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CHAPTER TEN

Solutions for Section 10.1

1. (a) = (III), (b) = (IV), (c) = (I), (d) = (II).

2. (a) = (I), (b) = (IV), (c) = (III). Graph (II) represents an egg originally at 0◦ C which is moved to the kitchen table (20◦

C) two minutes after the egg in part (a) is moved.

3. The rate of change of P is proportional to P so we have

dP

dt
= kP,

for some constant k. Since the population P is increasing, the derivative dP/dt must be positive. Therefore, k is positive.

4. The rate at which the balance is changing is 5% times the current balance, so we have

Rate of change of B = 0.05 · Current balance

so we have
dB

dt
= 0.05B.

5. The rate of change of Q is proportional to Q so we have

dQ

dt
= kQ,

for some constant k. Since the radioactive substance is decaying, the quantity present, Q, is decreasing. The derivative

dQ/dt must be negative, so the constant of proportionality k is negative.

6. The balance in the account, B, is increasing at a rate of 4% times B and is decreasing at a rate of 2000 dollars per year.

We have

Rate of change of B = Rate in − Rate out.

dB

dt
= 0.04B − 2000.

Notice that the initial amount of $25,000 in the account is not used in the differential equation. The differential equation

tells us only how things are changing.

7. The amount of the pollutant, P , is decreasing at a rate of 0.08 times P and is also decreasing at a constant rate of 30

gallons per day. Notice that both changes cause P to decrease, so both will have a negative effect on dP/dt. We have

dP

dt
= −0.08P − 30.

8. The amount of morphine, M , is increasing at a rate of 2.5 mg/hour and is decreasing at a rate of 0.347 times M . We have

Rate of change of M = Rate in − Rate out.

dM

dt
= 2.5 − 0.347M.

9. The amount of alcohol, A, is decreasing at a constant rate of 1 ounce per hour, so we have

dA

dt
= −1.

The negative sign indicates that the amount of alcohol is decreasing.
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10. The amount of toxin, A, is increasing at a rate of 10 micrograms per day and is decreasing at a rate of 0.03 times A. We

have

Rate of change of A = Rate in − Rate out.

dA

dt
= 10 − 0.03A.

11. (a) The amount of caffeine, A, is decreasing at a rate of 17% times A, so we have

dA

dt
= −0.17A.

The negative sign indicates that the amount of caffeine is decreasing at a rate of 17% times A. Notice that the initial

amount of caffeine, 100 mg, is not used in the differential equation. The differential equation tells us only how things

are changing.

(b) At the start of the first hour, we have A = 100. Substituting this into the differential equation, we have

dA

dt
= −0.17A = −0.17(100) = −17 mg/hour.

We estimate that the amount of caffeine decreases by about (17 mg/hr) · (1 hr) = 17 mg during the first hour. This is

only an estimate, however, since the derivative dA/dt will not stay constant at −17 throughout the entire first hour.

12. (a) The balance in the account, B, is increasing at a rate of $6000 per year and is also increasing at a rate of 0.07 times

the balance B. Notice that both changes cause B to increase, rather than decrease, so both will have a positive effect

on dB/dt. We have
dB

dt
= 6000 + 0.07B.

(b) If B = 10,000, we have
dB

dt
= 6000 + 0.07B = 6000 + 0.07(10,000) = 6700.

If the balance is $10,000, we expect the balance to increase at a rate of about $6700 per year.

If B = 100,000, we have

dB

dt
= 6000 + 0.07B = 6000 + 0.07(100,000) = 13,000.

If the balance is $100,000, we expect the balance to increase at a rate of about $13,000 per year.

13. (a) To see if W is increasing or decreasing, we determine whether the derivative dW/dt is positive or negative. When

W = 10, we have
dW

dt
= 5W − 20 = 5(10) − 20 = 30 > 0.

Since dW/dt is positive when W = 10, the quantity W is increasing.

When W = 2, we have
dW

dt
= 5W − 20 = 5(2) − 20 = −10 < 0.

Since dW/dt is negative when W = 2, the quantity W is decreasing.

(b) We set dW/dt = 0 and solve:

dW

dt
= 0

5W − 20 = 0

W = 4.

The rate of change of W is zero when W = 4.

14. The quantity y is increasing when dy/dt is positive. Using the differential equation, we see that dy/dt is positive when

−0.5y is positive, which means y is negative. The quantity y is increasing when y is negative. Similarly, the quantity y is

decreasing when y is positive.
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15. The derivative dN/dt represents the number of new Wikipedia articles per day. The model expresses this number as a

sum of two terms. The first term is B, the number of articles added every day by dedicated wikipedians. The second term,

representing the number of articles per day added by the general public, is proportional to the number of articles in the

Wikipedia and can be written kN , where k is constant. Putting the terms together, we have:

dN

dt
= B + kN.

16. The rate of change of the value of infrastructure, dK/dt, is the sum of two terms. One term represents increase due to

investment, and can be written k1Y , where Y is national income and k1 is a constant of proportionality. The constant

k1 is positive because investment increases the value of infrastructure. The other term represents the decrease due to

depreciation, and can be written k2K, where k2 is a second proportionality constant. The constant k2 is positive because

depreciation decreases the value of infrastructure, which means that the −k2K is negative. The differential equation for

K is
dK

dt
= k1Y − k2K.

Solutions for Section 10.2

1. We are told that y is a function of t (since the derivative is dy/dt) with derivative 2t. We need to think of a function

with derivative 2t. Since y = t2 has derivative 2t, we see that y = t2 is a solution to this differential equation. Since the

function y = t2 + 1 also has derivative 2t, we see that y = t2 + 1 is also a solution. In fact, y = t2 + C is a solution for

any constant C. The general solution is

y = t2 + C.

2. (a) Since y = x2, we have y′ = 2x. Substituting these functions into our differential equation, we have

xy′ − 2y = x(2x) − 2(x2) = 2x2 − 2x2 = 0.

Therefore, y = x2 is a solution to the differential equation xy′ − 2y = 0.

(b) For y = x3, we have y′ = 3x2. Substituting gives:

xy′ − 2y = x(3x2) − 2(x3) = 3x3 − 2x3 = x3.

Since x3 does not equal 0 for all x, we see that y = x3 is not a solution to the differential equation.

3. Since y = t4, the derivative is dy/dt = 4t3. We have

Left-side = t
dy

dt
= t(4t3) = 4t4.

Right-side = 4y = 4t4.

Since the substitution y = t4 makes the differential equation true, y = t4 is in fact a solution.

4. Since dy/dx = −1, the slope of the curve must be −1 at all points. Since the slope is constant, the solution curve must

be a line with slope −1. Graph C is a possible solution curve for this differential equation.

5. Since dy/dx = 0.1, the slope of the curve is 0.1 at all points. Thus the curve is a line with positive slope, such as Graph

F.

6. Since −y2 is always less than or equal to zero, the derivative dy/dx is always less than or equal to zero. A possible

solution curve must have slope less than or equal to zero at all points, so possible answers are B or C. The slope of −y2 is

steeper for large y-values and less steep for y-values close to zero, so the only possible solution curve for this differential

equation is Graph B.

7. Since dy/dx = 2x, the slope of the solution curve will be negative when x is negative and positive when x is positive. A

solution curve will be decreasing for negative x and increasing for positive x. The only graph with these features is Graph

E.
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8. Since dy/dx = 2, the slope of the solution curve will be 2 at all points. Any possible solution curve for this differential

equation will be a line with slope 2. A possible solution curve for this differential equation is Graph F.

9. Since dy/dx = y, the slope of the solution curve will be positive for positive y-values and negative for negative y-values.

In addition, the slope will be bigger for large y and closer to zero when the y-value is closer to zero. A possible solution

curve for this differential equation is Graph A.

10. Since dy/dx is negative for all x, the slope of the solution curve is negative everywhere and becomes closer to horizontal

as x increases, as in Graph B.

11. Since dy/dx = 1 − x is positive for x < 1 and negative for x > 1, the slope of the solution curve is positive for x < 1
and negative for x > 1. The answer is Graph D.

12. Since dy/dx is positive if y is positive, the slope of the solution curve is positive everywhere and increases as y increases,

as in Graph A.

13. We know that at time t = 0, the value of y is 8. Since we are told that dy/dt = 0.5t, we know that at time t = 0

dy

dt
= 0.5(0) = 0.

As t goes from 0 to 1, y will increase by 0, so at t = 1,

y = 8 + 0(1) = 8.

Likewise, we get that at t = 1,
dy

dt
= 0.5(1) = 0.5

and so at t = 2
y = 8 + 0.5(1) = 8.5.

At t = 2,
dy

dt
= 0.5(2) = 1

then at t = 3
y = 8.5 + 1(1) = 9.5.

At t = 3,
dy

dt
= 0.5(3) = 1.5 so that at t = 4, y = 9.5 + 1.5(1) = 11.

Thus we get the following table

t 0 1 2 3 4

y 8 8 8.5 9.5 11

14. We know that at time t = 0, the value of y is 8. Since we are told that dy/dt = 0.5y, we know that at time t = 0

dy

dt
= 0.5(8) = 4.

As t goes from 0 to 1, y will increase by 4, so at t = 1,

y = 8 + 4 = 12.

Likewise, we get that at t = 1,
dy

dt
= .5(12) = 6

so that at t = 2,

y = 12 + 6 = 18.

At t = 2,
dy

dt
= .5(18) = 9 so that at t = 3, y = 18 + 9 = 27.

At t = 3,
dy

dt
= .5(27) = 13.5 so that at t = 4, y = 27 + 13.5 = 40.5.

Thus we get the following table

t 0 1 2 3 4

y 8 12 18 27 40.5
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15. We know that at time t = 0, the value of y is 8. Since we are told that dy/dt = 4 − y, we know that at time t = 0

dy

dt
= 4 − 8 = −4.

As t goes from 0 to 1, y will decrease by 4, so at t = 1,

y = 8 − 4 = 4

Likewise, we get that at t = 1,
dy

dt
= 4 − 4 = 0

so that at t = 2,

y = 4 + 0(1) = 4.

At t = 2,
dy

dt
= 4 − 4 = 0 so that at t = 3, y = 4 + 0 = 4.

At t = 3,
dy

dt
= 4 − 4 = 0 so that at t = 4, y = 4 + 0 = 4.

Thus we get the following table

t 0 1 2 3 4

y 8 4 4 4 4

16. When y = 100, the rate of change of y is
dy

dt
=

√
y =

√
100 = 10

The value of y goes up by 10 units as t goes up 1 unit. When t = 1, we have

y = Old value of y + Change in y = 100 + 10 = 110.

Continuing in this way, we obtain the table:

t 0 1 2 3 4

y 100 110 120.5 131.5 143.0

17. At t = 0, we know P = 70 and we can compute the value of dP/dt:

At t = 0, we have
dP

dt
= 0.2P − 10 = 0.2(70) − 10 = 4.

The population is increasing at a rate of 4 million fish per year. At the end of the first year, the fish population will have

grown by about 4 million fish, and so we have:

At t = 1, we estimate P = 70 + 4 = 74.

We can now use this new value of P to calculate dP/dt at t = 1:

At t = 1, we have
dP

dt
= 0.2P − 10 = 0.2(74) − 10 = 4.8,

and so:

At t = 2, we estimate P = 74 + 4.8 = 78.8.

Continuing in this way, we obtain the values in Table 10.1.

Table 10.1

t 0 1 2 3

P 70 74 78.8 84.56
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18. If P = P0e
t, then

dP

dt
=

d

dt
(P0e

t) = P0e
t = P.

19. If Q = Cekt, then
dQ

dt
= Ckekt = k(Cekt) = kQ.

We are given that dQ
dt

= −0.03Q, so we know that kQ = −0.03Q. Thus we either have Q = 0 (in which case C = 0
and k is anything) or k = −0.03. Notice that if k = −0.03, then C can be any number.

20. Yes. To see why, we substitute y = xn into the equation 13x
dy

dx
= y. We first calculate

dy

dx
=

d

dx
(xn) = nxn−1

. The

differential equation becomes

13x(nxn−1) = xn

But 13x(nxn−1) = 13n(x · xn−1) = 13nxn, so we have

13n(xn) = xn

This equality must hold for all x, so we get 13n = 1, so n = 1/13. Thus, y = x1/13
is a solution.

21. Since y = x2 + k we know that

y′ = 2x.

Substituting y = x2 + k and y′ = 2x into the differential equation we get

10 = 2y − xy′

= 2(x2 + k) − x(2x)

= 2x2 + 2k − 2x2

= 2k

Thus, k = 5 is the only solution.

22. We first compute dy/dx for each of the functions on the right.

If y = x3 then

dy

dx
= 3x2

= 3
y

x
.

