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Rhapsod

At the recent Breckenridge (Colorado)
International Snow Sculpture Champi-
onships a Macalester College team, un-
der the direction of sculptor Robert
Longhurst of Chestertown, New York,
took a silver medal, as well as two other
awards, The team
Longhurst, Macalester mathematics pro-
fessors Dan Schwalbe and Stan Wagon,
Macalester mathematics major Andy
Cantrell, and John Bruning (Roches-
ter; New York: non-sculpting team man-
ager). The elite international snow-
sculpting event had 17 teams [rom Rus-
sia, England, Switzerland, Finland, The
Netherlands, Mexico, Canada, and the
U.S. The Minnesota team was sponsored
by Wolfram Research, Inc., the devel-
opers of Mathematica.

The team started with a 12-foot high
block of compacted snow and carved it
into an Enneper surface, truncated to
eliminate the self-intersections and
maximize the overhang and dramatic
impact. The swooping boundary curves
and the rhythm and symmetry of the
piece led to the title: Rhapsody in Wihite.
The Enneper surface is an example of a
minimal surtace: every point is a saddle
point, which gives it great structural
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strength, thus allowing the carving to be
thin and to have a substantial overhang.
In addition to taking second place,
the team was awarded the Artists’ Choice
award (voting by the other teams) and
the People’s Choice award (voting by the
approximately 10000 people who view
the pieces on the final weekend).
Longhurst had carved wooden mod-
els of the surface, so he had a detailed
sculpting plan in mind. The first step
was to make a 6-lobed rose prism, which
was done with the aid of a plastic tem-
plate and an ice-fishing drill to remove

the dense snow. Then it was a matter of

carefully removing everything that
shouldn’t be there. The last step, remov-
ing the supporting plugs holding the
overhang up, was done on live TV on
the final morning. The overhang held
its shape for 12 days following the event.
Pictures from the event, including shots
of the other sculptures, may be seen at
www.math.macalester.edu/
snow2000. Wagon, in his acceptance
speech saidl:

“Julia Child has said: ‘Il faut mettre
les mains dans le pate.’ [f one wants to
be a baker, one must put one’s hands in
the dough. Four members of our team

Andy Cantrell and Robert Longturst

are mathematicians and we spend a lot
of time looking at images on a computer
screen. But, both for us and for the view-
ers of our work, true understanding can
be obtained only by interacting with the
piece in a truly 3-dimensional way. This
is what snow allows us to do. In a very
short period of time and with a mini-
mum of tools we can sculpt a compli-
cated shape and so learn much more
about it. It’s a glorious opportunity and
tremendous fun, Thank you all for cre-
ating an environment in which we can
accomplish our goals.”

Photos courtesy ol Stan Wagon.
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DEANNA HAUNSPERGER and STEPHEN KENNEDY

Coal Miner’s Daughter

The first thing that strikes you s that she’s charming. Only later do you realize that she is probably the
smartest person you've ever met. Somehow, you don’t expect mathematical genius and a charming,
genuinely warm personality to coexist. Yet, here sitting down to lunch with us is an existence proof:
Professor Ingrid Daubechies of Princeton University, MacArthur Fellow, member of the National Academy of
Sciences, the mother of wavelets. Fuzzy-haired, bespectacled, quick to smile and a world-class storyteller,
she’s telling us about growing up in a coal-mining town in Belgium in the sixties.

“I grew up in a very small town. My
father worked in a coal mine. He was an
engineer in a coal mine, and of course
while I was growing up I didn’t notice,
but in retrospect coal-mining towns are
very special kinds of small towns. I
mean, there is just one big employer,
and he controls the whole life, even the
social life, of the town. My mother, well,
for her generation in Belgium it was not
common to have university education,
but she did. She had expected to have
a career, but after marrying my father
she didn’t. Partly because there was no
opportunity, but also because in this
very small paternalistic town, two gen-
erations behind the wide world, it just
was not done for wives of engineers to
work. There was one wife who worked,
she was a nurse, and everybody knew
that that was why her husband never got
a promotion. It wasn’t said that way, of
course, and even then they couldn’t
write things down that way. So my
mother didn’t work.

“I remember when we were little she
did a lot with us kids. As we grew up we

DEANNA HAUNSPERGER and STEPHEN
KENNEDY are the editors of Math Horizons.
Their conversation with Professor
Daubechies took place in January 1999.

became more independent because she
wanted to give us our independence, but
she was also very bitter at not having
any bigger framework for her own life.
She went back to college when I'went to
university. We had moved by then. She
went for a different degree because her
first degree, in economics, had become
obsolete — she hadn’t worked for twenty
years. She got a second degree in crimi-
nology and worked for about twenty
years as a social worker. She worked with
troubled youths, trying to monitor them,
and to help them, and to give them
decent lives.

