

dt

[

1

6
ln(1 + 3t2) + C

]

=
1

6

1

1 + 3t2
(6t) =

t

1 + 3t2
.

23. We use the substitution w = sin θ, dw = cos θ dθ.

∫

sin6 θ cos θ dθ =

∫

w6 dw =
w7

7
+ C =

sin7 θ

7
+ C.

Check:
d

dθ

[

sin7 θ

7
+ C

]

= sin6 θ cos θ.

24. We use the substitution w = x3 + 1, dw = 3x2 dx, to get

∫

x2ex3+1 dx =
1

3

∫

ew dw =
1

3
ew + C =

1

3
ex3+1 + C.

Check:
d

dx

(

1

3
ex3+1 + C

)

=
1

3
ex3+1 · 3x2 = x2ex3+1.

25. We use the substitution w = sin x, dw = cos xdx:

∫

sin2 x cos xdx =

∫

w2dw =
w3

3
+ C =

(sin x)3

3
+ C.

26. We use the substitution w = sin α, dw = cos α dα.

∫

sin3 α cos α dα =

∫

w3 dw =
w4

4
+ C =

sin4 α

4
+ C.

Check:
d

dα

(

sin4 α

4
+ C

)

=
1

4
· 4 sin3 α · cos α = sin3 α cos α.

27. We use the substitution w = 4x2, dw = 8xdx.

∫

x sin(4x2)dx =
1

8

∫

sin(w)dw = −1

8
cos(w) + C = −1

8
cos(4x2) + C.

28. We use the substitution w = 3x − 4, dw = 3dx.

∫

e3x−4dx =
1

3

∫

ewdw =
1

3
ew + C =

1

3
e3x−4 + C.

Check:
d

dx

(

1

3
e3x−4 + C

)

=
1

3
e3x−4 · 3 = e3x−4

.
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29. We use the substitution w = 3x2, dw = 6xdx.
∫

xe3x2

dx =
1

6

∫

ewdw =
1

6
ew + C =

1

6
e3x2

+ C.

Check:
d

dx

(

1

6
e3x2

+ C
)

=
1

6
e3x2

· 6x = xe3x2

.

30. We use the substitution w = 3x2 + 4, dw = 6xdx.
∫

x
√

3x2 + 4dx =
1

6

∫

w1/2dw =
1

6

w3/2

3/2
+ C =

1

9
(3x2 + 4)3/2 + C.

31. We use the substitution w = 5q2 + 8, dw = 10qdq.
∫

q

5q2 + 8
dq =

1

10

∫

1

w
dw =

1

10
ln |w| + C =

1

10
ln(5q2 + 8) + C.

Check:
d

dq

(

1

10
ln(5q2 + 8) + C

)

=
1

10
· 1

5q2 + 8
· 10q =

q

5q2 + 8
.

32. We use the substitution w = ln z, dw = 1
z

dz.

∫

(ln z)2

z
dz =

∫

w2 dw =
w3

3
+ C =

(ln z)3

3
+ C.

Check:
d

dz

[

(ln z)3

3
+ C

]

= 3 · 1

3
(ln z)2 · 1

z
=

(ln z)2

z
.

33. We use the substitution w = y2 + 4, dw = 2y dy.

∫

y

y2 + 4
dy =

1

2

∫

dw

w
=

1

2
ln |w| + C =

1

2
ln(y2 + 4) + C.

(We can drop the absolute value signs since y2 + 4 ≥ 0 for all y.)

Check:
d

dy

[

1

2
ln(y2 + 4) + C

]

=
1

2
· 1

y2 + 4
· 2y =

y

y2 + 4
.

34. We use the substitution w = et + t, dw = (et + 1) dt.

∫

et + 1

et + t
dt =

∫

1

w
dw = ln |w| + C = ln |et + t| + C.

Check:
d

dt
(ln |et + t| + C) =

et + 1

et + t
.

35. We use the substitution w =
√

y, dw =
1

2
√

y
dy.

∫

e
√

y

√
y

dy = 2

∫

ew dw = 2ew + C = 2e
√

y + C.

Check:
d

dy
(2e

√
y + C) = 2e

√
y · 1

2
√

y
=

e
√

y

√
y

.

36. We use the substitution w =
√

x, dw = 1
2
√

x
dx.

∫

cos
√

x√
x

dx =

∫

cos w(2 dw) = 2 sin w + C = 2 sin
√

x + C.

Check:
d

dx
(2 sin

√
x + C) = 2 cos

√
x

(

1

2
√

x

)

=
cos

√
x√

x
.

37. We use the substitution w = x + ex, dw = (1 + ex) dx.

∫

1 + ex

√
x + ex

dx =

∫

dw√
w

= 2
√

w + C = 2
√

x + ex + C.

Check:
d

dx
(2
√

x + ex + C) = 2 · 1

2
(x + ex)−

1
2 · (1 + ex) =

1 + ex

√
x + ex

.
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38. We use the substitution w = et + 1, dw = etdt:
∫

et

et + 1
dt =

∫

1

w
dw = ln |w| + C = ln(et + 1) + C.

39. We use the substitution w = x2 + 2x + 19, dw = 2(x + 1)dx.

∫

(x + 1)dx

x2 + 2x + 19
=

1

2

∫

dw

w
=

1

2
ln |w| + C =

1

2
ln(x2 + 2x + 19) + C.

(We can drop the absolute value signs, since x2 + 2x + 19 = (x + 1)2 + 18 > 0 for all x.)

Check:
1

dx
[
1

2
ln(x2 + 2x + 19)] =

1

2

1

x2 + 2x + 19
(2x + 2) =

x + 1

x2 + 2x + 19
.

40. We use the substitution w = ex + e−x, dw = (ex − e−x) dx.

∫

ex − e−x

ex + e−x
dx =

∫

dw

w
= ln |w| + C = ln(ex + e−x) + C.

(We can drop the absolute value signs since ex + e−x > 0 for all x).

Check:
d

dx
[ln(ex + e−x) + C] =

1

ex + e−x
(ex − e−x).

41. (a) This integral can be evaluated using integration by substitution. We use w = x2, dw = 2xdx.

∫

x sin x2dx =
1

2

∫

sin(w)dw = −1

2
cos(w) + C = −1

2
cos(x2) + C.

(b) This integral cannot be evaluated using a simple integration by substitution.

(c) This integral cannot be evaluated using a simple integration by substitution.

(d) This integral can be evaluated using integration by substitution. We use w = 1 + x2, dw = 2xdx.

∫

x

(1 + x2)2
dx =

1

2

∫

1

w2
dw =

1

2
(
−1

w
) + C =

−1

2(1 + x2)
+ C.

(e) This integral cannot be evaluated using a simple integration by substitution.

(f) This integral can be evaluated using integration by substitution. We use w = 2 + cos x, dw = − sin xdx.

∫

sin x

2 + cos x
dx = −

∫

1

w
dw = − ln |w| + C = − ln |2 + cos x| + C.

42. (a) (i) Multiplying out gives
∫

(x2 + 10x + 25) dx =
x3

3
+ 5x2 + 25x + C.

(ii) Substituting w = x + 5, so dw = dx, gives

∫

(x + 5)2 dx =

∫

w2 dw =
w3

3
+ C =

(x + 5)3

3
+ C.

(b) The results of the two calculations are not the same since

(x + 5)3

3
+ C =

x3

3
+

15x2

3
+

75x

3
+

125

3
+ C.

However they differ only by a constant, 125/3, as guaranteed by the Fundamental Theorem of Calculus.

43. (a)

∫

4x(x2 + 1) dx =

∫

(4x3 + 4x) dx = x4 + 2x2 + C.

(b) If w = x2 + 1, then dw = 2x dx.

∫

4x(x2 + 1) dx =

∫

2w dw = w2 + C = (x2 + 1)2 + C.

(c) The expressions from parts (a) and (b) look different, but they are both correct. Note that (x2 + 1)2 + C = x4 +
2x2 +1 +C. In other words, the expressions from parts (a) and (b) differ only by a constant, so they are both correct

antiderivatives.
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Solutions for Section 7.3

1. Since F ′(x) = 5, we use F (x) = 5x. By the Fundamental Theorem, we have

∫ 3

1

5dx = 5x

∣

∣

∣

∣

3

1

= 5(3) − 5(1) = 15 − 5 = 10.

2. Since F ′(x) = 6x, we use F (x) = 3x2. By the Fundamental Theorem, we have

∫ 4

0

6xdx = 3x2

∣

∣

∣

∣

4

0

= 3 · 42 − 3 · 02 = 48 − 0 = 48.

3. Since F ′(x) = 2x + 3, we use F (x) = x2 + 3x. By the Fundamental Theorem, we have

∫ 2

1

(2x + 3)dx = (x2 + 3x)

∣

∣

∣

∣

2

1

= (22 + 3 · 2) − (12 + 3 · 1) = 10 − 4 = 6.

4. If f(t) = 3t2 + 4t + 3, then F (t) = t3 + 2t2 + 3t. By the Fundamental Theorem, we have

∫ 2

0

(3t2 + 4t + 3) dt = (t3 + 2t2 + 3t)

∣

∣

∣

∣

2

0

= 23 + 2(22) + 3(2) − 0 = 22.

5. Since F ′(t) = 1/t2 = t−2, we take F (t) =
t−1

−1
= −1/t. Then

∫ 2

1

1

t2
dt = F (2) − F (1)

= −1

2
−
(

−1

1

)

=
1

2
.

6. Since F ′(x) =
1√
x

= x−1/2
, we use F (x) = 2x1/2 = 2

√
x. By the Fundamental Theorem, we have

∫ 4

1

1√
x

dx = 2
√

x

∣

∣

∣

∣

4

1

= 2
√

4 − 2
√

1 = 4 − 2 = 2.