If y = 3x then

dy

dx
= 3

=
y

x
.

If y = e3x then

dy

dx
= 3e3x

= 3y.

If y = 3ex then

dy

dx
= 3ex

= y.

Finally, if y = x then

dy

dx
= 1

=
y

x
.

Comparing our calculated derivatives with the right-hand sides of the differential equations we see that (a) is solved

by (II) and (V), (b) is solved by (I), (c) is not solved by any of our functions, (d) is solved by (IV) and (e) is solved by

(III).
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Solutions for Section 10.3

1. (a) (i), (ii), (iii)

1 2

4

8

12

16

20 � x = 0, y = 12

� x = 0, y = 10

� x = 0, y = 8

x

y

Figure 10.1

(b) When y = 10, we have dy/dx = 0 and so the solution curve is horizontal. This is why the solution curve through

y = 10 is a horizontal line.

2. See Figure 10.2. Other choices of solution curves are, of course, possible.

y

x

y

x

Figure 10.2

3. (a) See Figure 10.3.

−4 4

−4

4

x

y
(i)

(iii)(ii)

Figure 10.3

(b) The solution through (−1, 0) appears to be linear with equation y = −x − 1.

(c) If y = −x − 1, then y′ = −1 and x + y = x + (−x − 1) = −1, so this checks as a solution.
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4. III. The slope field appears to be near zero at P = 1 and P = 0, so this rules out dP/dt = P −1, which has a slope of −1
at P = 0. Between P = 0 and P = 1, the slopes in the figure are positive, so this rules out dP/dt = P (P−1), which has

negative values for 0 < P < 1. To decide between the remaining two possibilities, note that when P = 1/2, the slopes in

the figure appear to be about 1. The differential equation dP/dt = 3P (1−P ) gives a slope of 3 · 1/2 · (1− 1/2) = 3/4,

while the differential equation dP/dt = 1/3P (1 − P ) gives a slope of 1/12 which is clearly too small. Thus the best

answer is dP/dt = 3P (1 − P ).

5. (a) The slope at any point (x, y) is equal to dy/dx, which is xy.Then:

At point (2, 1), slope = 2 · 1 = 2,

At point (0, 2), slope = 0 · 2 = 0,

At point (−1, 1), slope = −1 · 1 = −1,

At point (2,−2), slope = 2(−2) = −4.

(b) See Figure 10.4.

−2 −1 1 2

−2

−1

1
?

Slope = 2
-Slope = 0

-Slope = −1

6
Slope = −4

x

y

Figure 10.4

6. (a) Since y′ = −y, the slope is negative above the x-axis (when y is positive) and positive below the x-axis (when y is

negative). The only slope field for which this is true is II.

(b) Since y′ = y, the slope is positive for positive y and negative for negative y. This is true of both I and III. As y get

larger, the slope should get larger, so the correct slope field is I.

(c) Since y′ = x, the slope is positive for positive x and negative for negative x. This corresponds to slope field V.

(d) Since y′ =
1

y
, the slope is positive for positive y and negative for negative y. As y approaches 0, the slope becomes

larger in magnitude, which correspond to solution curves close to vertical. The correct slope field is III.

(e) Since y′ = y2, the slope is always positive, so this must correspond to slope field IV.

7. (a) II (b) VI (c) IV (d) I (e) III (f) V

8. If the starting point has y > 0, then y → ∞ as x → ∞. If the starting point has y = 0, then the solution is constant;

y = 0. If the starting point has y < 0, then y → −∞ as x → ∞.

9. As x increases, y → ∞.

10. As x → ∞, y → ∞, no matter what the starting point is.

11. As x → ∞, y seems to oscillate within a certain range. The range will depend on the starting point, but the size of the

range appears independent of the starting point.

12. If y = 4 for the starting point, then y = 4 always, so y → 4 as x → ∞. If y 6= 4 for the starting point, then y → 4 as

x → ∞.

13. From the slope field, the function looks like a parabola of the form y = x2 + C, where C depends on the starting point.

In any case, y → ∞ as x → ∞.

14. When a = 1 and b = 2, the Gompertz equation is y′ = −y ln(y/2) = y ln(2/y) = y(ln 2 − ln y). This differential

equation is similar to the differential equation y′ = y(2−y) in certain ways. For example, in both equations y′ is positive

for 0 < y < 2 and negative for y > 2. Also, for y-values close to 2, the quantities (ln 2− ln y) and (2−y) are both close

to 0, so y(ln 2 − ln y) and y(2 − y) are approximately equal to zero. Thus around y = 2 the slope fields look almost the
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same. This happens again around y = 0, since around y = 0 both y(2− y) and y(ln 2− ln y) go to 0. Finally, for y > 2,

ln y grows much slower than y, so the slope field for y′ = y(ln 2− ln y) is less steep, negatively, than for y′ = y(2− y).

Solutions for Section 10.4

1. The equation is in the form dw/dr = kw, so the general solution is the exponential function

w = Ce3r.

We find C using the initial condition that w = 30 when r = 0.

w = Ce3r

30 = Ce0

C = 30.

The solution is

w = 30e3r .

2. The equation is in the form dy/dx = ky, so the general solution is the exponential function

y = Ce−0.14x.

We find C using the initial condition that y = 5.6 when x = 0.

y = Ce−0.14x

5.6 = Ce0

C = 5.6.

The solution is

y = 5.6e−0.14x.

3. The equation given is in the form
dP

dt
= kP.

Thus we know that the general solution to this equation will be

P = Cekt.

And in our case, with k = 0.02 and C = 20 we get

P = 20e0.02t.

4. The equation is in the form dp/dq = kp, so the general solution is the exponential function

p = Ce−0.1q .

We find C using the condition that p = 100 when q = 5.

p = Ce−0.1q

100 = Ce−0.1(5)

C =
100

e−0.5
= 164.87.

The solution is

p = 164.87e−0.1q .
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5. The equation given is in the form
dQ

dt
= kQ.

Thus we know that the general solution to this equation will be

Q = Cekt.

And in our case, with k =
1

5
, we get

Q = Ce
1

5
t.

We know that Q = 50 when t = 0. Thus we get

Q(t) = Ce
1

5
t

Q(0) = 50 = Ce0

50 = C

Thus we get

Q = 50e
1

5
t.

6. Rewriting we get
dy

dx
= −1

3
y.

We know that the general solution to an equation in the form

dy

dx
= ky

is

y = Cekx.

Thus in our case we get

y = Ce−
1

3
x.

We are told that y(0) = 10 so we get

y(x) = Ce−
1

3
x

y(0) = 10 = Ce0

C = 10

Thus we get

y = 10e−
1

3
x.

7. (a) The rate of growth of the money in the account is proportional to the amount of money in the account. Thus

dM

dt
= rM.

(b) We know that the equation
dM

dt
= rM

has the general solution

M = Aert.

We know that in 2000 (i.e. t = 0) we have M = 1000. Thus we get

M = Aert

M(0) = 1000 = Ae0r

1000 = Ae0

A = 1000.

Thus we get

M = 1000ert.
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(c)

t = 0
2000

t = 30
2030

1000

5000

20000

t

M

M = 1000e0.05t

M = 1000e0.10t

8. (a) Since interest is earned continuously,

Rate of change of balance = 1.5%(Balance)

so
dB

dt
= 0.015B.

(b) B = Ce0.015t is the general solution. Since B = 5000 when t = 0, we have C = 5000. The solution is B =
5000e0.015t

(c) When t = 10, B = 5000e0.015(10) = $5809.17.

9. (a) If B = f(t) (where t is in years)

dB

dt
= Rate at which interest is earned + Rate at which money is deposited

= 0.10B + 1000.

(b)
dB

dt
= 0.1(B + 10,000)

We know that a differential equation of the form

dB

dt
= k(B − A)

has general solution:

B = Cekt + A.

Thus, in our case

B = Ce0.1t − 10,000.

For t = 0, B = 0, hence C = 10,000. Therefore, B = 10,000e0.1t − 10,000.

10. Since the rate of change is proportional to the amount present, we have dQ
dt

= kQ. We know the constant of proportionality

is k = −0.0025, so a differential equation for Q as a function of t is

dQ

dt
= −0.0025Q.

The solution to this differential equation is

Q = Ce−0.0025t,

for some constant C. When t = 20, we have Q = Ce−0.0025(20) = C(0.951), so approximately 95% of the current

ozone will still be here in 20 years. Approximately 5% will decay during this time.

11. Michigan:
dQ

dt
= − r

V
Q = − 158

4.9 × 103
Q ≈ −0.032Q

so

Q = Q0e
−0.032t.

We want to find t such that

0.1Q0 = Q0e
−0.032t
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so

t =
− ln(0.1)

0.032
≈ 72 years.

Ontario:
dQ

dt
= − r

V
Q =

−209

1.6 × 103
Q = −0.131Q

so

Q = Q0e
−0.131t.

We want to find t such that

0.1Q0 = Q0e
−0.131t

so

t =
− ln(0.1)

0.131
≈ 18 years.

Lake Michigan will take longer because it is larger (4900 km3 compared to 1600 km3) and water is flowing through

it at a slower rate (158 km3/year compared to 209 km3/year).

12. Lake Superior will take the longest, because the lake is largest (V is largest) and water is moving through it most slowly

(r is smallest). Lake Erie looks as though it will take the least time because V is smallest and r is close to the largest. For

Erie, k = r/V = 175/460 ≈ 0.38. The lake with the largest value of r is Ontario, where k = r/V = 209/1600 ≈ 0.13.

Since e−kt decreases faster for larger k, Lake Erie will take the shortest time for any fixed fraction of the pollution to be

removed.

For Lake Superior,
dQ

dt
= − r

V
Q = − 65.2

12,200
Q ≈ −0.0053Q

so

Q = Q0e
−0.0053t.

When 80% of the pollution has been removed, 20% remains so Q = 0.2Q0. Substituting gives us

0.2Q0 = Q0e
−0.0053t

so

t = − ln(0.2)

0.0053
≈ 301 years.

(Note: The 301 is obtained by using the exact value of r
V

= 65.2
12,200

, rather than 0.0053. Using 0.0053 gives 304 years.)

For Lake Erie, as in the text
dQ

dt
= − r

V
Q = −175

460
Q ≈ −0.38Q

so

Q = Q0e
−0.38t.

When 80% of the pollution has been removed

0.2Q0 = Q0e
−0.38t

t = − ln(0.2)

0.38
≈ 4 years.

So the ratio is
Time for Lake Superior

Time for Lake Erie
≈ 301

4
≈ 75.

In other words it will take about 75 times as long to clean Lake Superior as Lake Erie.

13. (a) Since the amount leaving the blood is proportional to the quantity in the blood,

dQ

dt
= −kQ for some positive constant k.

Thus Q = Q0e
−kt, where Q0 is the initial quantity in the bloodstream. Only 20% is left in the blood after 3 hours.

Thus 0.20 = e−3k , so k = ln 0.20
−3

≈ 0.5365. Therefore Q = Q0e
−0.5365t .

(b) Since 20% is left after 3 hours, after 6 hours only 20% of that 20% will be left. Thus after 6 hours only 4% will be

left, so if the patient is given 100 mg, only 4 mg will be left 6 hours later.
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14. (a) Suppose Y (t) is the quantity of oil in the well at time t. We know that the oil in the well decreases at a rate proportional

to Y (t), so
dY

dt
= −kY.

Integrating, and using the fact that initially Y = Y0 = 106, we have

Y = Y0e
−kt = 106e−kt.

In six years, Y = 500, 000 = 5 · 105, so

5 · 105 = 106e−k·6

so

0.5 = e−6k

k = − ln 0.5

6
= 0.1155.

When Y = 600, 000 = 6 · 105,

Rate at which oil decreasing =

∣

∣

∣

∣

dY

dt

∣

∣

∣

∣

= kY = 0.1155(6 · 105) = 69,300 barrels/year.

(b) We solve the equation

5 · 104 = 106e−0.1155t

0.05 = e−0.1155t

t =
ln 0.05

−0.1155
= 25.9 years.

15. (a) Since the rate of change is proportional to the amount present, dy/dt = ky for some constant k.
(b) Solving the differential equation, we have y = Aekt, where A is the initial amount. Since 100 grams become 54.9

grams in one hour, 54.9 = 100ek, so k = ln(54.9/100) ≈ −0.5997.
Thus, after 10 hours, there remains 100e(−0.5997)10 ≈ 0.2486 grams.

16. (a) Since we are told that the rate at which the quantity of the drug decreases is proportional to the amount of the drug

left in the body, we know the differential equation modeling this situation is

dQ

dt
= −kQ.

Since we are told that the quantity of the drug is decreasing, we include the negative sign.