“She had met my father while they
were students at different universities at
ameeting that brought together students
from universities in Belgium. She met
him, and later they decided to get mar-
ried. They married in 1952, and he
started work at the coal
mine. At this coal mine they
would only hire engineers
who were either married or
engaged to be married very
soon. They did not want
trouble with single men
around.

“My father really would
have liked, himself, to be-
come a scientist, to become
a physicist. He was really
mostly interested in physics,
but he became a mining en-

gineer. His parents were very poor. They
came from a coal-mining region, and
for them an educated person was a coal-
mining engineer. They had never seen
any other profession. Also, there was a
very good engineering school in that
area, so they made a deal with him when
he was growing up that they would not,
like their friends, save for their retire-
ment. My grandfather actually didn’t
work at the coal mine, he worked in a
glass factory, and they lived in a house
thatwas owned by his employer. In these
company towns people didn’t live in
houses that belonged to them, so every-
body would save so that they could buy
a small house or a small apartment to
live in after their retirement. But my
grandparents made a deal with my fa-
ther that they wouldn’t do that; instead
they would pay for his education and
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then he would take care of them when
they retired. So, that’s how it happened
that he became a coal-mining engineer
— because it had all been planned that
way, and he only discovered while at the
university that there were other choices.
He was at a school which was an engi-
neering school. He wouldn't have been
able to explain a change to his parents;
they would have been so worried. As a
coal-mining engineer they knew he
would be able to support them.

“The region where my father’s par-
entswere born and lived was a very poor
region. The reason my grandfather
didn’t work in the coal mines was that
his mother really wanted one ol her chil-
dren not to go down the coal mine be-
cause thatwas the time when you would
die young if you went into the coal
mines. They didn’t know how to pre-
vent black lung disease; everybody died
young. The coal mines were just disput-
ing the fact that it was anything to do
with work in the mines, so you didn’t
get any compensation either. My grand-
father had been sickly when he was little
and he was the first-born, so his mother
wanted him to work elsewhere. Genera-
tions in my family are very long, so I'm
talking the end of the 19th century
when my grandfather was born. He left
school when he was nine. I said this was
a poor region, and this was before child-
labor laws. His mother, my great-grand-
mother, had arranged a job for him in
a big glass factory; he was in packing.
But then, these things are incredible,
by the time he was 14, he had in vari-
ous accidents lost a finger and an eye
in the glass factory. I think of my chil-
dren, and I think — how is this pos-
sible? My father always says of his fa-
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ther that he was really very smart. He
went to evening school at some point.
He was in packing all of his working
life, and he became a foreman. At some
point, for a very complicated delivery,
they had to make a case the inside of
which was the intersection of two cylin-
ders, but he had to make it in wood, of
course, and fold it out of plywood. He
had tried with ellipses and somehow it
never fit, so he actually went back to
evening school to study mathematics in
order to learn how to do that. Another
foreman had explained how to do it,
but he wanted to know what it looked
like. If you took a cylinder and then
unfolded it, what would 1t look like?
How do you actually compute that? So,
he went back to school.”

An Education in Physics

Ingrid altended the Dutch Free University
in Brussels where she studied physics. She
held a research position in physics at that
same university until 1987 when she came
to the United States. Today, though, she as-
serts, “I'm a mathemalician.”

“My father was always interested in
mathematics, and he was always inter-
ested in explaining things to me, and [
liked it. I would ask questions. I would
usually get answers which were much
longer than I hoped for, so I am trying
with my children to yes, give answers,

but maybe not go beyond so far. I re-
member liking mathematics when I'was
little, but I actually did major in phys-
ics. I think I majored in physics because
it was my father’s dream to become a
physicist; he explained to me things
about physics. He went to extra Open
University courses whenever he could.
Sometimes they would organize a series
of physics lectures, and he would go.

“Physics just seemed to be avery noble
choice because of my father’s influence.
Itwas something intermediate between
what I really wanted — mathematics —
and what my mother really wanted —
which was that I would have become an
engineer. She was a bit worried about
all this science. She thought scientists
were like artists, they really cannot make
a good living. An engineer can always
find a good job.