7. Since F ′(x) = 3x2, we take F (x) = x3. Then

∫ 5

0

3x2 dx = F (5) − F (0)

= 53 − 03

= 125.

8. If F ′(t) = t3, then F (t) =
t4

4
. By the Fundamental Theorem, we have

∫ 3

0

t3 dt = F (3) − F (0) =
t4

4

∣

∣

∣

∣

3

0

=
34

4
− 0

4
=

81

4
.

9. If F ′(x) = 6x2, then F (x) = 2x3. By the Fundamental Theorem, we have

∫ 3

1

6x2 dx = 2x3

∣

∣

∣

∣

3

1

= 2(27) − 2(1) = 54 − 2 = 52.
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10. Since F ′(t) = 5t3, we take F (t) = 5
4
t4. Then

∫ 2

1

5t3 dt = F (2) − F (1)

=
5

4
(24) − 5

4
(14)

=
5

4
· 16 − 5

4

=
75

4

11. Since F ′(x) =
√

x, we take F (x) =
x3/2

3/2
=

2

3
x3/2

. Then

∫ 9

4

√
x dx = F (9) − F (4)

=
2

3
· 93/2 − 2

3
· 43/2

=
2

3
· 27 − 2

3
· 8

=
38

3
.

12. Since F ′(y) = y2 + y4, we take F (y) =
y3

3
+

y5

5
. Then

∫ 1

0

(y2 + y4) dy = F (3) − F (0)

=

(

13

3
+

15

5

)

−
(

03

3
+

05

5

)

=
1

3
+

1

5
=

8

15
.

13. Since F ′(t) = 1/(2t), we take F (t) = 1
2

ln |t|. Then

∫ 2

1

1

2t
dt = F (2) − F (1)

=
1

2
ln |2| − 1

2
ln |1|

=
1

2
ln 2.

14.

∫ 5

2

(x3 − πx2) dx =

(

x4

4
− πx3

3

)∣

∣

∣

∣

5

2

=
609

4
− 39π ≈ 29.728.

15. If f(t) = e−0.2t, then F (t) = −5e−0.2t. (This can be verified by observing that
d

dt
(−5e−0.2t) = e−0.2t

.) By the

Fundamental Theorem, we have

∫ 1

0

e−0.2t dt = (−5e−0.2t)

∣

∣

∣

∣

1

0

= −5(e−0.2) − (−5)(1) = 5 − 5e−0.2 ≈ 0.906.

16.

∫ 1

0

2ex dx = 2ex

∣

∣

∣

∣

1

0

= 2e − 2 ≈ 3.437.
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17. If F ′(t) = cos t, we can take F (t) = sin t, so

∫ 1

−1

cos t dt = sin t

∣

∣

∣

∣

1

−1

= sin 1 − sin(−1).

Since sin(−1) = − sin 1, we can simplify the answer and write

∫ 1

−1

cos t dt = 2 sin 1

18.

∫ π/4

0

(sin t + cos t) dt = (− cos t + sin t)

∣

∣

∣

∣

π/4

0

=

(

−
√

2

2
+

√
2

2

)

− (−1 + 0) = 1.

19. If f(t) = e0.05t, then F (t) = 20e0.05t (you can check this by observing that
d

dt
(20e0.05t) = e0.05t

). By the Fundamental

Theorem, we have
∫

e0.05t dt = 20e0.05t

∣

∣

∣

∣

3

0

= 20e0.15 − 20e0 = 20(e0.15 − 1).

20. If f(q) = 6q2 + 4, then F (q) = 2q3 + 4q. By the Fundamental Theorem, we have

∫ 1

0

(6q2 + 4) dq = (2q3 + 4q)

∣

∣

∣

∣

1

0

= 2(1) + 4(1) − (0 + 0) = 6.

21. (a) We substitute w = 1 + x2, dw = 2x dx.

∫ x=1

x=0

x

1 + x2
dx =

1

2

∫ w=2

w=1

1

w
dw =

1

2
ln |w|

∣

∣

∣

∣

2

1

=
1

2
ln 2.

(b) We substitute w = cos x, dw = − sin x dx.

∫ x= π
4

x=0

sin x

cos x
dx = −

∫ w=
√

2/2

w=1

1

w
dw

= − ln |w|
∣

∣

∣

∣

√
2/2

1

= − ln

√
2

2
=

1

2
ln 2.

22. We substitute w = x2 + 1, so dw = 2xdx.

∫

x(x2 + 1)2dx =
1

2

∫

w2dw =
1

2

w3

3
+ C =

1

6
(x2 + 1)3 + C.

Using the Fundamental Theorem, we have

∫ 2

0

x(x2 + 1)2dx =
1

6
(x2 + 1)3

∣

∣

∣

∣

2

0

=
1

6
· 53 − 1

6
· 13 =

125

6
− 1

6
=

124

6
=

62

3
.

23. Let w = x2 + 1, then dw = 2xdx. When x = 0, w = 1 and when x = 3, w = 10. Thus we have

∫ 3

0

2x

x2 + 1
dx =

∫ 10

1

dw

w
= ln |w|

∣

∣

∣

∣

10

1

= ln 10 − ln 1 = ln 10.
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24. Let w = −t2, then dw = −2tdt so tdt = − 1
2
dw. When t = 0, w = 0 and when t = 1, w = −1. Thus we have

∫ 1

0

2te−t2 dt =

∫ −1

0

2ew
(

−1

2
dw
)

= −
∫ −1

0

ew dw

= −ew

∣

∣

∣

∣

−1

0

= −e−1 − (−e0) = 1 − e−1.

25. We substitute w = t + 1, so dw = dt.
∫

1√
t + 1

dt =

∫

1√
w

dw =

∫

w−1/2dw = 2w1/2 + C = 2
√

t + 1 + C.

Using the Fundamental Theorem, we have

∫ 3

0

1√
t + 1

dt = 2
√

t + 1

∣

∣

∣

∣

3

0

= 2
√

4 − 2
√

1 = 4 − 2 = 2.

26. We have

Area =

∫ 4

1

x2 dx =
x3

3

∣

∣

∣

∣

4

1

=
43

3
− 13

3
=

64 − 1

3
= 21.

27. The integral which represents the area under this curve is

Area =

∫ 2

0

(6x2 + 1) dx.

Since
d

dx
(2x3 + x) = 6x2 + 1, we can evaluate the definite integral:

∫ 2

0

(6x2 + 1) dx = (2x3 + x)

∣

∣

∣

∣

2

0

= 2(23) + 2 − (2(0) + 0) = 16 + 2 = 18.

28. We have

Average value =
1

10 − 0

∫ 10

0

(x2 + 1)dx =
1

10

(

x3

3
+ x

)∣

∣

∣

∣

10

0

=
1

10

(

103

3
+ 10 − 0

)

=
103

3
.

We see in Figure 7.1 that the average value of 103/3 ≈ 34.33 for f(x) looks right.

105

34.33

50

100

x

f(x) = x2 + 1

Figure 7.1

29. One antiderivative of f(x) = e0.5x is F (x) = 2e0.5x. Thus, the definite integral of f(x) on the interval 0 ≤ x ≤ 3 is

∫ 3

0

e0.5x dx = F (3) − F (0) = 2e0.5x

∣

∣

∣

∣

3

0

.
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The average value of a function on a given interval is the definite integral over that interval divided by the length of the

interval:

Average value =
(

1

3 − 0

)

·
(
∫ 3

0

e0.5x dx

)

=
1

3

(

2e0.5x

∣

∣

∣

∣

3

0

)

=
1

3
(2e1.5 − 2e0) ≈ 2.32.

From the graph of y = e0.5x in Figure 7.2 we see that an average value of 2.32 on the interval 0 ≤ x ≤ 3 does make

sense.

3

2.32

5

y = e0.5x

x

y

Figure 7.2

30. Since y = x3 − x = x(x− 1)(x + 1), the graph crosses the axis at the three points shown in Figure 7.3. The two regions

have the same area (by symmetry). Since the graph is below the axis for 0 < x < 1, we have

Area = 2

(

−
∫ 1

0

(

x3 − x
)

dx

)

= −2

[

x4

4
− x2

2

]1

0

= −2
(

1

4
− 1

2

)

=
1

2
.

−1 1

y = x3
− x

x

y

Figure 7.3

31. We have

Area =

∫ b

1

4x dx = 2x2

∣

∣

∣

∣

b

1

= 2b2 − 2.

We find the value of b making the area equal to 240:

240 = 2b2 − 2

242 = 2b2

121 = b2

b = 11.
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32. The area under f(x) = 8x between x = 1 and x = b is given by
∫ b

1
(8x)dx. Using the Fundamental Theorem to evaluate

the integral:

Area = 4x2

∣

∣

∣

∣

b

1

= 4b2 − 4.

Since the area is 192, we have

4b2 − 4 = 192

4b2 = 196

b2 = 49

b = ±7.

Since b is larger than 1, we have b = 7.

33. We have

Area =

∫ b

0

x2dx =
x3

3

∣

∣

∣

∣

b

0

=
b3

3
.

We find the value of b making the area equal to 100:

100 =
b3

3

300 = b3

b = (300)1/3 = 6.694.

34. (a) At time t = 0, the rate of oil leakage = r(0) = 50 thousand liters/minute.

At t = 60, rate = r(60) = 15.06 thousand liters/minute.

(b) To find the amount of oil leaked during the first hour, we integrate the rate from t = 0 to t = 60:

Oil leaked =

∫ 60

0

50e−0.02t dt =
(

− 50

0.02
e−0.02t

)

∣

∣

∣

∣

60

0

= −2500e−1.2 + 2500e0 = 1747 thousand liters.

35. (a) In 2010, we have P = 6.1e0.012·10 = 6.9 billion people.

In 2020, we have P = 6.1e0.012·20 = 7.8 billion people.