(b) We know that the general solution to the differential equation

dQ

dt
= −kQ

is

Q = Ce−kt.

(c) We are told that the half life of the drug is 3.8 hours. This means that at t = 3.8 the amount of the drug in the body

is half the amount that was in the body at t = 0, or in other words

0.5Q(0) = Q(3.8).

Solving this equation gives

0.5Ce−k(0) = Ce−k(3.8)

0.5C = Ce−k(3.8)

0.5 = e−k(3.8)

ln(0.5) = −k(3.8)

k =
− ln(0.5)

3.8
≈ 0.182.
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(d) From part (c) we know that the formula for Q is

Q = Ce−0.182t.

We are told that initially there are 10 mg of the drug in the body. Thus at t = 0 we get

10 = Ce−0.182(0)

C = 10.

Thus the formula is

Q(t) = 10e−0.182t.

Substituting in t = 12 gives

Q(12) = 10e−0.182(12)

= 10e−2.184

Q(12) ≈ 1.126 mg

17. (a) Assuming that the world’s population grows exponentially, satisfying dP/dt = cP, and that the land in use for crops

is proportional to the population, we expect A to satisfy dA/dt = kA.
(b) We have A(t) = A0e

kt = (1×109)ekt, where t is the number of years after 1950. Since 2×109 = (1×109)ek(30),

we have e30k = 2, so k = ln 2
30

≈ 0.023. Thus, A ≈ (1 × 109)e0.023t. We want to find t such that 3.2 × 109 =
A(t) = (1 × 109)e0.023t. Taking logarithms yields

t =
ln(3.2)

0.023
≈ 50.6 years.

Thus this model predicts land will have run out by the year 2001.

Solutions for Section 10.5

1. We know that the general solution to a differential equation of the form

dH

dt
= k(H − A)

is

H = A + Cekt.

Thus in our case we get

H = 75 + Ce3t.

We know that at t = 0 we have H = 0, so solving for C we get

H = 75 + Ce3t

0 = 75 + Ce3(0)

−75 = Ce0

C = −75.

Thus we get

H = 75 − 75e3t.
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2. We know that the general solution to a differential equation of the form

dy

dt
= k(y − A)

is

y = A + Cekt.

Thus in our case we get

y = 200 + Ce0.5t.

We know that at t = 0 we have y = 50, so solving for C we get

y = 200 + Ce0.5t

50 = 200 + Ce0.5(0)

−150 = Ce0

C = −150.

Thus we get

y = 200 − 150e0.5t.

3. We know that the general solution to a differential equation of the form

dP

dt
= k(P − A)

is

P = Cekt + A.

Thus in our case we have k = 1, so we get

P = Cet − 4.

We know that at t = 0 we have P = 100 so solving for C we get

P = Cet − 4

100 = Ce0 − 4

104 = Ce0

C = 104.

Thus we get

P = 104et − 4.

4. We know that the general solution to a differential equation of the form

dB

dt
= k(B − A)

is

B = A + Cekt.

To get our equation in this form we factor out a 4 to get

dB

dt
= 4

(

B − 100

4

)

= 4(B − 25).

Thus in our case we get

B = Ce4t + 25.

We know that at t = 0 we have B = 20, so solving for C we get

B = 25 + Ce4t

20 = 25 + Ce4(0)

−5 = Ce0

C = −5.

Thus we get

B = 25 − 5e4t.
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5. We know that the general solution to a differential equation of the form

dQ

dt
= k(Q − A)

is

H = A + Cekt.

To get our equation in this form we factor out a 0.3 to get

dQ

dt
= 0.3

(

Q − 120

0.3

)

= 0.3(Q − 400).

Thus in our case we get

Q = 400 + Ce0.3t.

We know that at t = 0 we have Q = 50, so solving for C we get

Q = 400 + Ce0.3t

50 = 400 + Ce0.3(0)

−350 = Ce0

C = −350.

Thus we get

Q = 400 − 350e0.3t.

6. We know that the general solution to a differential equation of the form

dm

dt
= k(m − A)

is

m = Cekt + A.

Factoring out a 0.1 on the left side we get

dm

dt
= 0.1

(

m − −200

0.1

)

= 0.1(m − (−2000)).

Thus in our case we get

m = Ce0.1t − 2000.

We know that at t = 0 we have m = 1000 so solving for C we get

m = Ce0.1t − 2000

1000 = Ce0 − 2000

3000 = Ce0

C = 3000.

Thus we get

m = 3000e0.1t − 2000.

7. We know that the general solution to a differential equation of the form

dB

dt
= k(B − A)

is

B = Cekt + A.

Rewriting we get
dB

dt
= −2B + 50.
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Factoring out a −2 on the right side we get

dB

dt
= −2

(

B − −50

−2

)

= −2(B − 25).

Thus in our case we get

B = Ce−2t + 25.

We know that at t = 1 we have B = 100 so solving for C we get

B = Ce−2t + 25

100 = Ce−2 + 25

75 = Ce−2

C = 75e2.

Thus we get

B = 75e2e−2t + 25 = 75e2−2t + 25.

8. Rewrite the differential equation as
dB

dt
= −0.1B + 10

Factoring out −0.1 gives
dB

dt
= −0.1(B − 100),

which has solution

B = 100 + Ce−0.1t.

Substituting B = 3 and t = 2 gives

3 = 100 + Ce−0.1(2).

Solving for C we get

C = − 97

e−0.02
≈ −99

So the solution is B = 100 − 99e−0.1t.

9. In order to check that y = A + Cekt is a solution to the differential equation

dy

dt
= k(y − A),

we must show that the derivative of y with respect to t is equal to k(y − A):

y = A + Cekt

dy

dt
= 0 + (Cekt)(k)

= kCekt

= k(Cekt + A − A)

= k
(

(Cekt + A) − A
)

= k(y − A)

10. (a) We know that the rate by which the account changes every year is

Rate of change of balance = Rate of increase − Rate of decrease.

Since $1000 will be withdrawn every year, we know that the account decreases by $1000 every year. We also know

that the account accumulates interest at 7% compounded continuously. Thus the amount by which the account in-

creases each year is

Rate balance increases per year = 7%(Account balance) = 0.07(Account balance).
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Denoting the account balance by B we get

Rate balance increases per year = 0.07B.

Thus we get

Rate of change of balance = 0.07B − 1000.

or
dB

dt
= 0.07B − 1000,

with t measured in years.

(b) The equilibrium solution makes the derivative 0, so

dB

dt
= 0

0.07B − 1000 = 0

B =
1000

0.07
≈ $14,285.71.

(c) We know that the general solution to a differential equation of the form

dB

dt
= k(B − A)

is

B = Cekt + A.

To get our equation in this form we factor out a 0.07 to get

dB

dt
= 0.07

(

B − 1000

0.07

)

≈ 0.07(B − 14,285.71).

Thus in our case we get

B = Ce0.07t + 14,285.71.

We know that at t = 0 we have B = $10,000 so solving for C we get

B = Ce0.07t + 14,285.71

10,000 = Ce4(0) + 14,285.71

−4285.71 = Ce0

C = −4285.71.

Thus we get

B = 14,285.71 − (4285.71)e0.07t .

(d) Substituting the value t = 5 into our function for B we get

B(t) = 14,285.71 − (4285.71)e0.07t

B(5) = 14,285.71 − (4285.71)e0.07(5)

= 14,285.71 − (4285.71)e0.35

B(5) ≈ $8204

(e) From Figure 10.5 we see that in the long run there is no money left in the account.

4 8 12 16

2000

4000

6000

8000

10,000

t (years)

B ($)

Figure 10.5
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11. (a) The value of the company satisfies

Rate of change of value = Rate interest earned − Rate expenses paid

so
dV

dt
= 0.02V − 80,000.

(b) We find V when

dV

dt
= 0

0.02V − 80,000 = 0

0.02V = 80,000

V = 4,000,000

There is an equilibrium solution at V = $4,000,000. If the company has $4,000,000 in assets, its earnings will

exactly equal its expenses.

(c) The general solution is

V = 4,000,000 + Ce0.02t.

(d) If V = 3,000,000 when t = 0, we have C = −1,000,000. The solution is

V = 4,000,000 − 1,000,000e0.02t .

When t = 12, we have

V = 4,000,000 − 1,000,000e0.02(12)

= 4,000,000 − 1,271,249

= $2,728,751.

The company is losing money.

12. The bank account is earning money at a rate of 8% times the current balance, and it is losing money at a constant rate of

$5000 a year. We have

Rate of change of B = Rate in − Rate out

dB

dt
= 0.08B − 5000 = 0.08(B − 62,500).

The solution to this differential equation is B = 62,500 + Ce0.08t, for some constant C. To find C, we use the fact that

B = 50,000 when t = 0:

B = 62,500 + Ce0.08t

50,000 = 62,500 + Ce0

C = −12,500.

The solution is

B = 62,500 − 12,500e0.08t .

This solution is shown in Figure 10.6. We see that the account loses money, and runs out of money in about 20 years.

Algebraically, B = 0 where

12,500e0.08t = 62,500

e0.08t =
62,500

12,500
= 5

t =
ln 5

0.08
≈ 20.1.

So the account runs out of money in 20.1 years.



496 Chapter Ten /SOLUTIONS

20.1

$50,000

t

B

Figure 10.6

13. (a) For this situation,

(

Rate money added

to account

)

=

(

Rate money added

via interest

)

+

(

Rate money

deposited

)

.

Translating this into an equation yields
dB

dt
= 0.05B + 1200.

(b) We know that the general solution to the differential equation

dB

dt
= k(B + A)

is

B = Cekt − A.

We factor out 0.05 to put our equation in the form

dB

dt
= 0.05

(

B +
1200

0.05

)

= 0.05(B + 24,000).

This equation has the solution

B = Ce0.05t − 24,000.

Solving for C with B(0) = 0 we get C = 24,000 and so

B = f(t) = 24,000(e0.05t − 1).

The solution is

B = 24,000e0.05t − 24,000.

(c) After 5 years, the balance is

B = f(5) = 24,000(e0.05(5) − 1) = 6816.61 dollars.

14. (a) The quantity increases with time. As the quantity increases, the rate at which the drug is excreted also increases, and

so the rate at which the drug builds up in the blood decreases; thus the graph of quantity against time is concave down.

The quantity rises until the rate of excretion exactly balances the rate at which the drug is entering; at this quantity

there is a horizontal asymptote.

(b) Theophylline enters at a constant rate of 43.2mg/hour and leaves at a rate of 0.082Q, so we have

dQ

dt
= 43.2 − 0.082Q

(c) We know that the general solution to a differential equation of the form

dy

dt
= k(y − A)

is

y = Cekt + A.
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Thus in our case, since
dQ

dt
= 43.2 − 0.082Q ≈ −0.082(Q − 526.8),

we have

Q = 526.8 + Ce−0.082t.

Since Q = 0 when t = 0, we can solve for C:

Q = 526.8 + Ce−0.082t

0 = 526.8 + Ce0

C = −526.8

The solution is

Q = 526.8 − 526.8e−0.082t .

In the long run, the quantity in the body approaches 526.8 mg. See Figure 10.7.

20 40 60

526.8

t

Q (mg)

Q = 526.8(1 − e−0.082t)

Figure 10.7

15. (a) We know that the general solution to a differential equation of the form

dy

dt
= k(y − A)

is

y = Cekt + A.

Factoring out a −1 on the left side we get
dy

dt
= −(y − 100)

Thus in our case we get

y = Ce−t + 100.

This is meaningful if C ≤ 0, since one cannot know more than 100%.

(b) See Figure 10.8.

100

t

y

� C = −50

I
C = −100I

C = −150

Figure 10.8

(c) Substituting y = 0 when t = 0 gives

0 = 100 − Ce−0

so C = 100. The solution is

y = 100 − 100e−t
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16. (a) The smoker smokes 5 cigarettes per hour, and each cigarette contributes 0.4 mg of nicotine, so, every hour, the amount

of nicotine is increasing by 5(0.4) = 2.0 mg. At the same time, the nicotine is being eliminated at a rate of −0.346
times the amount of nicotine. Thus, we have

dN

dt
= Rate in − Rate out = 2.0 − 0.346N.

(b) We have
dN

dt
= 2.0 − 0.346N = −0.346(N − 5.78),

so the solution is

N = 5.78 − 5.78e−0.346t.

(c) At t = 16, we have N = 5.78 − 5.78e−0.346(16) = 5.76 mg.

17. (a)
dy

dt
= −k(y − a), where k > 0 and a are constants.

(b) We know that the general solution to a differential equation of the form

dy

dt
= −k(y − a)

is

y = Ce−kt + a.

