Chapter Three

Chapter Three

1. If $f^{\prime}(x)=g^{\prime}(x)$, then $f(x)=g(x)$.
(a) True
(b) False

ANSWER:
(b). If $f^{\prime}(x)=g^{\prime}(x)$, then $f(x)=g(x)+C$, where C is some constant. COMMENT:
You might point out that the graphs of f and g differ by a vertical shift. A student's instinct is to answer True. Have students suggest their own counterexamples.
2. If $y=\pi^{5}$, then $y^{\prime}=5 \pi^{4}$.
(a) True
(b) False

ANSWER:
(b). Since π^{5} is a constant, then $y^{\prime}=0$.

COMMENT:
This question seems remarkably obvious in class. However, on an exam students tend to miss this question.
3. If $y=(x+1)(x+2)(x+3)(x+4)$, then $\frac{d^{5} y}{d x^{5}}=0$.
(a) True
(b) False

ANSWER:
(a). y is a polynomial of degree four.

COMMENT:
Make sure your students realize that they don't need to take a derivative to answer this question.
4. The graph of a function f is given in Figure 3.1. If f is a polynomial of degree 3, then the value of $f^{\prime \prime \prime}(0)$ is
(a) Positive
(b) Negative
(c) Zero

Figure 3.1

ANSWER:
(b). Because the graph of this polynomial of degree 3 is negative for large values of x, the coefficient of x^{3} will be negative. (Recall the third derivative of a polynomial of degree 3 is a constant.)

COMMENT:
You could ask students why $f(x)$ could not become positive for $x>1$.
5. The graph of a function f is given in Figure 3.2. If f is a polynomial of degree 3, then $f^{\prime \prime \prime}(0)$ is
(a) Positive
(b) Negative
(c) Zero

Figure 3.2

ANSWER:

(a). Because the graph of this polynomial of degree 3 is positive for large values of x, the coefficient of x^{3} will be positive. (Recall the third derivative of a polynomial of degree 3 is a constant.)

COMMENT:
You could ask students if there could be other inflection points for f.
6. The graph of a function f is given in Figure 3.3. If f is a polynomial of degree 3, then the values of $f^{\prime}(0), f^{\prime \prime}(0)$, and $f^{\prime \prime \prime}(0)$ are (respectively)
(a) $0,0,+$
(b) $0,0,-$
(c) $0,+,-$
(d) $0,-,-$
(e),,+-+
(f) $0,+,+$

Figure 3.3

ANSWER:

(f). There is a horizontal tangent at the origin, so $f^{\prime}(0)=0$. The graph shows that f has horizontal intercepts at -1 and 0 , with a double root at 0 . Thus f has the form $f(x)=k(x+1) x^{2}$. Because $f(x)>0$ for $x>0$, then $k>0$. So $f^{\prime}(x)=k\left(3 x^{2}+2 x\right), f^{\prime \prime}(x)=k(6 x+2)$, and $f^{\prime \prime \prime}(x)=6 k$.

COMMENT:
You could ask students why a double root at zero means that f has a factor of x^{2}.
7. The graph of a function f is given in Figure 3.4. If f is a polynomial of degree 3 , then the values of $f^{\prime}(0), f^{\prime \prime}(0)$, and $f^{\prime \prime \prime}(0)$ are (respectively)
(a) $+, 0,+$
(b) $-, 0,-$
(c) $+, 0,-$
(d),,+--
(e),,+-+
(f),,+++

Figure 3.4

ANSWER:

(c). The graph shows that f has horizontal intercepts at $x=-1,0$, and 1 . Thus f has the form $f(x)=k x(x+$ 1) $(x-1)$. Because $f(x)>0$ for $0<x<1$, we have $k<0$. Then $f^{\prime}(x)=k\left(3 x^{2}-1\right), f^{\prime \prime}(x)=k(6 x)$, and $f^{\prime \prime \prime}(x)=6 k$.

COMMENT:
You could ask why there could not be another horizontal intercept outside this viewing window.
8. The graph of a function f is given in Figure 3.5. If f is a polynomial of degree 3 , then the values of $f^{\prime}(0), f^{\prime \prime}(0)$, and $f^{\prime \prime \prime}(0)$ are (respectively)
(a),,-++
(b),,---
(c),,-+-
(d),,-++
(e),,+-+
(f),,+++

Figure 3.5

ANSWER:

(c). At $x=0$, the graph is decreasing and concave up, so $f^{\prime}(0)<0$ and $f^{\prime \prime}(0) \geq 0$. Because the graph becomes more negative as x increases beyond 1 , the sign of the coefficient of x^{3} (and thus the sign of $f^{\prime \prime \prime}(0)$) is negative. (Recall the third derivative of a polynomial of degree 3 is a constant.)

COMMENT:
You could ask why the graph of this function could not become positive for larger values of x.
9. The graph of a function f is given in Figure 3.6. If f is a polynomial of degree 3, then the values of $f^{\prime}(0), f^{\prime \prime}(0)$, and $f^{\prime \prime \prime}(0)$ are (respectively)
(a),,--+
(b) $-, 0,-$
(c),,-+-
(d),,-++
(e),,+-+
(f),,+++

Figure 3.6

ANSWER:

(d). At $x=0$, the graph is decreasing and concave up, so $f^{\prime}(0)<0$ and $f^{\prime \prime}(0) \geq 0$. Because the graph is positive as x increases beyond 0.5 , the sign of the coefficient of x^{3} (and thus the sign of $f^{\prime \prime \prime}(0)$) is positive. (Recall the third derivative of a polynomial of degree 3 is a constant.)

COMMENT:
You could ask why the graph of this function could not become negative for larger values of x.

ConcepTests for Section 3.2

1. Figure 3.7 shows the graph of $f(x)=a^{x}$ and its derivative $f^{\prime}(x)$. Which of the following are possible values for the parameter a ?
(a) $a=1$
(b) $a=2$
(c) $a=3$
(d) $a=4$
(e) None of the above

Figure 3.7

ANSWER:

(b) The only possible value of a of the options listed is $a=2$. The value $a=1$ is not possible, since the graph of $f(x)=1^{x}=1$ is a horizontal line. Since the derivative of $f(x)=a^{x}$ lies below the function, we know that $a<e=2.71828 \ldots$ since the graph of the derivative of $f(x)=e^{x}$ lies exactly on the graph of $f(x)=e^{x}$. The only values of a that give a graph similar to the one shown (with the derivative below the function) are values of a between 1 and e.

Alternately, we notice that $\ln a$ must be less than 1 for the graph of the derivative $f^{\prime}(x)=\ln a \cdot a^{x}$ to lie below the graph of $f(x)=a^{x}$. Since $\ln 3>1$ and $\ln 4>1$, the only possible option is $a=2$.