(b) We have

Average population =
1

10 − 0

∫ 10

0

6.1e0.012tdt =
1

10
· 6.1

0.012
e0.012t

∣

∣

∣

∣

10

0

=
1

10

(

6.1

0.012
(e0.12 − e0)

)

= 6.5.

The average population of the world between 2000 and 2010 is predicted to be 6.5 billion people.

36. (a) The graph of y = e−x2

is in Figure 7.4. The integral

∫ ∞

−∞

e−x2

dx represents the entire area under the curve, which

is shaded.

−5 −3 3 5
x

f(x) = e−x2

Figure 7.4

(b) Using a calculator or computer, we see that

∫ 1

−1

e−x2

dx = 1.494,

∫ 2

−2

e−x2

dx = 1.764,

∫ 3

−3

e−x2

dx = 1.772,

∫ 5

−5

e−x2

dx = 1.772
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(c) From part (b), we see that as we extend the limits of integration, the area appears to get closer and closer to about

1.772. We estimate that
∫ ∞

−∞

e−x2

dx = 1.772

.

37. Figure 7.5 shows the graphs of y = 1/x2 and y = 1/x3. We see that
∫∞

1
1

x2 dx is larger, since the area under 1/x2 is

larger than the area under 1/x3.

1
x

	

1/x2

	

1/x3

y

Figure 7.5

38. (a) An antiderivative of F ′(x) =
1

x2
is F (x) = − 1

x

(

since
d

dx

(−1

x

)

=
1

x2

)

. So by the Fundamental Theorem we

have:
∫ b

1

1

x2
dx = − 1

x

∣

∣

∣

∣

b

1

= −1

b
+ 1.

.

(b) Taking a limit, we have

lim
b→∞

(

−1

b
+ 1
)

= 0 + 1 = 1.

Since the limit is 1, we know that

lim
b→∞

∫ b

1

1

x2
dx = 1.

So the improper integral converges to 1:
∫ ∞

1

1

x2
dx = 1.

39. (a) Using a calculator or computer, we get
∫ 3

0

e−2t dt = 0.4988

∫ 5

0

e−2t dt = 0.49998

∫ 7

1

e−2t dt = 0.4999996

∫ 10

0

e−2t dt = 0.499999999.

The values of these integrals are getting closer to 0.5. A reasonable guess is that the improper integral converges to

0.5.

(b) Since − 1
2
e−2t is an antiderivative of e−2t, we have

∫ b

0

e−2t dt = −1

2
e−2t

∣

∣

∣

∣

b

0

= −1

2
e−2b −

(

−1

2
e0
)

= −1

2
e−2b +

1

2
.

(c) Since e−2b = 1/e2b, we have

e2b → ∞ as b → ∞, so e−2b =
1

e2b
→ 0.

Therefore,

lim
b→∞

∫ b

0

e−2t dt = lim
b→∞

(

−1

2
e−2b +

1

2

)

= 0 +
1

2
=

1

2
.

So the improper integral converges to 1/2 = 0.5:
∫ ∞

0

e−2t dt =
1

2
.
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40. (a) Evaluating the integrals with a calculator gives

∫ 10

0

xe−x/10 dx = 26.42

∫ 50

0

xe−x/10 dx = 95.96

∫ 100

0

xe−x/10 dx = 99.95

∫ 200

0

xe−x/10 dx = 100.00

(b) The results of part (a) suggest that
∫ ∞

0

xe−x/10 dx ≈ 100

41. (a) The total number of people that get sick is the integral of the rate. The epidemic starts at t = 0. Since the rate is

positive for all t, we use ∞ for the upper limit of integration.

Total number getting sick =

∫ ∞

0

(

1000te−0.5t
)

dt

(b) The graph of r = 1000te−0.5t is shown in Figure 7.6. The shaded area represents the total number of people who

get sick.

t

r

Figure 7.6

42. Since y = x3(1 − x) is positive for 0 ≤ x ≤ 1 and y = 0, when x = 0, 1, the area is given by

Area =

∫ 1

0

x3(1 − x) dx =

∫ 1

0

(x3 − x4) dx =
x4

4
− x5

5

∣

∣

∣

∣

1

0

=
1

20
.

43. Since y = 0 only when x = 0 and x = 1, the area lies between these limits and is given by

Area =

∫ 1

0

x2(1 − x)2dx =

∫ 1

0

x2(1 − 2x + x2) dx =

∫ 1

0

(x2 − 2x3 + x4) dx

=
x3

3
− 2

4
x4 +

x5

5

∣

∣

∣

∣

1

0

=
1

30
.

44. (a) Since v(t) = 60/50t is never 0, the car never stops.

(b) For time t ≥ 0,

Distance traveled =

∫ ∞

0

60

50t
dt.

(c) Evaluating

∫ b

0

60

50t
dt for b = 1, 5, 10 gives

∫ 1

0

60

50t
dt = 15.0306

∫ 5

0

60

50t
dt = 15.3373

∫ 10

0

60

50t
dt = 15.3373,

so the integral appears to converge to 15.3373; so we estimate the distance traveled to be 15.34 miles.
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45. (a) No, it is not reached since

Total number of rabbits =

∫ ∞

1

1

t2
dt = 1.

Thus, the total number of rabbits is 1000.

(b) Yes, since

∫ ∞

1

t dt does not converge to a finite value, which means that infinitely many rabbits could be produced,

and therefore 1 million is certainly reached.

(c) Yes, since

∫ ∞

1

1√
t

dt does not converge to a finite value.

46. (a) In the first case, we are given that R0 = 1000 widgets/year. So we have R = 1000e0.15t . To determine the total

number sold, we need to integrate this rate over the time period from 0 to 10. Therefore

Total number of widgets sold =

∫ 10

0

1000e0.15t dt = 23,211 widgets.

In the second case,

Total number of widgets sold =

∫ 10

0

150,000,000e0.15t dt = 3.5 billionwidgets.

(b) We want to determine T such that
∫ T

0

1000e0.15t dt =
23,211

2
.

Trying a few values of T , we get

T ≈ 6.7 years.

Similarly, in the second case, we want T so that

∫ T

0

150,000,000e0.15t dt =
3, 500, 000, 000

2

we get

T ≈ 6.7 years.

So the half way mark is reached at the same time regardless of the initial rate.

(c) Since half the widgets are sold in the last 3 1
2

years of the decade, if each widget is expected to last at least 3.5 years,

their claim could easily be true.

Solutions for Section 7.4

1. Let u = t and v′ = e5t, so u′ = 1 and v = 1
5
e5t.

Then
∫

te5t dt = 1
5
te5t −

∫

1
5
e5t dt = 1

5
te5t − 1

25
e5t + C.

2. Let u = p and v′ = e(−0.1)p, u′ = 1. Thus, v =
∫

e(−0.1)p dp = −10e(−0.1)p. With this choice of u and v, integration

by parts gives:

∫

pe(−0.1)p dp = p(−10e(−0.1)p) −
∫

(−10e(−0.1)p) dp

= −10pe(−0.1)p + 10

∫

e(−0.1)p dp

= −10pe(−0.1)p − 100e(−0.1)p + C.
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3. Let u = z + 1, v′ = e2z. Thus, v = 1
2
e2z and u′ = 1. Integrating by parts, we get:

∫

(z + 1)e2z dz = (z + 1) · 1

2
e2z −

∫

1

2
e2z dz

=
1

2
(z + 1)e2z − 1

4
e2z + C

=
1

4
(2z + 1)e2z + C.

4. Let u = ln y, v′ = y. Then, v = 1
2
y2 and u′ =

1

y
. Integrating by parts, we get:

∫

y ln y dy =
1

2
y2 ln y −

∫

1

2
y2 · 1

y
dy

=
1

2
y2 ln y − 1

2

∫

y dy

=
1

2
y2 ln y − 1

4
y2 + C.

5. Let u = ln x and v′ = x3, so u′ = 1
x

and v = x4

4
. Then

∫

x3 ln x dx =
x4

4
ln x −

∫

x3

4
dx =

x4

4
ln x − x4

16
+ C.

6. Let u = ln 5q, v′ = q5. Then v = 1
6
q6 and u′ =

1

q
. Integrating by parts, we get:

∫

q5 ln 5q dq =
1

6
q6 ln 5q −

∫

(5 · 1

5q
) · 1

6
q6 dq

=
1

6
q6 ln 5q − 1

36
q6 + C.

7. Let u = y and v′ = (y + 3)1/2, so u′ = 1 and v = 2
3
(y + 3)3/2:

∫

y
√

y + 3 dy =
2

3
y(y + 3)3/2 −

∫

2

3
(y + 3)3/2 dy =

2

3
y(y + 3)3/2 − 4

15
(y + 3)5/2 + C.

8. Let u = t + 2 and v′ =
√

2 + 3t, so u′ = 1 and v = 2
9
(2 + 3t)3/2. Then

∫

(t + 2)
√

2 + 3t dt =
2

9
(t + 2)(2 + 3t)3/2 − 2

9

∫

(2 + 3t)3/2 dt

=
2

9
(t + 2)(2 + 3t)3/2 − 4

135
(2 + 3t)5/2 + C.

9. Let u = z, v′ = e−z . Thus v = −e−z and u′ = 1. Integration by parts gives:

∫

ze−z dz = −ze−z −
∫

(−e−z) dz

= −ze−z − e−z + C

= −(z + 1)e−z + C.
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10. Let u = ln x, v′ = x−2. Then v = −x−1 and u′ = x−1. Integrating by parts, we get:
∫

x−2 lnx dx = −x−1 ln x −
∫

(−x−1) · x−1 dx

= −x−1 ln x − x−1 + C.

11. Let u = y and v′ = 1√
5−y

, so u′ = 1 and v = −2(5 − y)1/2.
∫

y√
5 − y

dy = −2y(5 − y)1/2 + 2

∫

(5 − y)1/2 dy = −2y(5 − y)1/2 − 4

3
(5 − y)3/2 + C.