We can assume that right after the course is over (at t = 0) 100% of the material is remembered. Thus we get

y = Ce−kt + a

1 = Ce0 + a

C = 1 − a.

Thus

y = (1 − a)e−kt + a.

(c) As t → ∞, e−kt → 0, so y → a.

Thus, a represents the fraction of material which is remembered in the long run. The constant k tells us about the rate

at which material is forgotten.

18. (a) We know that the equilibrium solution are the functions satisfying the differential equation whose derivative every-

where is 0. Thus we must solve the equation
dy

dt
= 0.

Solving we get

dy

dt
= 0

0.2(y − 3)(y + 2) = 0

(y − 3)(y + 2) = 0

Thus the solutions are y = 3 and y = −2.

(b) Looking at Figure 10.9 we see that the line y = 3 is an unstable solution while the line y = −2 is a stable solution.

−2

3

y

t

Figure 10.9
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19. (a) We know that the equilibrium solution is the solution satisfying the differential equation whose derivative is every-

where 0. Thus we must solve
dy

dt
= 0.

Solving this gives

dy

dt
= 0

0.5y − 250 = 0

y = 500

(b) We know that the general solution to a differential equation of the form

dy

dt
= k(y − A)

is

y = A + Cekt.

To get our equation in this form we factor out a 0.5 to get

dy

dt
= 0.5

(

y − 250

0.5

)

= 0.5(y − 500).

Thus in our case we get

y = 500 + Ce0.5t.

(c) The graphs of several solutions is shown in Figure 10.10.

−4 4
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C = −.4

y = 500

t

y

Figure 10.10

(d) Looking at Figure 10.10 we see that as t → ∞, the value of y gets further and further away from the line y = 500.

The equilibrium solution y = 500 is unstable.

20. Graphically, a function is an equilibrium solution if its graph is a horizontal line. From the slope field we see that the

equilibrium solutions are y = 1 and y = 3. An equilibrium solution is stable if a small change in the initial value

conditions gives a solution which tends toward the equilibrium as t tends to positive infinity. Thus, by looking at the given

slope fields, we see that y = 3 is a stable solution while y = 1 is an unstable solution.

21. (a) We know that the general solution to a differential equation of the form

dH

dt
= −k(H − 200)

is

H = Ce−kt + 200.

We know that at t = 0 we have H = 20 so solving for C we get

H = Ce−kt + 200

20 = Ce0 + 200

C = −180.

Thus we get

H = −180e−kt + 200.
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(b) Using part (a), we have 120 = 200 − 180e−k(30). Solving for k, we have e−30k = −80
−180

, giving

k =
ln 4

9

−30
≈ 0.027.

Note that this k is correct if t is given in minutes. (If t is given in hours, k =
ln 4

9

− 1

2

≈ 1.62.)

22. (a) The differential equation is
dT

dt
= −k(T − A),

where A = 10◦F is the outside temperature.

(b) We know that the general solution to a differential equation of the form

dT

dt
= −k(T − 10)

is

T = Ce−kt + 10.

We know that initially T = 68◦F. Thus, letting t = 0 correspond to 1 pm, we get

T = Ce−kt + 10

68 = Ce0 + 10

C = 58.

Thus

T = 10 + 58e−kt.

Since 10:00 pm corresponds to t = 9,

57 = 10 + 58e−9k

47

58
= e−9k

ln
47

58
= −9k

k = −1

9
ln

47

58
≈ 0.0234.

At 7:00 the next morning (t = 18) we have

T ≈ 10 + 58e18(−0.0234)

= 10 + 58(0.66)

≈ 48◦
F,

so the pipes won’t freeze.

(c) We assumed that the temperature outside the house stayed constant at 10◦F. This is probably incorrect because the

temperature was most likely warmer during the day (between 1 pm and 10 pm) and colder after (between 10 pm and

7 am). Thus, when the temperature in the house dropped from 68◦F to 57◦F between 1 pm and 10 pm, the outside

temperature was probably higher than 10◦F, which changes our calculation of the value of the constant k. The house

temperature will most certainly be lower than 48◦F at 7 am, but not by much—not enough to freeze.

23. (a)
dT

dt
= −k(T − A), where A = 68◦F is the temperature of the room, and t is time since 9 am.

(b) We know that the general solution to a differential equation of the form

dT

dt
= −k(T − 68)

is

T = Ce−kt + 68.
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We know that the temperature of the body is 90.3◦F at 9 am. Thus, letting t = 0 correspond to 9 am, we get

T = Ce−kt + 68

T (0) = 90.3 = Ce−k(0) + 68

90.3 = Ce0 + 68

C = 90.3 − 68 = 22.3

Thus

T = 68 + 22.3e−kt.

At t = 1, we have

89.0 = 68 + 22.3e−k

21 = 22.3e−k

k = − ln
21

22.3
≈ 0.06.

Thus T = 68 + 22.3e−0.06t .

We want to know when T was equal to 98.6◦F, the temperature of a live body, so

98.6 = 68 + 22.3e−0.06t

ln
30.6

22.3
= −0.06t

t =

(

− 1

0.06

)

ln
30.6

22.3

t ≈ −5.27.

The victim was killed approximately 5 1
4

hours prior to 9 am, at 3:45 am.

24. (a) We have
dQ

dt
= r − αQ.

We know that the general solution to a differential equation of the form

dQ

dt
= k(Q − A)

is

Q = Cekt + A.

Factoring out a −α on the left side we get

dQ

dt
= −α

(

Q − r

α

)

.

Thus in our case we get

Q = Ce−αt +
r

α
.

We know that at t = 0 we have Q = 0 so solving for C we get

Q = Ce−αt +
r

α

0 = Ce0 +
r

α

C = − r

α
.

Thus we get

Q = − r

α
e−αt +

r

α
.

So,

Q∞ = lim
t→∞

Q =
r

α
.
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r
α

Q

t

Q = r
α

(1 − e−αt)

(b) Doubling r doubles Q∞. Since Q∞ = r/α, the time to reach 1
2
Q∞ is obtained by solving

r

2α
=

r

α
(1 − e−αt)

1

2
= 1 − e−αt

e−αt =
1

2

t = − ln(1/2)

α
=

ln 2

α
.

So altering r does not alter the time it takes to reach 1
2
Q∞. See Figure 10.11.

ln 2
α

r
α

2r
α

Q

t

Q = r
α

(1 − e−αt)

Q = 2r
α

(1 − e−αt)

Figure 10.11

(c) Q∞ is halved by doubling α, and so is the time, t = ln 2
α

, to reach 1
2
Q∞.

25. Differentiate with respect to t on both sides of the equation:

y − A

y0 − A
= ekt.

Since A and y0 are constant, we have
y′

y0 − A
= kekt = k

y − A

y0 − A
.

Multiplication by y0 − A gives

y′ = k(y − A)

which shows that y satisfies the given differential equation.

Now we need to show that the initial condition, y(0) = y0, is satisfied. Substituting t = 0 gives

y(0) − A

y0 − A
= ek·0 = 1

y(0) − A = y0 − A

y(0) = y0

which shows that y satisfies the given initial condition.
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Solutions for Section 10.6

1. (a) If alone, the x population grows exponentially, since if y = 0 we have dx/dt = 0.01x. If alone, the y population

decreases to 0 exponentially, since if x = 0 we have dy/dt = −0.2y.

(b) This is a predator-prey relationship: interaction between populations x and y decreases the x population and increases

the y population. The interaction of lions and gazelles might be modeled by these equations.

2. (a) If alone, the x and y populations each grow exponentially, because the equations become dx/dt = 0.01x and

dy/dt = 0.2y.

(b) For each population, the presence of the other decreases their growth rate. The two populations are therefore competitors—

they may be eating each other’s food, for instance. The interaction of gazelles and zebras might be modeled by these

equations.

3. (a) The x population is unaffected by the y population—it grows exponentially no matter what the y population is, even

if y = 0. If alone, the y population decreases to zero exponentially, because its equation becomes dy/dt = −0.1y.

(b) Here, interaction between the two populations helps the y population but does not effect the x population. This is not

a predator-prey relationship; instead, this is a one-way relationship, where the y population is helped by the existence

of x’s. These equations could, for instance, model the interaction of rhinoceroses (x) and dung beetles (y).

4. (a) The species need each other to survive. Both would die out without the other, and they help each other.

(b) If x = 2 and y = 1,
dx

dt
= −3x + 2xy = −3(2) + 2(2)(1) < 0,

and so population x decreases. If x = 2 and y = 1,

dy

dx
= −y + 5xy = −1 + 5(2)(1) > 0,

and so population y increases.

(c)
dy

dx
=

−y + 5xy

−3x + 2xy
.

(d) See Figure 10.12.

(e) See Figure 10.12.

−4 4

−4

4

x

y

Figure 10.12

5.
dx

dt
= x − xy,

dy

dt
= y − xy

6.
dx

dt
= −x + xy,

dy

dt
= y

7.
dx

dt
= −x − xy,

dy

dt
= −y − xy

8. (I) Both companies start with about 4 million dollars, and both initially lose money. In the long run, however, Company

A makes money and Company B looks like it goes out of business.

(II) Initially, Company A has 2 million dollars and Company B has 4 million dollars. Both companies lose money in the

beginning. Company A continues to lose money and probably goes out of business, but Company B eventually makes

money and does well.
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(III) Company A starts with well under 1 million dollars and Company B starts with 1 million dollars. Company B makes

money the whole time and does well. Company A shows a small profit for a while but then loses money and probably

goes out of business.

(IV) Both companies start with well under 1 million dollars. Company A makes money and does well, Company B holds

steady for a time but then loses money and probably goes out of business.

9. This is an example of a predator-prey relationship. Normally, we would expect the worm population, in the absence of

predators, to increase without bound. As the number of worms w increases, so would the rate of increase dw/dt; in other

words, the relation dw/dt = w might be a reasonable model for the worm population in the absence of predators.

However, since there are predators (robins), dw/dt won’t be that big. We must lessen dw/dt. It makes sense that

the more interaction there is between robins and worms, the more slowly the worms are able to increase their numbers.

Hence we lessen dw/dt by the amount wr to get dw/dt = w−wr. The term −wr reflects the fact that more interactions

between the species means slower reproduction for the worms.

Similarly, we would expect the robin population to decrease in the absence of worms. We’d expect the population

decrease at a rate related to the current population, making dr/dt = −r a reasonable model for the robin population in

absence of worms. The negative term reflects the fact that the greater the population of robins, the more quickly they are

dying off. The wr term in dr/dt = −r + wr reflects the fact that the more interactions between robins and worms, the

greater the tendency for the robins to increase in population.

10. If there are no worms, then w = 0, and dr
dt

= −r giving r = r0e
−t, where r0 is the initial robin population. If there are

no robins, then r = 0, and dw
dt

= w giving w = w0e
t, where w0 is the initial worm population.

11. There is symmetry across the line r = w. Indeed, since dr
dw

= r(w−1)
w(1−r)

, if we switch w and r we get dw
dr

= w(r−1)
r(1−w)

, so

dr
dw

= r(1−w)
w(r−1)

. Since switching w and r changes nothing, the slope field must be symmetric across the line r = w. The

slope field shows that the solution curves are either spirals or closed curves. Since there is symmetry about the line r = w,

the solutions must in fact be closed curves.

12. If w = 2 and r = 2, then dw
dt

= −2 and dr
dt

= 2, so initially the number of worms decreases and the number of robins

increases. In the long run, however, the populations will oscillate; they will even go back to w = 2 and r = 2. See

Figure 10.13.
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w (worms in millions)

r (robins in thousands)

(2500 robins)

Figure 10.13

13. Sketching the trajectory through the point (2, 2) on the slope field given shows that the maximum robin population is

about 2500, and the minimum robin population is about 500. When the robin population is at its maximum, the worm

population is about 1,000,000.

14.

P0 P2 P0 P2 P0 P2 P0

t

population

	

Robins

?

Worms

1

1.5

Figure 10.14
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15. It will work somewhat; the maximum number the robins reach will increase. However, the minimum number the robins

reach will decrease as well. (See graph of slope field.) In the long term, the robin-worm populations will again fall into

a cycle. Notice, however, if the extra robins are added during the part of the cycle where there are the fewest robins, the

new cycle will have smaller variation. See Figure 10.15.

Note that if too many robins are added, the minimum number may get so small the model may fail, since a small

number of robins are more susceptible to disaster.

1 2 3

1

2

3

w (worms in millions)

r (robins in thousands)

New trajectory
Old trajectory

�
�

Figure 10.15

16. The numbers of robins begins to increase while the number of worms remains approximately constant. See Figure 10.16.

The numbers of robins and worms oscillate periodically between 0.2 and 3, with the robin population lagging behind

the worm population.
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3

w

r

(3, 1)

Figure 10.16

17. (a) Substituting w = 2.2 and r = 1 into the differential equations gives

dw

dt
= 2.2 − (2.2)(1) = 0

dr

dt
= −1 + 1(2.2) = 1.2.