“With a free choice, I think I prob-
ably would have chosen mathematics. I
don’t know. I liked physics very much.
I especially liked some physics classes
that we had. At some point I was con-
sidering switching between math and
physics, and 1 decided to stay in phys-
ics because of one particular course
which I thoughtwas wonderful, in which
we were going beyond geometric optics.
If you go to the Kirchott-Fresnel theory
of optics, you actually see, and can com-
pute, that a lens, in fact, computes a
Fourier transform, which I think is won-
derful. I think this is mind-boggling,
that a lens would, in fact, compute a
Fourier transform and this is used in
some optical computing. This was mar-
velous. In fact, this course was really a
course in applied mathematics. It was
labeled as a physics course, and it was
wonderful, and so I stayed with phys-
ics. I don’t regret it. As a result I have
learned a whole lot of things that 1
wouldn’t have learned in a standard
math curriculum. And the math that 1
wanted and needed I have learned by
myself anyway.

“I think I think like a mathematician;
I switched from theoretical particle phys-
ics to more mathematical physics because
I felt that people who were really good at
particle physics had an intuition about
which I had no clue. 1 felt like I could
learn how to read those papers, but it was
like learning a language without under-



standing the meaning of the words, which
I didn’t like at all. It’s hard to describe
how I think. Even in analysis, I don’t
think in formulas. Although when I'work
something out, I do compute a lot. I have
some kind of mechanical or geometrical
way of thinking, I don’t really know where
that comes from.

“Anyway, in Belgium, undergraduate
education is really different from here
in that you track very, very early on.
When you register for the university, you
have to say what you're going to major
in. So you get very few courses outside
your major or outside things related to
your major. For physics, you get a lot of
math, you get some chemistry, but you
don’t get any liberal arts courses. I think
you could go sit as an auditor in some
of these courses, but really there’s no
time; you don’t choose your own courses.
You say ‘I will major in physics,” and
then the courses are specified except
that in later years, you have some
choices, you get to choose one of four.
In the first two years everything is com-
pletely chosen for you, and it’s quite a
heavy schedule. It’s a heavier schedule
than I see here, but the result is that
you can do much less independent
work. I think a schedule where you put
together a combination yourself and
where you're encouraged to do a lot of
independent work is actually better.

“I'was tracked with physics, so I had
alot of math courses, especially the first
two years. And when I had majored, I
had seen a lot of physics courses that
would be at graduate level in the States
because you cannot cram four years full
of physics courses and not get to that
level. Things are not organized so much
by semester as they are for awhole year,
so many courses were a full year. In the
third year, that was really the heaviest
vear, we had 13 difterent physics courses,
and we had 5 weeks of labs. Lots of that
physics [ have forgotten.

“At the graduate school level, how-
ever, in most universities in Belgium,
you don’t get courses any more. There
is a movement there now to get some
what-they-call third-cycle courses which
are graduate courses, but mostly you're
left to learn extra things on your own or
with your advisor. You're assigned or find
a research topic; right away when you

arrive you start working on
papers. You also have a teach-
ing schedule, and you're ex-
pected to have your PhD in
5 or 6 years. I never had a
teaching schedule because 1
had a special fellowship, but
on a teaching assistantship,
you would teach (be in the
classroom) 30 hours a week.
I would typically have 8-10
hours aweek. The things you
would be teaching would be
problem sessions. Of course,
you were there for the stu-
dents, and typically the only
person there for the students
to ask questions from because
they would not dare to ap-
proach a professor. You don’t
have control over what you're
doing; you'd be given a list
of problems, and you'd an-
swer questions about them. It
was very [rustrating because
it meant you had zero input
into what you did. That persists even
after the PhD, for a while.”

A New Paradigm

Wavelets are everywhere these days. Wavelets
are a new method for encoding and compress-
ing information (see box). They ave being used
in image compression (the FBI's files of ap-
proximately 200 million fingerprints ave be-
ing converled lo wavelet-compressed electronic
mmages), also sound and video compression,
medical imaging, and geological exploration.
Ronald Coifman of Yale University used wave-
let techniques to vemove the noise from a cen-

tury-old vecording of Brahms playing one of

his own compositions.