12.

∫

t + 7√
5 − t

dt =

∫

t√
5 − t

dt + 7

∫

(5 − t)−1/2 dt.

To calculate the first integral, we use integration by parts. Let u = t and v′ = 1√
5−t

, so u′ = 1 and v = −2(5−t)1/2.

Then
∫

t√
5 − t

dt = −2t(5 − t)1/2 + 2

∫

(5 − t)1/2 dt = −2t(5 − t)1/2 − 4

3
(5 − t)3/2 + C.

We can calculate the second integral directly: 7

∫

(5 − t)−1/2 = −14(5 − t)1/2 + C1. Thus

∫

t + 7√
5 − t

dt = −2t(5 − t)1/2 − 4

3
(5 − t)3/2 − 14(5 − t)1/2 + C2.

13. Let u = t, v′ = sin t. Thus, v = − cos t and u′ = 1. With this choice of u and v, integration by parts gives:
∫

t sin t dt = −t cos t −
∫

(− cos t) dt

= −t cos t + sin t + C.

14.

∫ 5

3

x cos x dx = (cos x + x sin x)

∣

∣

∣

∣

5

3

= cos 5 + 5 sin 5 − cos 3 − 3 sin 3 ≈ −3.944.

15. Let u = t2 and v′ = e5t, so u′ = 2t and v = 1
5
e5t.

Then
∫

t2e5t dt = 1
5
t2e5t − 2

5

∫

te5t dt.

Using Problem 1, we have
∫

t2e5t dt = 1
5
t2e5t − 2

5
( 1
5
te5t − 1

25
e5t) + C

= 1
5
t2e5t − 2

25
te5t + 2

125
e5t + C.

16. Let u = (ln t)2 and v′ = 1, so u′ =
2 ln t

t
and v = t. Then

∫

(ln t)2 dt = t(ln t)2 − 2

∫

ln t dt = t(ln t)2 − 2t ln t + 2t + C.

(We use the fact that

∫

ln x dx = x lnx − x + C, a result which can be derived using integration by parts.)

17.

∫ 5

1

ln t dt = (t ln t − t)

∣

∣

∣

∣

5

1

= 5 ln 5 − 4 ≈ 4.047

18. We use integration by parts. Let u = z and v′ = e−z, so u′ = 1 and v = −e−z. Then

∫ 10

0

ze−z dz = −ze−z

∣

∣

∣

∣

10

0

+

∫ 10

0

e−z dz

= −10e−10 + (−e−z)

∣

∣

∣

∣

10

0

= −11e−10 + 1

≈ 0.9995.
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19.

∫ 3

1

t ln t dt =
(

1

2
t2 ln t − 1

4
t2
)

∣

∣

∣

∣

3

1

=
9

2
ln 3 − 2 ≈ 2.944.

20.

∫ 5

0

ln(1 + t) dt = ((1 + t) ln(1 + t) − (1 + t))

∣

∣

∣

∣

5

0

= 6 ln 6 − 5 ≈ 5.751.

21. (a) We evaluate this integral using the substitution w = 1 + x3.

(b) We evaluate this integral using the substitution w = x2.

(c) We evaluate this integral using the substitution w = x3 + 1.

(d) We evaluate this integral using the substitution w = 3x + 1.

(e) This integral can be evaluated using integration by parts with u = ln x, v′ = x2.

(f) This integral can be evaluated using integration by parts with u = ln x, v′ = 1.

22. A calculator gives
∫ 2

1
ln x dx = 0.386. An antiderivative of ln x is x ln x − 1, so the Fundamental Theorem of Calculus

gives
∫ 2

1

ln x dx = (x ln x − x)

∣

∣

∣

∣

2

1

= 2 ln 2 − 1.

Since 2 ln 2 − 1 = 0.386, the value from the Fundamental Theorem agrees with the numerical answer.

23. Using integration by parts with u′ = e−t, v = t, so u = −e−t and v′ = 1, we have

Area =

∫ 2

0

te−t dt = −te−t

∣

∣

∣

∣

∣

2

0

−
∫ 2

0

−1 · e−t dt

= (−te−t − e−t)

∣

∣

∣

∣

∣

2

0

= −2e−2 − e−2 + 1 = 1 − 3e−2.

24. Since ln(x2) = 2 lnx and
∫

ln x dx = x ln x − x + C, we have

Area =

∫ 2

1

(ln(x2) − ln x) dx =

∫ 2

1

(2 ln x − ln x) dx

=

∫ 2

1

ln x dx = (x ln x − x)

∣

∣

∣

∣

∣

2

1

= 2 ln 2 − 2 − (1 ln 1 − 1) = 2 ln 2 − 1.

25. Since the graph of f(t) = ln(t2 − 1) is above the graph of g(t) = ln(t − 1) for t > 1, we have

Area =

∫ 3

2

(ln(t2 − 1) − ln(t − 1)) dt =

∫ 3

2

ln

(

t2 − 1

t − 1

)

dt =

∫ 3

2

ln(t + 1) dt.

We can cancel the factor of (t− 1) in the last step above because the integral is over 2 ≤ t ≤ 3, where (t− 1) is not zero.

We use
∫

ln x dx = x ln x − 1 with the substitution x = t + 1. The limits t = 2, t = 3 become x = 3, x = 4,

respectively. Thus

Area =

∫ 3

2

ln(t + 1) dt =

∫ 4

3

ln x dx = (x ln x − x)

∣

∣

∣

∣

∣

4

3

= 4 ln 4 − 4 − (3 ln 3 − 3) = 4 ln 4 − 3 ln 3 − 1.

26. Since f ′(x) = 2x, integration by parts tells us that

∫ 10

0

f(x)g′(x) dx = f(x)g(x)
∣

∣

∣

10

0
−
∫ 10

0

f ′(x)g(x)dx

= f(10)g(10) − f(0)g(0) − 2

∫ 10

0

xg(x)dx.
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We can use left and right Riemann Sums with ∆x = 2 to approximate
∫ 10

0
xg(x)dx:

Left sum ≈ 0 · g(0)∆x + 2 · g(2)∆x + 4 · g(4)∆x + 6 · g(6)∆x + 8 · g(8)∆x

= (0(2.3) + 2(3.1) + 4(4.1) + 6(5.5) + 8(5.9)) 2 = 205.6.

Right sum ≈ 2 · g(2)∆x + 4 · g(4)∆x + 6 · g(6)∆x + 8 · g(8)∆x + 10 · g(10)∆x

= (2(3.1) + 4(4.1) + 6(5.5) + 8(5.9) + 10(6.1)) 2 = 327.6.

A good estimate for the integral is the average of the left and right sums, so

∫ 10

0

xg(x)dx ≈ 205.6 + 327.6

2
= 266.6.

Substituting values for f and g, we have

∫ 10

0

f(x)g′(x) dx = f(10)g(10) − f(0)g(0) − 2

∫ 10

0

xg(x)dx

≈ 102(6.1) − 02(2.3) − 2(266.6) = 76.8 ≈ 77.

27. We have

Bioavailability =

∫ 3

0

15te−0.2tdt.

We first use integration by parts to evaluate the indefinite integral of this function. Let u = 15t and v′ = e−0.2tdt, so

u′ = 15dt and v = −5e−0.2t. Then,

∫

15te−0.2tdt = (15t)(−5e−0.2t) −
∫

(−5e−0.2t)(15dt)

= −75te−0.2t + 75

∫

e−0.2tdt = −75te−0.2 − 375e−0.2t + C.

Thus,
∫ 3

0

15te−0.2tdt = (−75te−0.2t − 375e−0.2t)

∣

∣

∣

∣

3

0

= −329.29 + 375 = 45.71.

The bioavailability of the drug over this time interval is 45.71 (ng/ml)-hours.

28. (a) We know that
dE

dt
= r, so the total energy E used in the first T hours is given by E =

∫ T

0

te−at dt. We use

integration by parts. Let u = t, v′ = e−at. Then u′ = 1, v = − 1
a
e−at.

E =

∫ T

0

te−at dt

= − t

a
e−at

∣

∣

∣

T

0
−
∫ T

0

(

−1

a
e−at

)

dt

= −1

a
Te−aT +

1

a

∫ T

0

e−at dt

= −1

a
Te−aT +

1

a2
(1 − e−aT ).

(b)

lim
T→∞

E = −1

a
lim

T→∞

(

T

eaT

)

+
1

a2

(

1 − lim
T→∞

1

eaT

)

.

Since a > 0, the second limit on the right hand side in the above expression is 0. In the first limit, although both the

numerator and the denominator go to infinity, the denominator eaT goes to infinity more quickly than T does. So in

the end the denominator eaT is much greater than the numerator T . Hence lim
T→∞

T

eaT
= 0. (You can check this by

graphing y =
T

eaT
on a calculator or computer for some values of a.) Thus lim

T→∞
E =

1

a2
.
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29. We integrate by parts. Since we know what the answer is supposed to be, it’s easier to choose u and v′. Let u = xn and

v′ = ex, so u′ = nxn−1 and v = ex. Then

∫

xnex dx = xnex − n

∫

xn−1ex dx.

Solutions for Section 7.5

1. By the Fundamental Theorem,

F (1) = F (0) +

∫ 1

0

F ′(t) dt

= 5 − 1.5 = 3.5

F (2) = F (1) +

∫ 2

1

F ′(t) dt

= 3.5 − 1.5 = 2

F (3) = F (2) +

∫ 3

2

F ′(t) dt

= 2 − 0.5 = 1.5

F (4) = F (3) +

∫ 4

3

F ′(t) dt

= 1.5 + 0.5 = 2

F (5) = F (4) +

∫ 5

4

F ′(t) dt

= 2 + 0.5 = 2.5

Thus, our table is as follows:

Table 7.1

t 0 1 2 3 4 5

F (t) 5 3.5 2 1.5 2 2.5

2. First, we observe that

g is increasing when g′ is positive, which is when 0 < x < 4.

g is decreasing when g′ is negative, which is when 4 < x < 6.