(b) Since the rate of change of w with time is 0,

At t = 0.1, we estimate w = 2.2

Since the rate of change of r is 1.2 thousand robins per unit time,

At t = 0.1, we estimate r = 1 + 1.2(0.1) = 1.12 ≈ 1.1.
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(c) We must recompute the derivatives. At t = 0.1, we have

dw

dt
= 2.2 − 2.2(1.12) = −0.264

dr

dt
= −1.12 + 1.12(2.2) = 1.344.

Then at t = 0.2, we estimate

w = 2.2 − 0.264(0.1) = 2.1736 ≈ 2.2

r = 1.12 + 1.344(0.1) = 1.2544 ≈ 1.3

Recomputing the derivatives at t = 0.2 gives

dw

dt
= 2.1736 − 2.1736(1.2544) = −0.553

dr

dt
= −1.2544 + 1.2544(2.1736) = 1.472

Then at t = 0.3, we estimate

w = 2.1736 − 0.553(0.1) = 2.1183 ≈ 2.1

r = 1.2544 + 1.472(0.1) = 1.4016 ≈ 1.4.

18. (a) See Figure 10.17.
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Figure 10.17

(b) The point moves in a counterclockwise direction. If w = 3 and r = 2, we have

dw

dt
= w − wr = 3 − (3)(2) = 3 − 6 < 0

dr

dt
= −r + wr = −2 + (3)(2) = −2 + 6 > 0.

So w is decreasing and r is increasing. The point moves up and to the left (counterclockwise).

(c) We see in the trajectory that r achieves a maximum value of about 3.5, so the population of robins goes as high as

3.5 thousand robins. At this time, the worm population is at about 1 million.

(d) The worm population goes as high as 3.5 million worms. At this time, the robin population is about 1 thousand.

19. (a) See Figure 10.18.

1 2 3 4

1

2

3

4

w (prey)

r (predator)

Figure 10.18
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(b) If w = 0.5 and r = 3, we have

dw

dt
= w − wr = 0.5 − (0.5)(3) < 0

dr

dt
= −r + wr = −3 + (0.5)(3) < 0

Both w and r are decreasing, so the point is moving down and to the left (counterclockwise).

(c) The robin population goes up to about 3.3 thousand robins. At this time, the worm population is about 1 million.

(d) The worm population goes up to about 3.3 million worm. At this point, the robin population is about 1 thousand.

20. (a) Both x and y decrease, since

dx

dt
= 0.2x − 0.5xy = 0.2(2) − 0.5(2)(2) < 0,

dy

dt
= 0.6y − 0.8xy = 0.6(2) − 0.8(2)(2) < 0.

(b) Population x increases and population y decreases, since

dx

dt
= −2x + 5xy = −2(2) + 5(2)(2) > 0,

dy

dt
= −y + 0.2xy = −2 + 0.2(2)(2) < 0.

(c) Both x and y increase, since

dx

dt
= 0.5x = 0.5(2) > 0,

dy

dt
= −1.6y + 2xy = −1.6(2) + 2(2)(2) > 0

(d) Population x decreases and population y increases, since

dx

dt
= 0.3x − 1.2xy = 0.3(2) − 1.2(2)(2) < 0

dy

dt
= −0.7x + 2.5xy = 0.7(2) + 2.5(2)(2) > 0

21. (a)
dy

dt
=

0.6y − 0.8xy

0.2x − 0.5xy
; See Figure 10.19.

(b)
dy

dx
=

−y + 0.2xy

−2x + 5xy
; See Figure 10.20.

(c)
dy

dx
=

−1.6y + 2xy

0.5x
; See Figure 10.21.

(d)
dy

dx
=

−0.7y + 2.5xy

0.3x − 1.2xy
; See Figure 10.22.
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Figure 10.19: dy
dx

= 0.6y−0.8xy
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Figure 10.21: dy
dx

= −1.6y+2xy
0.5x
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Figure 10.22: dy
dx

= −0.7y+2.5xy
0.3x−1.2xy

Solutions for Section 10.7

1. Susceptible people are infected at a rate proportional to the product of S and I . As susceptible people become infected, S
decreases at a rate of aSI and (since these same people are now infected) I increases at the same rate. At the same time,

infected people are recovering at a rate proportional to the number infected, so I is decreasing at a rate of bI .

2. Since

dS

dt
= −aSI,

dI

dt
= aSI − bI,

dR

dt
= bI

we have
dS

dt
+

dI

dt
+

dR

dt
= −aSI + aSI − bI + bI = 0.

Thus d
dt

(S + I + R) = 0, so S + I + R = constant.

3. The epidemic is over when the number of infected people is zero, that is, at the horizontal intercept of the trajectory.

This intercept is a very small S value. When the epidemic is over, there are almost no susceptibles left— that is, almost

everyone has become infected.

4. (a) The initial values are I0 = 1, S0 = 149.

(b) Substituting for I0 and S0, initially we have

dI

dt
= 0.0026SI − 0.5I = 0.0026(149)(1) − 0.5(1) < 0.

So, I is decreasing. The number of infected people goes down from 1 to 0. The disease does not spread.

5. (a) I0 = 1, S0 = 349

(b) Since
dI

dt
= 0.0026SI − 0.5I = 0.0026(349)(1) − 0.5(1) > 0, so I is increasing. The number of infected people

will increase, and the disease will spread. This is an epidemic.

6. (a) See Figure 10.23.

192 400 800

200

400

S (susceptibles)

I (infecteds)

Figure 10.23

(b) I is at a maximum when S = 192.
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7. The maximum value of I is approximately 300 boys. This represents the maximum number of infected boys who have

not (yet) been removed from circulation. It occurs at about t ≈ 6 days.

8. In the system

dS

dt
= −aSI

dI

dt
= aSI − bI

the constant a represents how infectious the disease is; the larger a, the more infectious. The constant b represents

1/(number of days before removal). Thus, the larger b is, the quicker the infecteds are removed. For the flu example,

a = 0.0026 and b = 0.5.

(I) Since 0.0026 < 0.04, this is more infectious. Since 0.2 < 0.5, infecteds are being removed more slowly. So system

(I) corresponds to (a).

(II) Since 0.002 < 0.0026, this is less infectious. Since 0.3 < 0.5, infecteds are being removed more slowly. This

corresponds to (c).

(III) Since the second equation has no −bI term, we have b = 0. The infecteds are never removed. This corresponds to

(e).

A system of equations corresponding to (b) is

dS

dt
= −0.04SI

dI

dt
= 0.04SI − 0.7I.

A system of equations corresponding to (d) is

dS

dt
= −0.002SI

dI

dt
= 0.002SI − 0.7I.

9. The threshold value of S is the value at which I is a maximum. When I is a maximum,

dI

dt
= 0.04SI − 0.2I = 0,

so

S = 0.2/0.04 = 5.

10. Since the threshold value of S is given by

dI

dt
= 0.002SI − 0.3I = 0,

we have

S =
0.3

0.002
= 150.

So, if S0 = 100, the disease does not spread initially. If S0 = 200, the disease does spread initially.

11. (a) Setting dI/dt = 0,

dI

dt
= aSI − bI = (aS − b)I = 0

aS − b = 0

S =
b

a
.

(b) For S > b/a, we know aS − b > 0, so
dI

dt
= (aS − b)I > 0.

Thus, for S > b/a, we know I is increasing. Similarly, for S < b/a, we can show I is decreasing.

(c) Since I increases initially if S0 > b/a, we have an epidemic if S0 > b/a. If S0 < b/a, there is no epidemic as I
decreases initially. Thus, the threshold value is b/a.
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12. (a) I0 = 1, so S0 = 45,000 − 1 = 44,999.
(b) If S0 is greater than the threshold value, we expect an epidemic.

Threshold =
b

a
=

9.865

0.000267
= 36,948 people.

Since the camp contained 45,000 soldiers, more than the threshold, an epidemic is predicted.

(c) Using the chain rule, and the values of a and b, we have

dI

dS
=

dI/dt

dS/dt
=

aSI − bI

−aSI
= −1 +

b

aS
= −1 +

36,948

S
.

Figure 10.24 shows the slope field for this differential equation and the solution curve for these initial conditions.

The total number of soldiers who did not get the disease is the S-intercept, or about 30,000. Thus, approximately

15,000 soldiers were infected.

(d) To solve the differential equation, we integrate

dI

dS
= −1 +

36,948

S
giving, since S > 0,

I = −S + 36,948 ln S + C.

To find C, substitute I0 = 1, S0 = 44,999, so

1 = −44,999 + 36,948 ln(44,999) + C

C = 45,000 − 36,948 ln(44,999),

thus

I = −S + 36,948 ln S + 45,000 − 36,948 ln(44,999)

I = −S + 36,948 ln

(

S

44,999

)

+ 45,000.

We find the S-intercept, giving the number of people unaffected, by setting I = 0. Then

0 = −S + 36,948 ln

(

S

44, 999

)

+ 45,000.

This equation cannot be solved algebraically. However, numerical methods, or tracing along a graph, gives

S ≈ 30, 000. Thus, about 15,000 soldiers were infected.

S

I

ւ
(S0, I0)

•|
40,000

|
20,000

∨

−500

Figure 10.24

Solutions for Chapter 10 Review

1. (a) (III) An island can only sustain the population up to a certain size. The population will grow until it reaches this

limiting value.

(b) (V) The ingot will get hot and then cool off, so the temperature will increase and then decrease.

(c) (I) The speed of the car is constant, and then decreases linearly when the breaks are applied uniformly.

(d) (II) Carbon-14 decays exponentially.

(e) (IV) Tree pollen is seasonal, and therefore cyclical.
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2. (a) (i) If y = Cx2, then
dy

dx
= C(2x) = 2Cx. We have

x
dy

dx
= x(2Cx) = 2Cx2

and

3y = 3(Cx2) = 3Cx2

Since x
dy

dx
6= 3y, this is not a solution.

(ii) If y = Cx3
, then

dy

dx
= C(3x2) = 3Cx2

. We have

x
dy

dx
= x(3Cx2) = 3Cx3,

and

3y = 3Cx3.

Thus x
dy

dx
= 3y, and y = Cx3

is a solution.

(iii) If y = x3 + C, then
dy

dx
= 3x2

. We have

x
dy

dx
= x(3x2) = 3x3

and

3y = 3(x3 + C) = 3x3 + 3C.

Since x
dy

dx
6= 3y, this is not a solution.

(b) The solution is y = Cx3
. If y = 40 when x = 2, we have

40 = C(23)

40 = C · 8
C = 5.

3. Since y = x3, we know that y′ = 3x2. Substituting y = x3 and y′ = 3x2 into the differential equation we get

Left-side = xy′ − 3y = x(3x2) − 3(x3) = 3x3 − 3x3 = 0.

Since the left and right sides are equal for all x, we see that y = x3 is a solution.

4. When y = 125, the rate of change of y is

dy

dt
= −0.20y = −0.20(125) = −25.

The value of y goes down by 25 as t goes up by 1, so when t = 1, we have

y = Old value of y + Change in y

= 125 + (−25)

= 100.

Continuing in this way , we fill in the table as shown:

t 0 1 2 3 4

y 125 100 80 64 51.2
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5. (a) Slope field I corresponds to
dy

dx
= 1 + y and slope field II corresponds to

dy

dx
= 1 + x.

(b) See Figures 10.25 and 10.26.
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Figure 10.25: dy
dx

= 1 + y
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x
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Figure 10.26: dy
dx

= 1 + x

(c) Slope field I has an equilibrium solution at y = −1, since
dy

dx
= 0 at y = −1. We see in the slope field that this

equilibrium solution is unstable. Slope field II does not have any equilibrium solutions.

6. (a) See Figure 10.27.
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Figure 10.27

(b) The point (1, 0) satisfies the equation y = x − 1. If y = x − 1, then y′ = 1 and x − y = x − (x − 1) = 1, so

y = x − 1 is the solution to the differential equation through (1, 0).

7. III. The slope field appears to be constant for a fixed value of y, regardless of the value of x. This feature says that y′ does

not depend on x, ruling out the formulas y′ = 1+x and y′ = xy. The differential equation y′ = 1+y would have a slope

field with zero slope at y = −1 and nowhere else, but the given slope field has two areas of zero slope, so y′ = 1 + y is

ruled out and so is y′ = 2 − y for the same reason. This leaves y′ = (1 + y)(2 − y) as the correct answer, which fits the

slope field as it has zero slopes at y = 2 and y = −1, positive slopes for −1 < y < 2 and negative slopes for y < −1
and y > 2.