The most exciting thing about wavelets
might just be the way that they are drawing
together people and ideas from so many dif-
ferent fields of science: mathematicians,
physicists, geologists, statisticians, computer
scientists, engineers of all kinds. In fact the
history of the idea has roots in all of these
fields and move. Yves Meyer has identified
precursors to the idea in mathemaltics, com-
puter science, image processing, numerical
analysis, signal processing, studies of hu-
man and computer vision, and quantum field
theory. The short version of the history has

Daubechies discussing mathematics with R. Gundy (Rulgers)

geophysicist Jean Morlet and mathematical
physicist Alexander Grossmann introducing
the idea in the early 1980s. Meyer and
Stephane Mallal pieced together a math-
ematical framework for wavelets in the mid-
eighties. In 1987 Daubechies made her fa-
mous contribution of a family of wavelets
that are smooth, orthogonal, and equal lo
zero oulside a finite interval. Thus, in a
stroke, accomplishing what everyone sup-
posed impossible and making wavelets very
much move applicable.

“How did I get started on wavelets?
For my PhD work, I had worked on
something in quantum mechanics
which are called coherent states. This
is a tool to understand the correspon-
dence between quantum mechanics and
classical mechanics. So you try to build
functions that are well-localized, that live
in Hilbert space, but that correspond
as closely as you can with being in one
position, in one momentum in classi-
cal mechanics. I had worked in
Marseilles with Alex Grossmann, and
Alex was one of the people who really
started the whole wavelet synthesis. There
are roots in pure mathematics, in many
different fields, but the synthesis really, 1
feel, was created by Alex Grossmann and
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ED ABOUFADEL
A Short Primer on Wavelets

Wavelets have many applications, including the processing of fin-
gerprint images by the FBI, the analysis of earthquake data, and
the development of a text-to-speech system. "As a window into
understanding wavelets, consider the problem of approximating
complicated functions with simpler functions. In calculus, we learn
how to approximate functions with Maclaurin and Taylor polyno-
mials. For example, if fis a function defined near t = 0 then we can
approximate it near ¢ = 0 with-a Maclaurin polynomial such as:
£(0) = f(0)+f'(0)z+f—2('0—)t2 +ig(‘0—)t3.

In Figure 1, we see how In(¢+1) can be approximated by 0 + 1f-
2 + 2636

When using Maclaurin polynomials, we call the functions {1, ¢,
£2,£3,...} basis functions, and our approximation is created by add-
ing multiples of the basis functions together.

A more powerful version of function approximation is Fourier
analysis. In Fourier analysis, sine and cosine functions are used for
the basis functions, instead of polynomials, and we attempt to
have a good approximation on a fixed interval such as [0, 27]. The
goal is to decompose a function by thinking of it as a combination

ED ABOUFADEL is an Associate Professor of Mathematics at Grand
Valley State University and the author, with Steven Schlicker, of
Discovering Wavelets, Wiley, 1999. For more information on wave-
lets, begin at the Discovering Wavelets web site: www . gvsu. edu/
mathstat/wavelets.htm
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Figure 1. Approximating In (t-+1) with a Maclaurin polynomial

of trigonometric functions with different frequencies. For example,
we can approximate In{ + 1} with the following Fourier series:

In (¢+1) = 1.301 — .155c0s(¢) — .053cos(2¢) — .026c0s(3¢)
~.528sin(t) - .294sin(2) - .202sin(3¢)

For a graph of In (¢ + 1) and the Fourier approximation, see Figure 2.

This approach gives a good approximation in general, although
the error is worse near { = 0 and ¢ = 27. The results are even worse
for jagged functions, such as the characteristic function on the
time interval [0, #]. (This is the function that is equal to 1 on the
interval [0, 7] and 0 everywhere else.) In Figure 3, this function is
approximated by a sum of sines and cosines.
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Figure 3. Another example from

Figure 2. Approximating In (¢+1)
Fourier analysis

with a Fourier series

Jean Morlet. Morlet was not happy with
whatwas called the wavelet transform, and
he wanted something else, so he invented
an algorithm. But he had no mathemati-
cal theory behind it. Alex Grossmann
realized there was an analogy with the
coherent state formalism in quantum
mechanics. He recast it in terms of a
group representation and then people
started saying ‘But we've been doing that
allalong in a different context.” And they
were right; they had been doing it all
along. So that’s what made the synthesis
happen that made the jump from math-
ematicians to engineers.

