The "Pascal" Triangle

$$
\begin{aligned}
& 1 \\
& 11 \\
& 121 \\
& \begin{array}{llll}
1 & 3 & 3 & 1
\end{array} \\
& \begin{array}{lllll}
1 & 4 & 6 & 4
\end{array} \\
& 15101051 \\
& 1615201561
\end{aligned}
$$

Blaise Pascal's version

Yang Hui（Pascal＇s） triangle，as depicted by the ancient Chinese（13th Century）

图方亲七法古

Pingala

(India, $5^{\text {th }}-2^{\text {nd }}$ century BCE)

- Used to count ways to combine syllables in Sanskrit poetry
- Pingala also developed concept now known as Fibonacci numbers

Al Karaji
 Persia, 953-1029 CE Mathematician

Omar Khayyam Persia, 1048-1131
Poet, astronomer, mathematician

Fibonacci numbers

Binomial Theorem

$$
\begin{aligned}
& (x+y)^{0}=1 \\
& (x+y)^{1}=1 x+1 y \\
& (x+y)^{2}=1 x^{2}+2 x y+1 y^{2} \\
& (x+y)^{3}=1 x^{3}+3 x^{2} y+3 x y^{2}+1 y^{3} \\
& (x+y)^{4}=1 x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+1 y^{4}
\end{aligned}
$$

Sierpinski Triangle

odd $=$ black, even $=$ white

Patterns in the triangle: Each line of hexagons has sum equal to the bottom hexagon.