8. Figure (I) shows a line segment at (4, 0) with positive slope. The only possible differential equation is (b), since at (4, 0)
we have y′ = cos 0 = 1. Note that (a) is not possible as y′(4, 0) = e−16 = 0.0000001, a much smaller positive slope

than that shown.

Figure (II) shows a line segment at (0, 4) with zero slope. The possible differential equations are (d), since at (0, 4)
we have y′ = 4(4 − 4) = 0, and (f), since at (0, 4) we have y′ = 0(3 − 0) = 0.

Figure (III) shows a line segment at (4, 0) with negative slope of large magnitude. The only possible differential

equation is (f), since at (4, 0) we have y′ = 4(3−4) = −4. Note that (c) is not possible as y′(4, 0) = cos(4−0) = −0.65,

a negative slope of smaller magnitude than that shown.
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Figure (IV) shows a line segment at (4, 0) with a negative slope of small magnitude. The only possible differential

equation is (c), since at (4, 0) we have y′ = cos(4−0) = −0.65. Note that (f) is not possible as y′(4, 0) = 4(3−4) = −4,

a negative slope of larger magnitude than that shown.

Figure (V) shows a line segment at (0, 4) with positive slope. Possible differential equations are (a), since at (0, 4)

we have y′ = e02

= 1, and (c), since at (0, 4) we have y′ = cos(4 − 4) = 1.
Figure (VI) shows a line segment at (0, 4) with a negative slope of large magnitude. The only possible differential

equation is (e), since at (0, 4) we have y′ = 4(3 − 4) = −4. Note that (b) is not possible as y′(0, 4) = cos 4 = −0.65, a

negative slope of smaller magnitude than that shown.

9. (a) We know that the balance, B, increases at a rate proportional to the current balance. Since interest is being earned at

a rate of 7% compounded continuously we have

Rate at which interest is earned = 7% (Current balance)

or in other words, if t is time in years,
dB

dt
= 7%(B) = 0.07B.

(b) The equation is in the form
dB

dt
= kB

so we know that the general solution will be

B = B0e
kt

where B0 is the value of B when t = 0, i.e., the initial balance. In our case we have k = 0.07 so we get

B = B0e
0.07t.

(c) We are told that the initial balance, B0, is $5000 so we get

B = 5000e0.07t .

(d) Substituting the value t = 10 into our formula for B we get

B = 5000e0.07t

B(10) = 5000e0.07(10)

= 5000e0.7

B(10) ≈ $10,068.76

10. If we let Q represent the amount of radioactive iodine present at time t, with t measured in days, then we have

dQ

dt
= −0.09Q.

The −0.09 is negative because the quantity of iodine is decreasing. The solution to this differential equation is

Q = Ce−0.09t,

for some constant C.

11. Integrating both sides gives

P =
1

2
t2 + C,

where C is some constant.

12. The general solution is

y = Ce5t.

13. Integrating both sides we get

y =
5

2
t2 + C,

where C is a constant.
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14. We know that the general solution to an equation of the form

dP

dt
= kP

is

P = Cekt.

Thus in our case the solution is

P = Ce0.03t,

where C is some constant.

15. For some constant C, the general solution is

A = Ce−0.07t.

16. Multiplying both sides by Q gives
dQ

dt
= 2Q, where Q 6= 0.

We know that the general solution to an equation of the form

dQ

dt
= kQ

is

Q = Cekt.

Thus in our case the solution is

Q = Ce2t,

where C is some constant, C 6= 0.

17. We know that the general solution to the differential equation

dP

dt
= k(P − A)

is

P = Cekt + A.

Thus in our case we factor out −2 to get

dP

dt
= −2

(

P +
10

−2

)

= −2(P − 5).

Thus the general solution to our differential equation is

P = Ce−2t + 5,

where C is some constant.

18. Since
dy

dt
= −(y − 100), the general solution is y = 100 + Ce−t

.

19. We know that the general solution to the differential equation

dy

dx
= k(y − A)

is

y = Cekx + A.

Thus in our case we factor out 0.2 to get

dy

dx
= 0.2

(

y − 8

0.2

)

= 0.2(y − 40).

Thus the general solution to our differential equation is

y = Ce0.2x + 40,

where C is some constant.
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20. We know that the general solution to the differential equation

dH

dt
= k(H − A)

is

H = Cekt + A.

Thus in our case we factor out 0.5 to get

dH

dt
= 0.5

(

H +
10

0.5

)

= 0.5(H − (−20)).

Thus the general solution to our differential equation is

H = Ce0.5t − 20,

where C is some constant.

21. We find the temperature of the orange juice as a function of time. Newton’s Law of Heating says that the rate of change of

the temperature is proportional to the temperature difference. If S is the temperature of the juice, this gives us the equation

dS

dt
= −k(S − 65) for some constant k.

Notice that the temperature of the juice is increasing, so the quantity dS/dt is positive. In addition, S = 40 initially,

making the quantity (S − 65) negative.

We know that the general solution to a differential equation of the form

dS

dt
= −k(S − 65)

is

S = Ce−kt + 65.

Since at t = 0, S = 40, we have 40 = 65 + C, so C = −25. Thus, S = 65− 25e−kt for some positive constant k. See

Figure 10.28 for the graph.

t

S (◦F)

65◦

40◦

Figure 10.28: Graph of

S = 65 − 25e−kt for k > 0

22. (a) Since the growth rate of the tumor is proportional to its size, we should have

dS

dt
= kS.

(b) We can solve this differential equation by separating variables and then integrating:
∫

dS

S
=

∫

k dt

ln |S| = kt + B

S = Cekt.

(c) This information is enough to allow us to solve for C:

5 = Ce0t

C = 5.

(d) Knowing that C = 5, this second piece of information allows us to solve for k:

8 = 5e3k

k =
1

3
ln
(

8

5

)

≈ 0.1567.

So the tumor’s size is given by

S = 5e0.1567t.
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23. (a) If C′ = −kC, and then C = C0e
−kt. Since the half-life is 5730 years, 1

2
C0 = C0e

−5730k. Solving for k, we have

−5730k = ln(1/2) so k = − ln(1/2)
5730

≈ 0.000121.

(b) From the given information, we have 0.91 = e−kt, where t is the age of the shroud. Solving for t, we have t =
− ln 0.91

k
≈ 779.4 years.

24. (a) Use the fact that

Rate balance

changing
=

Rate interest

accrued
− Rate payments

made
.

Thus
dB

dt
= 0.05B − 12,000.

(b) We know that the general solution to a differential equation of the form

dB

dt
= k(B − A)

is

B = Cekt + A.

Factoring out a 0.05 on the left side we get

dB

dt
= 0.05

(

B − 12,000

0.05

)

= 0.05(B − 240,000).

Thus in our case we get

B = Ce0.05t + 240,000.

We know that the initial balance is B0, thus we get

B0 = Ce0 + 240,000

C = B0 − 240,000.

Thus we get

B = (B0 − 240,000)e0.05t + 240,000.

(c) To find the initial balance such that the account has a 0 balance after 20 years, we solve

0 = (B0 − 240,000)e(0.05)20 + 240,000 = (B0 − 240,000)e1 + 240,000,

B0 = 240,000 − 240,000

e
≈ $151,708.93.

25. (a)

37

1
2
Q0

Q0

t

Q

Q = Q0e−0.0187t

(b)
dQ

dt
= −kQ

(c) Since 25% = 1/4, it takes two half-lives = 74 hours for the drug level to be reduced to 25%. Alternatively, Q =
Q0e

−kt and 1
2

= e−k(37), we have

k = − ln(1/2)

37
≈ 0.0187.

Therefore Q = Q0e
−0.0187t. We know that when the drug level is 25% of the original level that Q = 0.25Q0.

Setting these equal, we get

0.25 = e−0.0187t.

giving

t = − ln(0.25)

0.0187
≈ 74 hours ≈ 3 days.
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26. Let D(t) be the quantity of dead leaves, in grams per square centimeter. Then dD
dt

= 3− 0.75D, where t is in years. We

know that the general solution to a differential equation of the form

dD

dt
= k(D − B)

is

D = Aekt + B.

Factoring out a −0.75 on the left side we get

dD

dt
= −0.75

(

D − −3

−0.75

)

= −0.75(D − 4).

Thus in our case we get

D = Ae−0.75t + 4.

If initially the ground is clear, the solution looks like the following graph:

4

t

D

The equilibrium level is 4 grams per square centimeter, regardless of the initial condition.

27. (a) We know that the rate at which morphine leaves the body is proportional to the amount of morphine in the body at

that particular instant. If we let Q be the amount of morphine in the body, we get that

Rate of morphine leaving the body = kQ,

where k is the rate of proportionality. The solution is Q = Q0e
kt (neglecting the continuously incoming morphine).

Since the half-life is 2 hours, we have
1

2
Q0 = Q0e

k·2,

so

k =
ln(1/2)

2
= −0.347.

(b) Since

Rate of change of quantity = Rate in − Rate out,

we have
dQ

dt
= −0.347Q + 2.5.

(c) Equilibrium occurs when dQ/dt = 0, that is, when 0.347Q = 2.5 or Q = 7.2 mg.

28. (a) We know that the equilibrium solutions are those functions which satisfy the differential equation and whose deriva-

tive is everywhere 0. Thus we must solve

0 =
dy

dx
= 0.5y(y − 4)(2 + y)

Thus the equilibrium solutions are y = 0, y = 4, and y = −2.

(b) The slope field of the differential equation is shown in Figure 10.29. An equilibrium solution is stable if a small

change in the initial conditions gives a solution which tends toward the equilibrium as the independent variable tends

to positive infinity. Looking at Figure 10.29 we see that the only stable solution is y = 0.
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y

Figure 10.29

29. (a) Since the rate of change of the weight is equal to

1

3500
(Intake − Amount to maintain weight)

we have
dW

dt
=

1

3500
(I − 20W ).

(b) We know that the general solution to a differential equation of the form

dW

dt
= k(W − A)

is

W = Cekt + A.

Factoring out a −20 on the left side we get

dW

dt
=

−20

3500

(

W − −I

−20

)

= − 2

350

(

W − I

20

)

.

Thus in our case we get

W = Ce−
2

350
t +

I

20
.

Let us call the person’s initial weight W0 at t = 0. Then W0 = I
20

+ Ce0, so C = W0 − I
20

. Thus

W =
I

20
+
(

W0 − I

20

)

e−
1

175
t.

(c) Using part (b), we have W = 150 + 10e−
1

175
t. This means that W → 150 as t → ∞. See Figure 10.30.

100 days

150
160

t

W

Figure 10.30
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30. (a) The graph of f(y) = y − y2 is shown Figure 10.31.

(b) The slope field dy/dx = y − y2 is shown in Figure 10.32.

1

f(y)

y

Figure 10.31

−1

1

x

y

Figure 10.32

(c) The slopes in Figure 10.32 are positive for 0 < y < 1, where f(y) is above the horizontal axis in Figure 10.31. The

slopes in Figure 10.32 are negative for y < 0 and y > 1, where f(y) is negative.

The equilibrium solutions are y = 0 and y = 1, where the graph of f(y) crosses the horizontal axis. The

equilibrium y = 1 is stable, which can be seen in Figure 10.31 from the fact that f(y) is positive for y < 1 and

negative for y > 1. Thus, the solution curves increase toward y = 1 from below and decrease toward y = 1 from

above.

The equilibrium at y = 0 is unstable. Figure 10.31 shows that f(y) is negative for y < 0 and positive for y > 0.

Thus, solution curves below y = 0 decrease away from y = 0; solution curves above y = 0 increase away from

y = 0.

31. (a) The equilibrium solutions are y = 1, y = 8, y = 16. For these values, f(y) = 0, so y′ = 0.

(b) See Figure 10.33. Since f(y) > 0 for 0 < y < 1, the slopes are upward for these y values; similarly for 8 < y < 16
and y > 16. For 1 < y < 8, the slopes are downward, since f(y) < 0 for these y values.

1

8

16

y(0) = 17

y(0) = 16 (equilibrium)

y(0) = 10

y(0) = 8 (equilibrium)

y(0) = 6

y(0) = 1 (equilibrium)

6

y(0) = 0

x

y

Figure 10.33

(c) See Figure 10.33. The equilibrium solutions for the initial conditions y(0) = 1, y(0) = 8, y(0) = 16 are horizontal

lines. The other solution curves follow the slope field.

(d) The equilibrium y = 1 is stable; y = 8 and y = 16 are unstable.

32. Here x and y both increase at about the same rate.

33. Initially x = 0, so we start with only y. Then y decreases while x increases. Then x continues to increase while y starts

to increase as well. Finally y continues to increase while x decreases.