“I knew Alex Grossmann very well
from my thesis work, and I was looking
for something else to start working on.
This was a time when I had many
changes in my life. Before my husband,
I had a long relationship, and I had
Jjust left him, and I was looking for some-
thing else, for changes. So I changed
research topics. I started working on

8 Math Harizons April 2000

wavelets in '85. I started working on
wavelets and I met Robert [Calderbank,
the mathematician to whom she is mar-
ried] within a period of six weeks in '85.
“At this time geologists were doing
windowed Fourier transforms, so they
would window [look at a short time seg-
ment of a signal], then Fourier trans-
form [approximate that bit of signal with
combinations of sines and cosines]. This
means that for very high frequency
things that Jive in very short time inter-
vals — these are called transients — if
you've determined your window to be
this wide, then you need a whole lot of
high frequency functions to capture that
behavior. So, you could of course make
your window very narrow, but then you
don’t capture a lot of them. Morlet
didn't like that aspect of the windowed
Fourier transforms, so he said ‘After all,
I'm using location and modulation, let’s
do it differently. Let’s take one of these
functions that have some oscillations

and let’s put that in different places and
squish it so that I have a different thing,’
really wavelets. Now he didn’t really for-
mulate this precisely. Actually the name
comes from there because in geology
when you have different windows, which
determine the shape of these multi-lay-
ered functions, they call them wavelets.
So he called his transform ‘a transform
using wavelets of constant shape’ because
the other ones didn’t have constant
shape. If you adjust the window, or you
modulate this way, then of course they
look different. In his case, the wavelets
look the same, they were just dilated
versions. He called them wavelets of con-
stant shape, but then once they left that
field, there was no other thing around
called wavelets, so he just dropped the
‘of constant shape’ to the great annoy-
ance of geophysicists because in their
field it has another meaning.
“Wavelets were not really something
that were a trend in geophysics, Morlet
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Figure 4. The “father” and “mother” Haar wavelets

Wavelet analysis is designed to better handle this type of func-
tion, because of the focus on the time intervals where functions are
defined. In the example above, [0, 7] is an important time inter-
val, so wavelet basis functions are needed that will emphasize this
interval in the decomposition. An easy-to-understand set of basis
functions that have this property are the Haar wavelets. The “fa-
ther” and “mother” Haar wavelets can be found in Figure 4.

The Haar wavelets have properties which are different than
sine and cosine. For instance, these wavelets are not periodic. They
are zero for most of the real line (-0, o).

There is also a way of creating these functions that is different.
The basis functions for Fourier analysis come from scaling the sine
and cosine function (in other words, we start with sin x, and cos x
and then scale these functions by creating sin 2x, cos 2x, sin 3x,
cos3x, ...).

The basis functions for wavelet analysis come from dyadic scal-
ing, which means that the scaling coefficients are only powers of 2.
If Fourier analysis was done with dyadic scaling, then we would
only use functions like sin 2x, cos2x, sin 4x, cos 4x, sin 8, cos 8x, etc.
We also use translating, so that we can slide the scaling function to
any important time interval. The function that is scaled and trans-
lated is called, not surprisingly, the scaling function, or “father”
wavelet. We use ¢ to stand for the scaling function, and some of
the “children” of ¢(¢) are ¢(2¢), (2t - 1), Pp(4¢), Pp(4f — 3) and p(8).

Other wavelets are created by combining these wavelets. For ex-
ample, the “mother” wavelet p(t) = ¢(2f) —p(2t-1).

In Figure 5, we see how In(f +1) can be approximated on the
interval [0, 1] by a series of Haar wavelets.

During the 1980s, Ingrid Daubechies developed a special type
of scaling function ¢ that had three properties. First, the function
is equal to zero outside of the interval [0, 3]. Second, for any two
different integers & and {

Jo(t—kyp(t-1)de=0
This condition is called the orthogonality condition. Third, you can
approximate constant and linear functions with no error, which is
actually quite remarkable. ‘
Combining these requirements, Daubechies deduced the fol-
lowing identity:

0= 28 ) 28 3,y
+3_4\/§¢(2t—2)+#¢(2t—3)

From this identity, you can generate Daubechies’ scaling function,
which is pictured in Figure 6.
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Figure 5. Approximating
In(¢ + 1) with a wavelet series.

Figure 6. Daubechies’ scaling
Sfunction.

Jjust came up with it. In harmonic analy-
sis, people had been looking at, not
exactly the same way, but something
similar for ages. It goes back to
Littlewood-Paley theory [circa 1930],
and even the integral transform formula
that Grossmann and Morlet wrote, be-
cause Morlet had no real formulas, i1s a
transform that you find in Calderén’s
work in the sixties. So in some sense
they had reinvented the wheel. In an-
other very real sense they had looked at
it completely differently. For Calderén
itwas a tool to carve up space into dif-
ferent pieces on which he would then
use different techniques for estimates.
Grossmann and Morlet gave these wave-
lets some kind of physical meaning, in
a certain sense, viewing them as elemen-
tary building blocks which was a ditfer-
entway of looking atit. And Yves Meyer
later told me that when he read those
first papers by Grossmann, it was very
hard for him because it was a different

style. It took a while before he realized
in what sense it was really different, be-
cause at first you see the formulas there,
and you say, ‘well, yeah, we've been do-
ing that for 20 years,” but then you real-
ize that here was a different way of look-
ing at it: a new paradigm shift.”