Therefore, x = 4 is a local maximum. Table 7.2 shows the area between the curve and the x-axis for the intervals 0–1,

1–2, etc. It also shows the corresponding change in the value of g. These changes are used to compute the values of g
using the Fundamental Theorem of Calculus:

g(1) − g(0) =

∫ 1

0

g′(x) dx =
1

2
.

Since g(0) = 0,

g(1) =
1

2
.

Similarly,

g(2) − g(1) =

∫ 2

1

g′(x) dx = 1

g(2) = g(1) + 1 =
3

2
.
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Continuing in this way gives the values of g in Table 7.3.

Table 7.2

Interval Area Total change in g =

∫ b

a

g′(x)dx

0–1 1/2 1/2

1–2 1 1

2–3 1 1

3–4 1/2 1/2

4–5 1/2 −1/2

5–6 1/2 −1/2

Table 7.3

x g(x)

0 0

1 1/2

2 3/2

3 5/2

4 3

5 5/2

6 2

Notice: the graph of g will be a straight line from 1 to 3 because g′ is horizontal there. Furthermore, the tangent line

will be horizontal at x = 4, x = 0 and x = 6. The maximum is at (4, 3). See Figure 7.7.

1 2 3 4 5 6

1

2

3

x

y

Figure 7.7

3. Since F (0) = 0, F (b) =
∫ b

0
f(t) dt. For each b we determine F (b) graphically as follows:

F (0) = 0
F (1) = F (0) + Area of 1 × 1 rectangle = 0 + 1 = 1
F (2) = F (1) + Area of triangle ( 1

2
· 1 · 1) = 1 + 0.5 = 1.5

F (3) = F (2) + Negative of area of triangle = 1.5 − 0.5 = 1
F (4) = F (3) + Negative of area of rectangle = 1 − 1 = 0
F (5) = F (4) + Negative of area of rectangle = 0 − 1 = −1
F (6) = F (5) + Negative of area of triangle = −1 − 0.5 = −1.5
The graph of F (t), for 0 ≤ t ≤ 6, is shown in Figure 7.8.

1 2 3 4 5 6

−1.5
−1

1
1.5

t

F (t)

Figure 7.8

4. (a) The value of the integral is negative since the area below the x-axis is greater than the area above the x-axis. We

count boxes: The area below the x-axis includes approximately 11.5 boxes and each box has area (2)(1) = 2, so

∫ 5

0

f(x)dx ≈ −23.

The area above the x-axis includes approximately 2 boxes, each of area 2, so

∫ 7

5

f(x)dx ≈ 4.

So we have
∫ 7

0

f(x)dx =

∫ 5

0

f(x)dx +

∫ 7

5

f(x)dx ≈ −23 + 4 = −19.
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(b) By the Fundamental Theorem of Calculus, we have

F (7) − F (0) =

∫ 7

0

f(x)dx

so,

F (7) = F (0) +

∫ 7

0

f(x)dx = 25 + (−19) = 6.

5. See Figure 7.9.

1

1

F (0) = 1

F (0) = 0

x

Figure 7.9

6. See Figure 7.10

1
x

F (0) = 0

F (0) = 1

Figure 7.10

7. See Figure 7.11.

1

1

F (0) = 1

F (0) = 0

x

Figure 7.11

8. See Figure 7.12

1
x

F (0) = 0

F (0) = 1

Figure 7.12
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9. (a) The function f(x) is increasing when f ′(x) is positive, so f(x) is increasing for x < −2 or x > 2.

The function f(x) is decreasing when f ′(x) is negative, so f(x) is decreasing for −2 < x < 2.

Since f(x) is increasing to the left of x = −2, decreasing between x = −2 and x = 2, and increasing to the right of

x = 2, the function f(x) has a local maximum at x = −2 and a local minimum at x = 2.

(b) See Figure 7.13.

−4 −2 2 4

f(x)

x

Figure 7.13

10. (a) The function f(x) is increasing when f ′(x) is positive, so f(x) is increasing for −1 < x < 3 or x > 3.

The function f(x) is decreasing when f ′(x) is negative, so f(x) is decreasing for x < −1.

Since f(x) is decreasing to the left of x = −1 and increasing to the right of x = −1, the function has a local

minimum at x = −1. Since f(x) is increasing on both sides of x = 3, it has neither a local maximum nor a local

minimum at that point.

(b) See Figure 7.14.

−4 −2 2 4 6

f(x)

x

Figure 7.14

11. (a) f(x) is increasing when f ′(x) is positive. f ′(x) is positive when 2 < x < 5. So f(x) is increasing when 2 < x < 5.

f(x) is decreasing when f ′(x) is negative. f ′(x) is negative when x < 2 or x > 5. So f(x) is decreasing when

x < 2 or x > 5.

A function has a local minimum at a point x when its derivative is zero at that point, and when it decreases immedi-

ately before x and increases immediately after x. f ′(2) = 0, f decreases to the left of 2, and f increases immediately

after 2, therefore f(x) has a local minimum at x = 2.

A function has a local maximum at a point x when its derivative is zero at that point, and when it increases immedi-

ately before x and decreases immediately after x. f ′(5) = 0, f increases before 5, and f decreases after 5. Therefore

f(x) has a local maximum at x = 5.

(b) Since we do not know any areas or vertical values, we can only sketch a rough graph. We start with the minimum

and the maximum, then connect the graph between them. The graph could be more or less steep and further above or

below the x-axis. See Figure 7.15.
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1 2 3 4 5 6
x

f(x)

Figure 7.15

12. (a) The function f is increasing where f ′ is positive, so f is increasing for x < −1 or x > 1.

The function f is decreasing where f ′ is negative, so f is decreasing for −1 < x < 1.

The function f has critical points at x = −1, 0, 1. The point x = −1 is a local maximum (because f is increasing to

the left of x = −1 and decreasing to the right of x = −1). The point x = 1 is a local minimum (because f decreases

to the left of x = 1 and increases to the right). The point x = 0 is neither a local maximum nor a local minimum,

since f(x) is decreasing on both sides.

(b) See Figure 7.16.

−2 −1 1 2

f(x)

x

Figure 7.16

13. Since the rate at which the leaf grows is proportional to the rate of photosynthesis, the slope of the size graph is propor-

tional to the given graph. Thus, if S(t) is the size of the leaf and p(t) is the rate of photosynthesis

S′(t) = kp(t) for some positive k.

We plot the antiderivative of p(t) to get the graph of S(t) in Figure 7.17. (Since no scale is given on the vertical axis, we

can imagine k = 1.) The size of the leaf may be represented by its area, or perhaps by its weight.

100

S(t)

r (days)

size of leaf

Figure 7.17

14. For every number b, the Fundamental Theorem tells us that

∫ b

0

F ′(x) dx = F (b) − F (0) = F (b) − 0 = F (b).
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Therefore, the values of F (1), F (2), F (3), and F (4) are values of definite integrals. The definite integral is equal to the

area of the regions under the graph above the x-axis minus the area of the regions below the x-axis above the graph. Let

A1, A2, A3, A4 be the areas shown in Figure 7.18. The region between x = 0 and x = 1 lies above the x-axis, so F (1)
is positive, and we have

F (1) =

∫ 1

0

F ′(x) dx = A1.

The region between x = 0 and x = 2 also lies entirely above the x-axis, so F (2) is positive, and we have

F (2) =

∫ 2

0

F ′(x) dx = A1 + A2.

We see that F (2) > F (1). The region between x = 0 and x = 3 includes parts above and below the x-axis. We have

F (3) =

∫ 3

0

F ′(x) dx = (A1 + A2) − A3.

Since the area A3 is approximately the same as the area A2, we have F (3) ≈ F (1). Finally, we see that

F (4) =

∫ 4

0

F ′(x) dx = (A1 + A2) − (A3 + A4).

Since the area A1 + A2 appears to be larger than the area A3 + A4, we see that F (4) is positive, but smaller than the

others.

The largest value is F (2) and the smallest value is F (4). None of the numbers is negative.

1 2

3

4
x

F ′(x)?

Area = A1

� Area = A2

-Area = A3
� Area = A4

Figure 7.18

15. (a) The total volume emptied must increase with time and cannot decrease. The smooth graph (I) that is always increasing

is therefore the volume emptied from the bladder. The jagged graph (II) that increases then decreases to zero is the

flow rate.

(b) The total change in volume is the integral of the flow rate. Thus, the graph giving total change (I) shows an antideriva-

tive of the rate of change in graph (II).

16. We can start by finding four points on the graph of F (x). The first one is given: F (2) = 3. By the Fundamental Theorem

of Calculus, F (6) = F (2) +
∫ 6

2
F ′(x)dx. The value of this integral is −7 (the area is 7, but the graph lies below the

x-axis), so F (6) = 3 − 7 = −4. Similarly, F (0) = F (2) − 2 = 1, and F (8) = F (6) + 4 = 0. We sketch a graph of

F (x) by connecting these points, as shown in Figure 7.19.

4 8

(0, 1)

(2, 3)

(6,−4)

(8, 0)
x

F (x)

Figure 7.19
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17. We see that

F decreases when x < 1.5 or x > 4.67, because F ′ is negative there.

F increases when 1.5 < x < 4.67, because F ′ is positive there.

So

F has a local minimum at x = 1.5.

F has a local maximum at x = 4.67.

We have F (0) = 14. Since F ′ is negative between 0 and 1.5, the Fundamental Theorem of Calculus gives us

F (1.5) − F (0) =

∫ 1.5

0

F ′(x) dx = −34

F (1.5) = 14 − 34 = −20.