34. x decreases quickly while y increases more slowly.
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35. The closed trajectory represents populations which oscillate repeatedly.

36. (a) The rate dQ1/dt is the sum of three terms that represent the three changes in Q1:

dQ1

dt
= A − k1Q1 + k2Q2.

The term A is the rate at which Q1 increases due to creation of new toxin.

The term −k1Q1 is the rate at which Q1 decreases due to flow of toxin into the blood. The constant k1 is a

positive constant of proportionality.

The term k2Q2 is the rate at which Q1 increases due to flow of toxin out of the blood. The constant k2 is a

second positive constant.

(b) The rate dQ2/dt is the sum of three terms that represent the three changes in Q2:

dQ2

dt
= −k3Q2 + k1Q1 − k2Q2.

The term −k3Q2 is the rate at which Q2 decreases due to removal of toxin by dialysis. The constant k3 is a

positive constant of proportionality.

The term k1Q1 is the rate at which Q2 increases due to flow of toxin into the blood. The constant k1 is the same

positive constant as in part (a).

The term −k2Q2 is the rate at which Q2 decreases due to flow of toxin out of the blood. The constant k2 is the

same positive constant as in part (a).

CHECK YOUR UNDERSTANDING

1. True, since dQ/dt represents the rate of change of Q.

2. False. Since the population is decreasing by 5% (rather than 5 units of P ), the correct differential equation is dP/dt =
−0.05P .

3. False. Since the population is decreasing, the rate of change must be negative. The correct differential equation is dP/dt =
−0.05P .

4. True. The balance increases at a rate of 3% of B, or 0.03B, each year so the rate of change of B is 0.03B.

5. True, since when two quantities are proportional, one is a constant times the other.

6. False. The 200 is not a percent, but in units of P over units of t, so the correct differential equation is dP/dt = −200.

7. True. The balance is increasing due to the interest at a rate of 0.05B and is decreasing due to the payments at a rate of

8000.

8. False, the correct differential equation is dQ/dt = 200 − kQ (where k > 0).

9. True. The rate the drug is entering the body is 12 mg per hour and the rate the drug is leaving the body is 0.063Q mg per

hour.

10. False. The deposit of $10,000 was a one-time deposit, and not a rate of change. This differential equation would be correct

if the deposits were being made at a continuous rate of $10,000 per year.

11. True, since the derivative of P is zero, so dP/dt = 0 and also substituting P = 10 in the expression 3P (10 − P ) gives

zero, so substituting P = 10 on both sides of the differential equation gives 0, and we have 0 = 0, a true equation.

12. True, since substituting P = 0 on both sides of the differential equation gives 0.

13. False, since substituting P = 5 on the left-hand side of the differential equation gives 0, but on the right-hand side gives

75.

14. True. When we substitute t = 0 and y = 40 in the general solution, we have 40 = Ce0.05(0) . Since e0 = 1, this gives

C = 40.

15. False. When we substitute t = 0 and y = 40 in the general solution, we have 40 = 25 + Ce0.05(0) . Since e0 = 1, this

gives 40 = 25 + C, which implies C = 15.

16. True. When we substitute t = 0 and y = 40 in the general solution, we have 40 = 25 + Ce0.05(0) . Since e0 = 1, this

gives 40 = 25 + C, which implies C = 15.

17. False. Since y′ = 0.2y, when y = 100 we have y′ = 0.2 · 100 = 20. The variable y is changing at a rate of 20

units per unit of time. This tells us that y increases approximately 20 units between t = 0 and t = 1, so we expect

y(1) ≈ 100 + 20 = 120.
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18. True. Since y′ = 0.2y, when y = 100 we have y′ = 0.2 · 100 = 20. The variable y is changing at a rate of 20

units per unit of time. This tells us that y increases approximately 20 units between t = 0 and t = 1, so we expect

y(1) ≈ 100 + 20 = 120.

19. True, since when Q = 10 we have dQ/dt = 5 · 10 − 200 = −150 < 0.

20. True, since when Q = 40 both sides of the differential equation give 0.

21. False, since when x = 3, we have dy/dx = 2 · 3 = 6.

22. True, since when x = 3, we have dy/dx = 2 · 3 = 6.

23. True, since when x = 1 and y = −2, we have dy/dx = 3 · 1 · (−2) = −6.

24. False, since when x = 2 and y = 2, we have dy/dx = 3 · 2 · 2 = 12.

25. True, since when x = 3 and y = 2, we have dy/dx = 3 · 3 · 2 = 18.

26. False, since whenever x < 0 we have dy/dx < 0 regardless of the sign of y.

27. True, since when y = 1, dy/dx = 2 · 1 = 2, regardless of the value of x.

28. True, since when x = 3, dy/dx = 5 · 0 · (y − 2) = 0.

29. False, since when P > 3 we have 12 − 4P < 0 so dP/dt < 0.

30. True, since the slope field lines have slope dy/dx which is the derivative of a solution y = f(x).

31. False; the general solution is y = Cekt.

32. True.

33. False. That solution would be the solution to the differential equation dw/dr = 0.3w.

34. True. The general solution is H = Ce0.5t and the particular solution H = 57e0.5t satisfies the initial condition H(0) =
57.

35. True, since the general solution is y = Ce3t and setting t = 0, y = 5 gives C = 5.

36. False, since y = Ce−2t is a general solution. The particular solution is y = 3e−2t.

37. False, the correct differential equation is dB/dt = 0.03B.

38. False, since if k were negative, −k would be positive, and Q(t) would grow exponentially, rather than decay.

39. False. The function Q = Cekt is the solution not the differential equation. The differential equation is dQ/dt = kQ.

40. True.

41. True, as explained in the text.

42. False. We need to factor out a 2 to write the differential equation in the form dP/dt = 2(P − 50). Then the general

solution is P = 50 + Ce2t.

43. False. The function Q = 20 + Ce0.5t is a solution to the differential equation dQ/dt = 0.5(Q − 20).

44. True. We factor out the coefficient of W to rewrite the differential equation as dW/dt = −3( 600
−3

+W ) = −3(W −200),

which has the solution shown.

45. False. The initial condition gives C = 10 so the correct solution is A = 40 + 10e0.25t.

46. True.

47. False; the correct differential equation is dB/dt = 0.04B − 12,000. The equation given has no derivatives so it cannot

be a differential equation.

48. True, since the drug is entering the body at a rate of 12 and leaving the body at a rate of 0.18A.

49. True, since setting dH/dt = 0 gives H = 225.

50. True.

51. False. If X would do fine if Y didn’t exist, then the parameter a must be positive.

52. False. If species X eats species Y , then the parameter d must be negative.

53. True. Since X has a negative impact on Y , the coefficient of the interaction term must be negative.

54. True. Since X would die out alone, the parameter a must be negative. Since Y helps X, the parameter b of the interaction

term must be positive.

55. False. If Y is absent then the population of X grows at a continuous rate of 2%, and if X is absent the population of Y
grows at a continuous rate of 5%

56. True, since the coefficients 0.02 and 0.05 are positive.
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57. True, since the coefficients −0.15 and −0.18 of the interaction terms are negative.

58. True. Since the coefficients −0.12 and −0.10 are negative, both populations would die out in the absence of the other.

Since the coefficients 0.07 and 0.25 of the interaction terms are positive, both populations are helped by the other.

59. True. Substituting the values for x and y into the differential equations gives dx/dt = −3(1) + (1)(2) = −3 + 2 =
−1 < 0 and dy/dt = 2(2) − 5(1)(2) = 4 − 10 = −6 < 0. Since the derivatives of x and y are both negative, both

populations are decreasing.

60. False. Substituting the values for x and y into the differential equations gives dx/dt = −3(2) + (2)(5) = −6 + 10 =
4 > 0 and dy/dt = 2(5) − 5(2)(5) = 10 − 50 = −40 < 0. Since the derivative of y is negative, the y population is

decreasing. However, the derivative of x is positive, so the x population is increasing.

61. False. It is negative because people in the susceptible group are becoming sick and moving to the group of infected people.

62. True. People in the susceptible group are becoming sick and moving to the group of infected people.

63. False, since the negative of this quantity does not appear in the expression for dS/dt.

64. True.

65. False. The parameter a will be larger for Type I flu.

66. True. The parameter a measures how infectious or contagious the disease is.

67. False. The parameter b will be smaller for Type I flu, since a smaller percentage recover per unit time.

68. True. The parameter b will be smaller for Type I flu, since a smaller percentage recover per unit time.

69. True. To see if I will increase, we see if dI/dt is positive. We have dI/dt = 0.001SI − 0.3I = 0.001(500)(100) −
0.3(100) = 50 − 30 = 20 > 0.

70. False. To see if I will increase, we see if dI/dt is positive. We have dI/dt = 0.001SI − 0.3I = 0.001(100)(500) −
0.3(500) = 50 − 150 = −100 < 0.

PROJECTS FOR CHAPTER TEN

1. (a) Equilibrium values are N = 0 (unstable) and N = 200 (stable). The graphs are shown in Figures 10.34

and 10.35.

100 200 300

100

−300

N

dN
dt

Figure 10.34: dN/dt = 2N − 0.01N2

40

220
200

N

t

Figure 10.35: Solutions to

dN/dt = 2N − 0.01N2

(b) When there is no fishing the rate of population change is given by dN

dt
= 2N − 0.01N2. If fishermen

remove fish at a rate of 75 fish/year, then this results in a decrease in the growth rate, dP

dt
, by 75 fish/year.

This is reflected in the differential equation by including the −75.
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Figure 10.36: dP/dt = 2P − 0.01P 2 − 75
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(d)

Figure 10.37

(e) In Figure 10.36, we see that dP/dt = 0 when P = 50 and when P = 150, that dP/dt is positive when P
is between 50 and 150, and that dP/dt is negative when P is less than 50 or greater than 150.

(i) Since dP/dt = 0 at P = 50 and at P = 150, these are the two equilibrium values.

(ii) Since dP/dt is positive when P is between 50 and 150, we know that P increases for initial values in

this interval. It increases toward the equilibrium value of P = 150.

(iii) Since dP/dt is negative for P less than 50 or P greater than 150, we know P decreases for starting

values in these intervals. If the initial value of P is less than 50, then P decreases to zero and the fish

all die out. If the initial value of P is greater than 150, then the fish population decreases toward the

equilibrium value of 150.

The solutions look like those shown in Figure 10.38.
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Figure 10.38: Solutions to

dP/dt = 2P − 0.01P 2 − 75
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(f)

Figure 10.39

(g) The two equilibrium populations are P = 50, 150. The stable equilibrium is P = 150, while P = 50 is

unstable.

Notice that P = 50 and P = 150 are solutions of dP/dt = 0:

dP

dt
= 2P − 0.01P 2 − 75 = −0.01(P 2 − 200P + 7500) = −0.01(P − 50)(P − 150).

(h) (i)

100

200 30050 150

−75
−100

−200

25

−300

P

dP
dt

H = 75�

H = 100 -

H = 200 -
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(ii) For H = 75, the equilibrium populations (where dP/dt = 0) are P = 50 and P = 150. If the

population is between 50 and 150, dP/dt is positive. This means that when the initial population

is between 50 and 150, the population will increase until it reaches 150, when dP/dt = 0 and the

population no longer increases or decreases. If the initial population is greater than 150, then dP/dt is

negative, and the population decreases until it reaches 150. Thus 150 is a stable equilibrium. However,

50 is unstable.

For H = 100, the equilibrium population (where dP/dt = 0) is P = 100. For all other pop-

ulations, dP/dt is negative and so the population decreases. If the initial population is greater than

100, it will decrease to the equilibrium value, P = 100. However, for populations less than 100, the

population decreases until the species dies out.

For H = 200, there are no equilibrium points where dP/dt = 0, and dP/dt is always negative.

Thus, no matter what the initial population, the population always dies out eventually.

(iii) If the population is not to die out, looking at the three cases above, there must be an equilibrium value

where dP/dt = 0, i.e. where the graph of dP/dt crosses the P axis. This happens if H ≤ 100. Thus

provided fishing is not more than 100 fish/year, there are initial values of the population for which the

population will not be depleted.

(iv) Fishing should be kept below the level of 100 per year.

2. (a) In each generation, mutation causes the fraction of b genes to decrease k1 times the fraction of b genes

(as b genes mutate to B genes). Likewise, in every generation, mutation causes the fraction of b genes to

increase by k2 times the fraction of B genes (as B genes mutate to b genes). Therefore, q decreases by k1q
and increases by k2(1 − q), and we have:

dq

dt
= −k1q + k2(1 − q).