A Link in a Chain

10 most mathematicians it appears that wave-
lets sprang full-grown from the foreheads of
Grossmann, Morlet, and Daubechies and
then were immediately grabbed by engineers
and scientists. 1t is unusual for a piece of
mathematics to find so many applications so
quickly. Daubechies with her ability to talk
the languages of physics and engineering and
mathematics is, to a large degree, respon-
sible for the building of so many bridges
between the groups.

“In pure mathematics the idea was
developed starting in the thirties, then

in greater detail in the sixties. It was a
very powerful tool which lived in a rela-
tively small community in mathematics,
and outside the small community, I felt
it spread rather slowly. For example, in
quantum mechanics I think some of
these techniques would have been use-
ful to mathematical physicists earlier
than they penetrated. I think it’s because
through Grossmann and Morlet there
were intermediate people. I treasure ev-
ery single electrical engineer I meet and
with whom I can talk. I'm interested in
talking with them, I think many math-
ematicians aren’t, but I am. Even so, |
find it hard to talk with many of them
because we've been trained in completely
different ways and the words mean dif-
terent things. But I have found some I
can talk to and I think it’s very valuable
when they are also interested in talking
with me. I think it’s easier for me be-
cause of this physics background I have

Continued on p. 28.
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ALLEN J. SCHWENK

Beware of Geeks Bearing Grifts

hat is a grift? It is circus slang for a swindle, a game
Wrigged so the customer is at a disadvantage. The
guys operating the games in the micway are known
as grifters. As for geeks, I don’t know how to define them,

but I recognize them when I see them. I you are wondering
what this has to do with mathematics, read on.

Three Nontransitive Dice

Let’s play a game. We are given three nonstandard dice. One
die 1s amber in color, the second is blue, and the third is
crimson. Each die has six sides with six numbers, but these
numbers are not the traditional 1, 2, 3, 4, 5, 6. Instead we see:

amber = A ={2,2,2, 11, 11, 14}
blue = B = {0, 3, 3, 12, 12, 12}
crimson = C = {1, 1, 1, 13, 13, 13}.

Now we are each to select a die and roll it once. Whoever rolls
the higher number will win our simple game. Always the gentle-
man, I offer you first choice, so if you believe that one of the
dice is superior to the other two, you certainly can select it and
Iwill have to accept one of the two remaining. So which die do
you select? You may think, “I'll take the one with the highest
average number. That ought to be best in the long run.” Plau-
sible reasoning, but unfortunately you quickly confirm that each
diewill produce an average roll of 7. So perhaps they are equally
good. Pick any one and let’s see what happens.

Perhaps you decide to take A. If so, I will select B. Now
there are 36 pairs that we can roll. Brute force listing shows
that T will win 21 times and you will win 15. That is a 58.33%
probability in my favor. Not overwhelming, but Las Vegas
prospers on a smaller edge than this. We say die B domi-
nates die A, or B = A.

OK, so now you realize A was not the best choice. You ask
for B. If so, I now choose C. Again listing all 36 pairs, we
find that I'win 21 times and you win 15. Die C dominates B,
or C—=>B.

Now you see your best strategy, you ask for C. Fine, I will
take A. The listing shows ... 21 wins for me and 15 for you!
Die A dominates C.

ALLEN J. SCHWENK is Professor of Mathematics at Western Michi-
gan University.

10 Math Horizons April 2000

What we have just discovered is that A - C > B - A
Domination is a nontransitive relation on this set of dice.
And if a geek bearing dice offers you first choice, beware!

The concept of nontransitive dice is not new, although
the triple shown here is. Martin Gardner [1] presented sev-
eral sets of four nontransitive dice credited to Bradley Efron.
One of these sets gives the second player a two-to-one advan-
tage. Gardner [2] continued the discussion of nontransitivity
in games and bets where we might expect transitivity. Tenney
and Foster [3] generalized to construct sets of d dice with s
sides for numerous pairs (d,s) with d and s at least 3.