Similarly

F (4.67) = F (1.5) +

∫ 4.67

1.5

F ′(x) dx = −20 + 25 = 5.

F (6) = F (4.67) +

∫ 6

4.67

F ′(x) dx = 5 − 5 = 0.

A graph of F is in Figure 7.20. The local maximum is (4.67, 5) and the local minimum is (1.5,−20).

1 2 3 4 5 6

14

10

−10

−20

F (x)

x

Figure 7.20

18. The areas given enable us to calculate the changes in the function F as we move along the t-axis. Areas above the axis

count positively and areas below the axis count negatively. We know that F (0) = 3, so

F (2) − F (0) =

∫ 2

0

F ′(t) dt =
Area under F ′

0 ≤ t ≤ 2
= 5

Thus,

F (2) = F (0) + 5 = 3 + 5 = 8.

Similarly,

F (5) − F (2) =

∫ 5

2

F ′(t) dt = −16

F (5) = F (2) − 16 = 8 − 16 = −8

and

F (6) = F (5) +

∫ 6

5

F ′(t) dt = −8 + 10 = 2.

A graph is shown in Figure 7.21.
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(0, 3)

(2, 8)

(5,−8)

(6, 2)

t

F (t)

Figure 7.21

19. The critical points are at (0, 5), (2, 21), (4, 13), and (5, 15). A graph is given in Figure 7.22.

1 2 3 4 5

5

10

15

20
G(t)

(2, 21)

(4, 13)

(0, 5)

(5, 15)

t

y

Figure 7.22

20. (a) Critical points of F (x) are the zeros of f : x = 1 and x = 3.

(b) F (x) has a local minimum at x = 1 and a local maximum at x = 3.

(c) See Figure 7.23.

1 2 3 4

F (x)

x

Figure 7.23

Notice that the graph could also be above or below the x-axis at x = 3.

21. (a) Critical points of F (x) are x = −1, x = 1 and x = 3.

(b) F (x) has a local minimum at x = −1, a local maximum at x = 1, and a local minimum at x = 3.

(c) See Figure 7.24.
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−2 2 4

F (x)

x

Figure 7.24

22. By the Fundamental Theorem,

f(1) − f(0) =

∫ 1

0

f ′(x) dx,

Since f ′(x) is negative for 0 ≤ x ≤ 1, this integral must be negative and so f(1) < f(0).

23. First rewrite each of the quantities in terms of f ′, since we have the graph of f ′. If A1 and A2 are the positive areas shown

in Figure 7.25:

f(3) − f(2) =

∫ 3

2

f ′(t) dt = −A1

f(4) − f(3) =

∫ 4

3

f ′(t) dt = −A2

f(4) − f(2)

2
=

1

2

∫ 4

2

f ′(t) dt = −A1 + A2

2

Since Area A1 > Area A2,

A2 <
A1 + A2

2
< A1

so

−A1 < −A1 + A2

2
< −A2

and therefore

f(3) − f(2) <
f(4) − f(2)

2
< f(4) − f(3).

1

2 3 4
x

y = f ′(x)

y

A1 A2

Figure 7.25

24. See Figure 7.26.

a b

f(x)

6

?

f(b) − f(a)

x

Figure 7.26
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25. See Figure 7.27.

a b

R

Slope=
f(b)−f(a)

b−a f(x)

6

?

f(b) − f(a)

x

Figure 7.27

26. See Figure 7.28.

a b

f(x)

x

Figure 7.28

27. See Figure 7.29. Note that we are using the interpretation of the definite integral as the length of the interval times the

average value of the function on that interval, which we developed in Section 6.1.

a b

f(x)

6

?

F (b)−F (a)
b−a

x

Figure 7.29

Solutions for Chapter 7 Review

1. 2
3
t3 + 3

4
t4 + 4

5
t5

2. t3 +
7t2

2
+ t.

3. 2x3 − 4x2 + 3x.

4. F (z) = ez + 3z + C

5. P (r) = πr2 + C

6. P (y) = ln |y| + y2/2 + y + C

7. −1

t
8. − cos t
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9. Antiderivative G(x) =
x4

4
+ x3 +

3x2

2
+ x + C =

(x + 1)4

4
+ C

10. We use substitution with w = 2x + 1 and dw = 2 dx. Then

∫

f(x) dx =

∫

(2x + 1)3 dx =

∫

w3 1

2
dw =

w4

2 · 4 + C =
(2x + 1)4

8
+ C.

11. 2t2 + 7t + C

12.
3x2

2
+ C

13.
x4

4
− x2

2
+ C.

14.
−1

0.05
e−0.05t + C = −20e−0.05t + C.

15. −5

t
− 3

t2
+ C

16. Since f(x) =
x + 1

x
= 1 +

1

x
, the indefinite integral is x + ln |x| + C

17. 4t2 + 3t + C.

18. p + ln |p| + C

19. 2x4 + ln |x| + C.

20. 5 sin x + 3 cos x + C

21. 2 ln |x| − π cos x + C

22. 2x2 + 2ex + C

23. Since F ′(x) = 12x2 + 1, we use F (x) = 4x3 + x. By the Fundamental Theorem, we have

∫ 2

0

(12x2 + 1)dx = (4x3 + x)

∣

∣

∣

∣

2

0

= (4 · 23 + 2) − (4 · 03 + 0) = 34 − 0 = 34.

24.

∫ −1

−3

2

r3
dr = −r−2

∣

∣

∣

∣

−1

−3

= −1 +
1

9
= −8/9 ≈ −0.889.

25.

∫ 1

0

sin θ dθ = − cos θ

∣

∣

∣

∣

1

0

= 1 − cos 1 ≈ 0.460.

26. If f(x) = 1/x, then F (x) = ln |x| (since
d

dx
ln |x| =

1

x
). By the Fundamental Theorem, we have

∫ 2

1

1

x
dx = ln |x|

∣

∣

∣

∣

2

1

= ln 2 − ln 1 = ln 2.

27. Since F ′(x) =
1

x2
= x−2

, we use F (x) =
x−1

−1
= − 1

x
. By the Fundamental Theorem, we have

∫ 2

1

1

x2
dx =

(

− 1

x

)

∣

∣

∣

∣

2

1

= −1

2
−
(

−1

1

)

= −1

2
+ 1 =

1

2
.

28.

∫ 2

0

(

x3

3
+ 2x

)

dx =

(

x4

12
+ x2

)
∣

∣

∣

∣

2

0

=
4

3
+ 4 = 16/3 ≈ 5.333.

29. f(x) = 2x, so F (x) = x2 + C. F (0) = 0 implies that 02 + C = 0, so C = 0. Thus F (x) = x2 is the only possibility.

30. f(x) = 1
4
x, so F (x) = x2

8
+ C. F (0) = 0 implies that 1

8
· 02 + C = 0, so C = 0. Thus F (x) = x2/8 is the only

possibility.
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31. We use the substitution w = x2 + 1, dw = 2xdx.

∫

2x√
x2 + 1

dx =

∫

w−1/2dw = 2w1/2 + C = 2
√

x2 + 1 + C.

Check:
d

dx
(2
√

x2 + 1 + C) =
2x√

x2 + 1
.

32. We use the substitution w = x2 + 1, dw = 2xdx.

∫

2x(x2 + 1)5dx =

∫

w5dw =
w6

6
+ C =

1

6
(x2 + 1)6 + C.

Check:
d

dx
(
1

6
(x2 + 1)6 + C) = 2x(x2 + 1)5.

33. We use the substitution w = −x2, dw = −2x dx.

∫

xe−x2

dx = −1

2

∫

e−x2

(−2x dx) = −1

2

∫

ew dw

= −1

2
ew + C = −1

2
e−x2

+ C.

Check: d
dx

(− 1
2
e−x2

+ C) = (−2x)(− 1
2
e−x2

) = xe−x2

.

34. We use the substitution w = x4 + 1, dw = 4x3dx.

∫

4x3

x4 + 1
dx =

∫

1

w
dw = ln |w| + C = ln(x4 + 1) + C.

Check:
d

dx
(ln(x4 + 1) + C) =

4x3

x4 + 1
.

35. We use the substitution w = 3x + 1, dw = 3dx.

∫

1

(3x + 1)2
dx =

1

3

∫

1

w2
dw =

1

3

∫

w−2dw =
1

3

w−1

−1
+ C = − 1

3(3x + 1)
+ C.

36. We use the substitution w = x2 + 4, dw = 2xdx.

∫

x√
x2 + 4

dx =
1

2

∫

w−1/2dw =
1

2

w1/2

1/2
+ C =

√

x2 + 4 + C.

37. We use the substitution w = 5x − 7, dw = 5dx.

∫

(5x − 7)10dx =
1

5

∫

w10dw =
1

5

w11

11
+ C =

1

55
(5x − 7)11 + C.

38. We use the substitution w = −0.2t, dw = −0.2dt.
∫

100e−0.2tdt =
100

−0.2

∫

ewdw = −500ew + C = −500e−0.2t + C.

39. We use the substitution w = x2 + 1, dw = 2xdx.

∫

x
√

x2 + 1dx =
1

2

∫

w1/2dw =
1

3
w3/2 + C =

1

3
(x2 + 1)3/2 + C.

Check:
d

dx

(

1

3
(x2 + 1)3/2 + C

)

=
1

3
· 3

2
(x2 + 1)1/2 · 2x = x

√

x2 + 1.
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40. We use the substitution w = x2, dw = 2xdx.

∫

x sin(x2)dx =
1

2

∫

sin w dw = −1

2
cos w + C = −1

2
cos(x2) + C.

Check:
d

dx

(

−1

2
cos(x2) + C

)

= −1

2
(− sin(x2)) · 2x = x sin(x2).

41. We use the substitution w = t2, dw = 2t dt.
∫

t cos(t2)dt =
1

2

∫

cos(w)dw =
1

2
sin(w) + C =

1

2
sin(t2) + C.