(b) We have

dq

dt
= −0.0001q + 0.0004(1− q)

= −0.0001q + 0.0004− 0.0004q

= −0.0005q + 0.0004

= −0.0005(q − 0.8).

The solution to this differential equation is

q = 0.8 + Ce−0.0005t.

If q0 = 0.1, then C = −0.7 and the solution is q = 0.8 − 0.7e−0.0005t. If q0 = 0.9, then C = 0.1 and the

solution is q = 0.8 + 0.1e−0.0005t. These solution are in Figure 10.40.

The equilibrium value is q = 0.8. From Figure 10.40, we see that as generations pass, the fraction of

genes responsible for the recessive trait gets closer to 0.8.

The equilibrium is given by the solution to the equation

dq

dt
= −0.0005q + 0.0004 = 0.0005(q − 0.8) = 0.

Therefore the equilibrium is given by 0.0004/0.0005 = 0.8 and so is completely determined by the values

of k1 and k2.

(c) We have

dq

dt
= −0.0003q + 0.0001(1− q)

= −0.0003q + 0.0001− 0.0001q

= −0.0004q + 0.0001

= −0.0004(q − 0.25).
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The solution to this differential equation is

q = 0.25 + Ce−0.0004t.

If q0 = 0.1, then C = −0.15 and the solution is q = 0.25 − 0.15e−0.0004t. If q0 = 0.9, then C = 0.65
and the solution is q = 0.25 + 0.65e−0.0004t. These solutions are shown in Figure 10.41.

The equilibrium value is q = 0.25. As more generations pass, the fraction of genes responsible for the

recessive trait gets and closer to 0.25.
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0.8
0.9
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t

Figure 10.40

0.1
0.25
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q

t

Figure 10.41

3. (a) Since I0 is the number of infecteds on day t = 0, March 17, we have I0 = 95. Since S0 is the initial

number of susceptibles, which is the whole population of Hong Kong, S0 ≈ 6.8 million.

(b) For a = 1.25 · 10−8 and b = 0.06, the system of equations is

dS

dt
= −1.25 · 10−8SI

dI

dt
= 1.25 · 10−8SI − 0.06I.

So, by the chain rule,

dI

dS
=

dI/dt

dS/dt
=

1.25 · 10−8SI − 0.06I

−1.25 · 10−8SI
= −1 +

4.8 · 106

S
.

The slope field and trajectory are in Figure 10.42.

5 · 106

0.1 · 106

0.2 · 106

0.3 · 106

0.4 · 106

	

(6.8 · 106, 95)

S (susceptibles)

I (infecteds)

Figure 10.42

(c) The maximum value of I is about 300,000; this gives us the maximum number of infecteds at any one

time—the total number of people infected during the course of the disease is much greater than this. The

trajectory meets the S-axis at about 3.3 million; this tells us that when the disease dies out, there are still

3.3 million susceptibles who have never had the disease. Therefore 6.8 − 3.3 = 3.5 million people are

predicted to have had the disease.
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The threshold value of S occurs where dI/dt = 0 and I 6= 0, so, for a = 1.25 · 10−8 and b = 0.06,

dI

dt
= 1.25 · 10−8SI − 0.06I = 0,

giving

Threshold value = S =
0.06

1.25 · 10−8
= 4.8 · 106 people.

The threshold value tells us that if the initial susceptible population, S0 is more than 4.8 million, there will

be an epidemic. If S0 is less than 4.8 million, there will not be an epidemic. Since the population of Hong

Kong is over 4.8 million, an epidemic is predicted.

(d) The value of b represents the rate at which infecteds are removed from circulation. Quarantine increases

the rate people are removed and thus increases b.

(e) For a = 1.25 · 10−8 and b = 0.24, the system of differential equations is

dS

dt
= −1.25 · 10−8SI

dI

dt
= 1.25 · 10−8SI − 0.24I.

So, by the chain rule,

dI

dS
=

dI/dt

dS/dt
=

1.25 · 10−8SI − 0.24I

−1.25 · 10−8SI
= −1 +

19.2 · 106

S
.

The slope field is in Figure 10.43. The solution trajectory does not show as the disease dies out right away.

5 · 106

0.1 · 106

0.2 · 106

0.3 · 106

0.4 · 106

S (susceptibles)

I (infecteds)

Figure 10.43

(f) The threshold value of S occurs where dI/dt = 0 and I 6= 0, so, for b = 0.24 and the same value of a,

dI

dt
= 1.25 · 10−8SI − 0.24I = 0,

giving

Threshold value = S =
0.24

1.25 · 10−8
= 19.2 · 106 people.

The threshold value tells us that if S0 is less than 19.2 million, there will be no epidemic. The population

of Hong Kong is 6.8 million, so S0 is below this value. Thus no epidemic is predicted.

Policies, such as quarantine, which raise the value of b can be effective in preventing an epidemic. In

this case, the value of b increased sufficiently that the population of Hong Kong fell below the threshold

value, and a potential epidemic was averted. However, we do not have evidence that the quarantine policy

was responsible for the increase in b.
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(g) Policy I: Closing off the city changes the initial values of S0 and I0 but not the values of a and b. If not

one infected person enters the city, then I0 = 0 and the solution trajectory is an equilibrium point on the

S-axis. However, in practice it is almost impossible to cut off a city completely, so usually I0 > 0. Also,

by the time a policy to close off a city is put into effect, there may already be infected people inside the

city, so again I0 > 0. Thus, whether or not there is an epidemic depends on whether S0 is greater than the

threshold value, not on the value of I0 (provided I0 > 0).

For example, in the case of Hong Kong with the March values of a and b, changing the value of I0 to

1 leaves the solution trajectory much as before; see Figure 10.44. The main difference is that the epidemic

occurs slightly later. So a policy of isolating a city only works if it keeps the disease out of the city of the

city entirely. Thus, Policy I does not help the city except in the exceptional case that every infected person

is kept out.

5 · 106

0.1 · 106

0.2 · 106

0.3 · 106

0.4 · 106

	

(6.8 · 106, 1)

S (susceptibles)

I (infecteds)

Figure 10.44

Policy II: From the analysis of the Hong Kong data, we see that a quarantine policy can help prevent

an epidemic if the value of b is increased enough to bring S0 below the threshold value. Thus, Policy II

can be very effective.

Solutions to Problems on Separation of Variables

1. Separating variables gives
∫

1

P
dP = −

∫

2dt,

so

ln |P | = −2t + C.

Therefore

P = ±e−2t+C = Ae−2t.

The initial value P (0) = 1 gives 1 = A, so

P = e−2t.

2. Separating variables and integrating both sides gives
∫

1

L
dL =

1

2

∫

dp

or

ln |L| =
1

2
p + C.

This can be written

L = ±e(1/2)p+C = Aep/2.

The initial condition L(0) = 100 gives 100 = A, so

L = 100ep/2.



528 Chapter Ten /SOLUTIONS

3. Separating variables gives
∫

PdP =

∫

dt

so that
P 2

2
= t + C

or

P = ±
√

2t + D

(where D = 2C).

The initial condition P (0) = 1 implies we must take the positive root and that 1 = D, so

P =
√

2t + 1.

4. Separating variables gives
∫

1

m
dm =

∫

ds.

Hence

ln |m| = s + C

which gives

m = ±es+C = Aes.

The initial condition m(1) = 2 gives 2 = Ae1 or A = 2/e, so

m =
2

e
es = 2es−1.

5. Separating variables gives
∫

1

u2
du =

∫

1

2
dt

or

− 1

u
=

1

2
t + C.

The initial condition gives C = −1 and so

u =
1

1 − (1/2)t
.

6. Separating variables and integrating gives
∫

1

z
dz =

∫

ydy

which gives

ln |z| =
1

2
y2 + C

or

z = ±e(1/2)y2+C = Aey2/2.

The initial condition y = 0, z = 1 gives A = 1. Therefore

z = ey2/2.



SOLUTIONS TO PROBLEMS ON SEPARATION OF VARIABLES 529

7. Rearrange and write
∫

1

1 − R
dR =

∫

dy

or

− ln |1 − R| = y + C

which can be written as

1 − R = ±e−C−y = Ae−y

or

R = 1 − Ae−y.

The initial condition R(1) = 0.1 gives 0.1 = 1 − Ae−1 and so

A = 0.9e.

Therefore

R = 1 − 0.9e1−y .

8. Write
∫

1

y
dy =

∫

1

3 + t
dt

and so

ln |y| = ln |3 + t| + C

or

ln |y| = ln D|3 + t|
where lnD = C. Therefore

y = D(3 + t).

The initial condition y(0) = 1 gives D = 1
3

, so

y =
1

3
(3 + t).

9. Separating variables gives

dz

dt
= tez

e−zdz = tdt
∫

e−z dz =

∫

t dt,

so

−e−z =
t2

2
+ C.

Since the solution passes through the origin, z = 0 when t = 0, we must have

−e−0 =
0

2
+ C, so C = −1.

Thus

−e−z =
t2

2
− 1,

or

z = − ln

(

1 − t2

2

)

.
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10. Separating variables gives

dy

dx
=

5y

x
∫

dy

y
=

∫

5

x
dx

ln |y| = 5 ln |x| + C.

Thus

|y| = e5 ln |x|eC = eCeln |x|5 = eC |x|5,
giving

y = Ax5, where A = ±eC .

Since y = 3 when x = 1, so A = 3. Thus

y = 3x5.

11. Separating variables gives

dy

dt
= y2(1 + t)

∫

dy

y2
=

∫

(1 + t) dt,

so

−1

y
= t +

t2

2
+ C,

giving

y = − 1

t + t2/2 + C
.

Since y = 2 when t = 1, we have

2 = − 1

1 + 1/2 + C
, so 2C + 3 = −1, and C = −2.

Thus

y = − 1

t2/2 + t − 2
= − 2

t2 + 2t − 4
.

12. Separating variables gives

dz

dt
= z + zt2 = z(1 + t2)

∫

dz

z
=

∫

(1 + t2)dt,

so

ln |z| = t +
t3

3
+ C,

giving

z = Aet+t3/3.

We have z = 5 when t = 0, so A = 5 and

z = 5et+t3/3.

13. (a) Yes (b) No (c) Yes

(d) No (e) Yes (f) Yes

(g) No (h) Yes (i) No

(j) Yes (k) Yes (l) No
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14. Separating variables gives
∫

dP

P − a
=

∫

dt.

Integrating yields

ln |P − a| = t + C,

so

|P − a| = et+C = eteC

P = a + Aet, where A = ±eC
or A = 0.

15. Separating variables gives
∫

dQ

b − Q
=

∫

dt.

Integrating yields

− ln |b − Q| = t + C,

so

|b − Q| = e−(t+C) = e−te−C

Q = b − Ae−t, where A = ±e−C
or A = 0.

16. Separating variables gives
∫

dP

P − a
=

∫

k dt.

Integrating yields

ln |P − a| = kt + C,

so

P = a + Aekt
where A = ±eC

or A = 0.

17. Factoring and separating variables gives

dR

dt
= a

(

R +
b

a

)

∫

dR

R + b/a
=

∫

a dt

ln
∣

∣

∣
R +

b

a

∣

∣

∣
= at + C

R = − b

a
+ Aeat, where A can be any constant.

18. Separating variables and integrating gives
∫

1

aP + b
dP =

∫

dt.

This gives

1

a
ln |aP + b| = t + C

ln |aP + b| = at + aC

aP + b = ±eat+aC = Aeat, where A = ±eaC
or A = 0,

or

P =
1

a
(Aeat − b).
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19. Separating variables and integrating gives
∫

1

y2
dy =

∫

k(1 + t2)dt

or

−1

y
= k

(

t +
1

3
t3
)

+ C.

Hence,

y =
−1

k(t + 1
3
t3) + C

.

20. (a) Separating variables and integrating gives
∫

1

100 − y
dy =

∫

dt

so that

− ln |100 − y| = t + C

or

y(t) = 100 − Ae−t.

(b) See Figure 10.45.

t

y

110

25

Figure 10.45

(c) The initial condition y(0) = 25 gives A = 75, so the solution is

y(t) = 100 − 75e−t.

The initial condition y(0) = 110 gives A = −10 so the solution is

y(t) = 100 + 10e−t.

(d) The increasing function, y(t) = 100 − 75e−t.

21. (a) The slope field for dy/dx = xy is in Figure 10.46.

x

y

Figure 10.46

x

y

Figure 10.47
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(b) Some solution curves are shown in Figure 10.47.

(c) Separating variables gives
∫

1

y
dy =

∫

xdx

or

ln |y| =
1

2
x2 + C.

Solving for y gives

y(x) = Aex2/2

where A = ±eC . In addition, y(x) = 0 is a solution. So y(x) = Aex2/2 is a solution for any A.