Let’s play again. Being a good sport, I will select first, and
take A. T suppose you would like to have B, correct? And just
for fun, let’s roll twice each and take our total, the higher
total wins. Recall that you have a 58.33% chance of beating
me on the first roll, and also a 58.33% chance of beating me
on the second roll. When we find our totals, is your prob-
ability of winning greater than 58.33%, equal to 58.33%, or
less than 58.33%? Pause a moment and try to predict the
answer. Does extending the game to two rolls enhance your
expectation, leave it unchanged, or reduce it? Computing
these probabilities is a lot more tedious. There are now 36
ordered pairs for each of us, so together we have 6% = 1296
possible outcomes. Curiously, none are ties. We find 675 wins
for A and 621 wins for B! That's right, not only has your
winning edge been reduced, but it has been reversed to a
winning margin of 52.08% for me! I call this a perverse rever-
sal. Ina single roll, B = A, but for a pair of rolls, A = B! To keep
the conditions clear, we'll write the latter as 2A - 2B.

What happens when B opposes C? We have an even stron-
ger reversal, 2B > 2C by a margin of 53.47%! And A > C also
reverses to 2C - 2A by the same margin of 53.47%. For two
rolls, our set of three dice is still nontransitive, but the domi-
nating cycle has been reversed to

2C > 2A > 2B »2C

Perverse reversal, indeed.

After that surprise, are you ready to predict what will hap-
pen with three rolls? Here ties are possible, so we shall take
the following point of view. If both players produce the same
total for three rolls, we simply start over from scratch. They
roll three more times, and either produce a winner or have
another equal total leading to yet another repetition. In this
way the game never ends in a tie. There are 6° = 46656
possible outcomes. Lets say that ¢ produce ties, a are wins for



Aand b are wins for B. Evidently 46656 = a + b + 1. Our tie-
breaking rule effectively removes the ¢ tying cases, giving A
the probability a/(a + b). In the case of three rolls, we find a =
19818, b = 20358, t = 6480. These perverse dice have tipped
the scales back in the original direction. We find 3B - 3A
by 50.67%. And also 3A - 3C - 3B, both dominating by the
margin of 50.28%. Another nontransitive perverse reversal.

Several questions come to mind. For r rolls, will we always
have a nontransitive triple? Which values of r will give the
original orderrA - rC - rB = rA? And which will perversely
reverse to rA = rB = rC - rA? So far we have the original
order forr = 1 and 3 and the reversed order forr = 2. It may
seem that the margins are quickly dying out, but the first
three cases may be misleading.

Finding the winning probabilities for r rolls is not as hard
as it may first appear. For the amber die, we have sides of 2,
2,2, 11, 11, 14. We represent this by a polynomial

alx) = 3x2 + 2! + x4,
Similarly, the blue die gives
bx) = 1 + 2x3 + 3x12,
and the crimson one has
c(x) = 3x + 3x'3,

When A faces B in a single roll, B’s winning margin is
seen by observing that the term of x!* beats all six terms in
b(x). The two terms x'! each win three times, and the three
terms x? each win one time. That's 1 X 6+ 2 % 3 + 3 x 1. Thus
A has 15 winning combinations, similarly, Bwins 3 X 5 + 2 X
3 = 21 times. For two rolls we use

Hlustration by Greg Nemec.

a?(x) = 9xt + 12013 + 6x'6 + 4x22 + 4x% + 5

and

B2(x) = 1 + 4x® + 4x8 + 6x12 + 1215 + 9x2%,

The winning pairs for A count up to be
IX36+4X36+4X27+6X%X27+12X15+9X5=0675,
and the winners for B give
IX31+12X21+6Xx9+4x9+4X0+1Xx0=621.
By using a computer algebra system such as Maple, we can
analyze 7 rolls quickly by computing the polynomials a’(x),
b"(x), and ¢"(x). Of course it is still a chore to carry out the
term-by-term comparisons.

However, using Matlab permits a matrix-vector approach
that is even more convenient. The three polynomials are
represented by column vectors whose (i + 1)st coordinate
stands for the coefticient of x'. Thus we have three vectors

a=[003000000002001]"
b=[100200000000300]"
c=[030000000000030]".