Check:
d

dt
(
1

2
sin(t2) + C) =

1

2
cos(t2)(2t) = t cos(t2).

42. To find the area under the graph of f(x) = xex2

, we need to evaluate the definite integral

∫ 2

0

xex2

dx.

This is done in Example 4, Section 7.2, using the substitution w = x2, the result being

∫ 2

0

xex2

dx =
1

2
(e4 − 1).

43. Since f(x) = 1/(x + 1) is positive on the interval x = 0 to x = 2, we have

Area =

∫ 2

0

1

x + 1
dx = ln(x + 1)

∣

∣

∣

∣

2

0

= ln 3 − ln 1 = ln 3.

The area is ln 3 ≈ 1.0986.

44. If f(x) =
1

x + 1
, the average value of f on the interval 0 ≤ x ≤ 2 is defined to be

1

2 − 0

∫ 2

0

f(x) dx =
1

2

∫ 2

0

dx

x + 1
.

We’ll integrate by substitution. We let w = x + 1 and dw = dx, and we have

∫ x=2

x=0

dx

x + 1
=

∫ w=3

w=1

dw

w
= ln w

∣

∣

∣

∣

3

1

= ln 3 − ln 1 = ln 3.

Thus, the average value of f(x) on 0 ≤ x ≤ 2 is 1
2

ln 3 ≈ 0.5493. See Figure 7.30.

2

0.54931

f(x) = 1
1+x

x

Figure 7.30
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45. (a) Since r gives the rate of energy use, between 2005 and 2010 (where t = 0 and t = 5), we have

Total energy used =

∫ 5

0

462e0.019tdt quadrillion BTUs.

(b) The Fundamental Theorem of Calculus states that

∫ b

a

f(t) dt = F (b) − F (a)

provided that F ′(t) = f(t). To apply this theorem, we need to find F (t) such that F ′(t) = 462e0.019t ; we take

F (t) =
462

0.019
e0.019t = 24,316e0.019t .

Thus,

Total energy used =

∫ 5

0

462e0.019tdt = F (5) − F (0)

= 24,316e0.019t

∣

∣

∣

∣

5

0

= 24,316(e0.095 − e0) = 2423 quadrillion BTUs.

Approximately 2423 quadrillion BTUs of energy were consumed between 2005 and 2010.

46. Since dP/dt is negative for t < 3 and positive for t > 3, we know that P is decreasing for t < 3 and increasing for

t > 3. Between each two integer values, the magnitude of the change is equal to the area between the graph dP/dt and

the t-axis. For example, between t = 0 and t = 1, we see that the change in P is −1. Since P = 2 at t = 0, we must

have P = 1 at t = 1. The other values are found similarly, and are shown in Table 7.4.

Table 7.4

t 1 2 3 4 5

P 1 0 −1/2 0 1

47. See Figure 7.31.

x1 x2 x3 x4

x

f(x)

?

Point of
inflection

Figure 7.31

48. See Figure 7.32.

x1 x2 x3 x4

f(x)

x

Local min

?

Inflection point

?

Local max

?
Inflection
point

�

Figure 7.32
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49. First notice that F will be decreasing on the interval 0 < x < 1 and on the interval 3 < x < 4 and will be increasing on

the interval 1 < x < 3. The areas tell us how much the function increases or decreases. By the Fundamental Theorem,

we have

F (1) = F (0) +

∫ 1

0

F ′(x)dx = 5 + (−6) = −1.

F (3) = F (1) +

∫ 3

1

F ′(x)dx = −1 + 8 = 7.

F (4) = F (3) +

∫ 4

3

F ′(x)dx = 7 + (−2) = 5.

50. (a) If w = t/2, then dw = (1/2)dt. When t = 0, w = 0; when t = 4, w = 2. Thus,

∫ 4

0

g(t/2) dt =

∫ 2

0

g(w) 2dw = 2

∫ 2

0

g(w) dw = 2 · 5 = 10.

(b) If w = 2 − t, then dw = −dt. When t = 0, w = 2; when t = 2, w = 0. Thus,

∫ 2

0

g(2− t) dt =

∫ 0

2

g(w) (−dw) = +

∫ 2

0

g(w) dw = 5.

51. (a) We sketch f(x) = xe−x; see Figure 7.33. The shaded area to the right of the y-axis represents the integral
∫ ∞

0

xe−x dx.

x

f(x) = xe−x

Figure 7.33

(b) Using a calculator or computer, we obtain

∫ 5

0

xe−x dx = 0.9596

∫ 10

0

xe−x dx = 0.9995

∫ 20

0

xe−x dx = 0.99999996.

(c) The answers to part (b) suggest that the integral converges to 1.

52. (a) A calculator or computer gives

∫ 100

1

1√
x

dx = 18

∫ 1000

1

1√
x

dx = 61.2

∫ 10000

1

1√
x

dx = 198.

These values do not seem to be converging.

(b) An antiderivative of F ′(x) =
1√
x

is F (x) = 2
√

x

(

since
d

dx
(2
√

x) =
1√
x

)

. So, by the Fundamental Theorem,

we have
∫ b

1

1√
x

dx = 2
√

x

∣

∣

∣

∣

b

1

= 2
√

b − 2
√

1 = 2
√

b − 2.

(c) The limit of 2
√

b − 2 as b → ∞ does not exist, as
√

b grows without bound. Therefore

lim
b→∞

∫ b

1

1√
x

dx = lim
b→∞

(2
√

b − 2) does not exist.

So the improper integral

∫ ∞

1

1√
x

dx does not converge.
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53. The original dose equals the quantity of drug eliminated. The quantity of drug eliminated is the definite integral of the

rate. Thus, letting t → ∞, we have the improper integral

Total quantity of drug eliminated =

∫ ∞

0

50(e−0.1t − e−0.2t) dt.

Using the fact that
∫

ektdt = 1
k
ekt + C, we have

Total quantity = lim
b→∞

50
(

− 1

0.1
e−0.1t +

1

0.2
e−0.2t

)∣

∣

∣

b

0

= lim
b→∞

50(−10e−0.1b + 5e−0.2b − (−10e0 + 5e0))

Since e−0.1b → 0 and e−0.2b → 0 as b → ∞, we have

Total quantity = 50(10 − 5) = 250 mg.

54. Integration by parts with u = x, v′ = cos x gives

∫

x cos x dx = x sin x −
∫

sin x dx + C = x sin x + cos x + C.

55. We integrate by parts, with u = y, v′ = sin y. We have u′ = 1, v = − cos y, and

∫

y sin y dy = −y cos y −
∫

(− cos y) dy = −y cos y + sin y + C.

Check:
d

dy
(−y cos y + sin y + C) = − cos y + y sin y + cos y = y sin y.

56. Remember that ln(x2) = 2 ln x. Therefore,

∫

ln(x2) dx = 2

∫

ln x dx = 2x ln x − 2x + C.

Check:
d

dx
(2x ln x − 2x + C) = 2 ln x +

2x

x
− 2 = 2 ln x = ln(x2).

CHECK YOUR UNDERSTANDING

1. True. We see that the derivative of t3/3 + 5 is t2.

2. False. When we add one to the exponent −2, we get −1. The function −x−1 is an antiderivative of x−2.

3. False. Antiderivatives of e3x are of the form (1/3)e3x + C.

4. True. This is a correct integral statement.

5. True. We know
∫

z−1/2 dz =
z1/2

1/2
+ C = 2

√
z + C.

6. False. We know that
∫

ex dx = ex + C.

7. False. The derivative of ln |t| is 1/t so the correct integral statement is
∫

(1/t) dt = ln |t| + C.

8. True, since the derivative of 2x is (ln 2)2x.

9. True.

10. True. We know that all antiderivatives differ only by a constant.

11. False, since dw = (3q2 + 6q − 1) dq cannot be substituted.
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12. True, since dw = (1/x) dx.

13. False. We have dw = 2x dx. Since the integral
∫

ex2

dx does not include an x dx to be sustituted for dw, this integral

cannot be evaluated using this substitution.

14. True, since dw = 2x dx.

15. False. This is almost true, but is off by a minus sign since dw = −1 ds.

16. True. Since dw = 2t dt, we have
∫

t√
t2 + 1

dt =
1

2

∫

1√
w

dw =

∫

1

2
√

w
dw.

17. True, since dw = (ex − e−x) dx.

18. False. The substitution w = q3 + 5 would give the integral
∫

(1/3)w10 dw.

19. True, since dw = cos α dα.

20. False. This is almost true, but is off by a minus sign, since dw = − sin x dx.

21. False. We need to substitute the endpoints into an antiderivative of 1/x.

22. True, since ln x is an antiderivative of 1/x.

23. True, since x2 is an antiderivative of 2x.

24. False. We need to first find an antiderivative of 3x2.

25. False. For a definite integral, we need to substitute the endpoints into the antiderivative.

26. True. An antiderivative is et and we substitute the limits of integration and subtract.

27. False. When we make the substitution w = x2, we must also substitute for the limits of integration. Since w = 52 = 25

when x = 5 and w = 0 when x = 0, the result of the substitution is
∫ 25

0
ew dw.

28. True, since dw = (1/x) dx and w = 1 when x = e and w = 0 when x = 1.

29. False. The two definite integrals represent two different quantities.

30. True. The function y = e−kx is positive, so the integral represents the area under the curve between x = 1 and x = 2
and so is positive.

31. True.

32. True. If a function is concave up, its second derivative is positive which implies that its derivative is increasing.

33. True. This is the Fundamental Theorem of Calculus.

34. False. The limits of integration on the integral need to be from 0 to 3 to make this a true statement.

35. True. Since f ′ is positive on the interval 3 to 4, the function is increasing on that interval.

36. False. Since f ′ is negative on the interval 1 to 2, the function is decreasing on that interval.

37. True. Since f ′ is positive on the interval 2 to 3, the function is increasing on that interval.

38. True. Since f ′ is negative on the interval 5 to 6, the function is decreasing on that interval.

39. False. Since f ′ is negative on the interval 0 to 1, the function is decreasing on that interval.

40. True. The area below the curve of f ′ between x = 1 and x = 2 is similar in size to the area above the curve between

x = 2 and x = 3. Between x = 1 and x = 3, the function f increases approximately the same amount that it decreases,

so f(1) ≈ f(3).

41. False. The integral has to be
∫

u dv when u and dv are substituted. In this case, we should have u = x2 and dv = ex dx.

42. True.

43. False. We integrate dv to find v. We see v =
∫

e3x dx = (1/3)e3x.

44. False. We integrate dv to find v and 1/x is not the antiderivative of ln x. It is the derivative of lnx. In this case, the

assignment of parts is wrong. We should try u = lnx and dv = x2 dx.

45. False. This integral is more appropriately evaluated using the method of substitution.

46. True.

47. True.

48. False. This integral is more appropriately evaluated using the method of substitution.

49. False. This integral is more appropriately evaluated using the method of substitution.
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50. True. We use u = ln x and dv = x3 dx.

PROJECTS FOR CHAPTER SEVEN

1. (a) Suppose Q(t) is the amount of water in the reservoir at time t. Then

Q′(t) =
Rate at which water

in reservoir is changing
=

Inflow

rate
−

Outflow

rate

Thus the amount of water in the reservoir is increasing when the inflow curve is above the outflow, and

decreasing when it is below. This means that Q(t) is a maximum where the curves cross in July 2007 (as

shown in Figure 7.34), and Q(t) is decreasing fastest when the outflow is farthest above the inflow curve,

which occurs about October 2007 (see Figure 7.34).

To estimate values of Q(t), we use the Fundamental Theorem which says that the change in the total

quantity of water in the reservoir is given by

Q(t) − Q(Jan 2007) =

∫

t

Jan 07

(inflow rate − outflow rate) dt

or Q(t) = Q(Jan 2007) +

∫

t

Jan 07

(Inflow rate − Outflow rate) dt.

Jan (07) April July Oct Jan(08)

rate of flow
(millions of gallons/day)

Outflow

Inflow

Q(t) is max

?

Q(t) is min

?

Jan (07) April July Oct Jan(08)

Q(t)
millions of gallons

	

Q(t) is decreasing most rapidly

Q(t) is increasing
most rapidly

R

Figure 7.34

(b) See Figure 7.34. Maximum in July 2007. Minimum in Jan 2008.

(c) See Figure 7.34. Increasing fastest in May 2007. Decreasing fastest in Oct 2007.
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(d) In order for the water to be the same as Jan 2007 the total amount of water which has flowed into the

reservoir minus the total amount of water which has flowed out of the reservoir must be 0. Referring to

Figure 7.35, we have

∫ July 08

Jan 07

(Inflow − Outflow) dt = −A1 + A2 − A3 + A4 = 0

giving A1 + A3 = A2 + A4

Jan (‘07) April July Oct Jan (‘08) April July

rate of flow
(millions of gallons/day)

Inflow

Outflow
A1

A2 A3
A4

Figure 7.35

Solutions to Practice Problems on Integration

1.
q3

3
+

5q2

2
+ 2q + C

2.

∫

(u4 + 5) du =
u5

5
+ 5u + C

3.
x3

3
+ x + C.

4. Since
d

dx
(e−3t) = −3e−3t

, we have

∫

e−3t dt = −1

3
e−3t + C.

5. 4x3/2 + C

6.

∫

(ax2 + b) dx = a · x3

3
+ bx + C

7.
x4

4
+ 2x2 + 8x + C.

8.

∫

100e−0.5t dt = 100
(

1

−0.5
e−0.5t

)

+ C = −200e−0.5t + C

9.

∫

(w4 − 12w3 + 6w2 − 10) dw =
w5

5
− 12 · w4

4
+ 6 · w3

3
− 10 · w + C

=
w5

5
− 3w4 + 2w3 − 10w + C

10.

∫

(

4

x
+ 5x−2

)

dx = 4 ln |x| + 5x−1

−1
+ C = 4 ln |x| − 5

x
+ C

11.

∫

q−1/2 dq =
q1/2

1/2
+ C = 2q1/2 + C
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12.

∫

3 sin θ dθ = −3 cos θ + C

13.

∫

(p2 +
5

p
) dp =

p3

3
+ 5 ln |p| + C

14.

∫

P0e
kt dt = P0

(

1

k
ekt
)

+ C =
P0

k
ekt + C

15.

∫

(q3 + 8q + 15) dq =
q4

4
+ 8 · q2

2
+ 15q + C

=
q4

4
+ 4q2 + 15q + C

16.

∫

1000e0.075t dt = 1000
(

1

0.075
e0.075t

)

+ C = 13333e0.075t + C

17.

∫

(5 sin x + 3 cos x) dx = −5 cos x + 3 sin x + C

18.

∫

(10 + 5 sin x) dx = 10x − 5 cos x + C

19.

∫

5

w
dw = 5 ln |w| + C

20.

∫

πr2h dr = πh

(

r3

3

)

+ C =
π

3
hr3 + C

21.

∫

(q + q−3) dq =
q2

2
+

q−2

−2
+ C =

q2

2
− 1

2q2
+ C

22.

∫

15p2q4 dp = 15

(

p3

3

)

q4 + C = 5p3q4 + C

23.

∫

15p2q4 dq = 15p2

(

q5

5

)

+ C = 3p2q5 + C

24.

∫

(3x2 + 6e2x) dx = 3 · x3

3
+ 6 · e2x

2
+ C

= x3 + 3e2x + C

25.

∫

5e2q dq = 5 · 1

2
e2q + C = 2.5e2q + C

26.

∫
(

p3 +
1

p

)

dp =
p4

4
+ ln |p| + C

27.

∫

(Ax3 + Bx) dx =
Ax4

4
+

Bx2

2
+ C

28.

∫

(6x1/2 + 15) dx = 6 · x3/2

3/2
+ 15x + C = 4x3/2 + 15x + C

29.

∫

(x2 + 8 + ex) dx =
x3

3
+ 8x + ex + C

30. −150e−0.2t + C

31.
t3

3
− 3t2 + 5t + C.

32.

∫

(

a
(

1

x

)

+ bx−2
)

dx = a ln |x| + b
x−1

−1
+ C = a ln |x| − b

x
+ C

33.

∫

(Aq + B)dq =
Aq2

2
+ Bq + C

34.

∫

(6x−1/2 + 8x1/2)dx = 6
x1/2

1/2
+ 8

x3/2

3/2
= 12

√
x +

16

3
x3/2 + C
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35.

∫

(e2t + 5)dt =
1

2
e2t + 5t + C

36.

∫

sin(3x)dx = −1

3
cos(3x) + C

37.

∫

12 cos(4x)dx = 3 sin(4x) + C

38. We use the substitution w = y + 2, dw = dy:

∫

1

y + 2
dy =

∫

1

w
dw = ln |w| + C = ln |y + 2| + C.

39. We use the substitution w = y2 + 5, dw = 2y dy.

∫

y(y2 + 5)8 dy =
1

2

∫

(y2 + 5)8(2y dy)

=
1

2

∫

w8 dw =
1

2

w9

9
+ C

=
1

18
(y2 + 5)9 + C.

Check:
d

dy
(

1

18
(y2 + 5)9 + C) =

1

18
[9(y2 + 5)8(2y)] = y(y2 + 5)8.

40.
1

4
sin(4x) + C

41.

∫

A sin(Bt)dt = −A

B
cos(Bt) + C

42. We use the substitution w = 3x + 1, dw = 3dx:

∫ √
3x + 1dx =

1

3

∫

w1/2dw =
1

3

w3/2

3/2
+ C =

2

9
(3x + 1)3/2 + C.

43. We use the substitution w = 2 + ex, dw = ex dx.

∫

ex

2 + ex
dx =

∫

dw

w
= ln |w| + C = ln(2 + ex) + C.

(We can drop the absolute value signs since 2 + ex ≥ 0 for all x.)

Check:
d

dx
[ln(2 + ex) + C] =

1

2 + ex
· ex =

ex

2 + ex
.

44. We use the substitution w = sin 5θ, dw = 5 cos 5θ dθ.

∫

sin6 5θ cos 5θ dθ =
1

5

∫

w6 dw =
1

5
(
w7

7
) + C =

1

35
sin7 5θ + C.

Check:
d

dθ
(

1

35
sin7 5θ + C) =

1

35
[7 sin6 5θ](5 cos 5θ) = sin6 5θ cos 5θ.

Note that we could also use Problem 23 to solve this problem, substituting w = 5θ and dw = 5 dθ to get:

∫

sin6 5θ cos 5θ dθ =
1

5

∫

sin6 w cos w dw

=
1

5
(
sin7 w

7
) + C =

1

35
sin7 5θ + C.

45. We use the substitution w = 1 + sin x, dw = cos xdx:

∫

cos x√
1 + sin x

dx =

∫

w−1/2dw =
w1/2

1/2
+ C = 2

√
1 + sin x + C.
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46. Integration by parts with u = ln x, v′ = x gives

∫

x ln x dx =
x2

2
ln x −

∫

1

2
x dx =

1

2
x2 ln x − 1

4
x2 + C.

47.
∫

xex dx = xex −
∫

ex dx (let x = u, ex = v′, ex = v)

= xex − ex + C,

where C is a constant.

48.

∫ 10

0

ze−z dz = [−ze−z]
∣

∣

∣

10

0
−
∫ 10

0

−e−z dz (let z = u, e−z = v′,−e−z = v)

= −10e−10 − [e−z]
∣

∣

∣

10

0

= −10e−10 − e−10 + 1

= −11e−10 + 1.