Now the polynomial a%(x) is represented by the convolu-
tion vector

a? = conv(a,a)=[00009000000001200600

000400400177,
and in general the power a’(x) is represented recursively by
the convolution

a’ = conv(a’ !, a).
"To analyze totals for r rolls, we need the strictly lower triangular
matrix of ordern = 14r + 1 given by L, = (;;) where/;; = 1

“Never give a sucker an even break.” — W. C. Fields, 1923 in “Poppy”’
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if 7 > jand 0 otherwise. The number of times A beats B with
7 rolls is given by a’”/L,b’. Similarly, the number of times B
beats A is given by b’TL,a". We do not need it, but the num-
ber of ties is a’"b’. For verification, we can sum these three
numbers to get the total 62. The table below summarizes the
results of summing 7 rolls for each » < 15. Notice that ties
occur if and only if 3 divides r. This is not surprising once
we note that each face of A is congruent to 2 mod 3, on B it
is 0 mod 3, and on C we have 1 mod 3. Thus ties can happen
only when 3 divides r.

Table 1 shows the probability that the left competitor of
each pair wins. For » < 14, the three possible pairs always
form a nontransitive triple. Moreover, it is the original triple
rA—=>7C =B —>rAforr=0o0r ] mod 3 and it is perversely
reversed to rA = B - rC - rA whenever r = 2 mod 3. We
certainly might wonder whether this pattern continues for
all positive r, but the pattern fails for r = 15. Here B domi-
nates both A and C, with C = A. Thus, the first player could
select B and, for the first time, transitivity guarantees a win-
ning advantage. Of course the second player can hold his
disadvantage to a minimum by selecting C.

Incidentally, the set presented here is about the fifth I
investigated. I tried various ways to try to extend the number of
nontransitive triples through the largest possible value for 7.
Earlier sets had their first failures at 3, 9, and 12. Upon find-
ing the present set, I chose to go no further. I do not know ifit
is possible to find a set that is nontransitive for every possible
number of rolls 7. Perhaps you can find a better set.

A Nontransitive Variation

Suppose we have a large supply of amber, blue, and crimson
dice with the faces given above. Avariation of the game would

r A versus B B versus C C versus A
1 Deoaeer eoaeer 041667
36 36 6
o 75 _os0083 0% sos3470 5% L3470
1296 1996 1296
3 049328 0.49725 0.49725
4 047468 0.47555 0.47555
5 0.50962 0.51533 0.51533
6 049658 0.49858 0.49858
7 0.48545 0.48577 0.48577
8 050744 0.51004 0.51004
9 049773 0.49949 0.49949
10 0.48903 0.49021 0.49021
11 0.50646 0.50808 0.50808
12 049821 0.49993 0.49993
13 0.49069 0.49246 0.49246
14 050579 0.50711 0.50711
15 049846 0.50025 0.50025

Table 1. Probability that Left dominates Right for the total of v rolls.

12 Math Horizons April 2000

5347

Figure 1. The domination digraph for all possible pairs of two dice.

be to let you select any two dice, of like or different colors,
then I select my pair. We roll our chosen pairs and compare
totals. If a tie occurs we roll over. This means you have six
selections available: AA, BB, CC, AB, AC, and BC. We have
already seen that B - A and AA - BB. But, when I have
second choice, is AA the pair | should choose to gain the
greatest advantage over BB? The results can be presented by
the directed graph shown in Figure 1. Here we place an arc
joining WZ to YZ whenever WZ - YZ. If a pair happens to
be perfectly fair, we have no arc joining them. For example,
there is no arc between AA and BC because these pairs hap-
pen to be totally fair. Moreover, at each vertex we have se-
lected the incoming edge with the largest margin to appear
as a green arc. The green arcs identify the best selection for
the second player for each possible first choice. Observe that
the strongest dominations give rise to a nontransitive cycle
among the six possible pairs, namely

AA - AC - CC-=BC~-> BB~ AB - AA,

The first player, seeking to minimize his opponent’s advan-
tage, needs to select either BB or AC, both of which give up
only a 53.94% edge.

If we alter the rules to select three dice each, repetitions
allowed, Figure 2 shows the strongest dominations for each
choice. While each selection wins against certain other selec-
tions, and cach loses, some selections, AAA for example,
never win by enough to be the dominant choice. Here the
first player can choose ACC to minimize his opponent’s ad-
vantage to 52.685% via BBB. Similarly, the strongest domi-
nations are also shown for a selection of 4 dice in Figure 3.
Here the first player minimizes his disadvantage by selecting
AACC to hold his opponent to 52.127% via AAAC.

We have presented these possible variations of the game
to llustrate how difficult it is to predict the best choices for
each player.
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Figure 2. Strongest domination for sets of three dice.

Five nontransitive dice

Here is a set of five 5-sided dice, colored amber, blue, crim-
son, dayglo orange, and evergreen, that have been designed
to demonstrate how much optimal choices can vary. Lest you
worry about how to construct 5-sided dice, it is very simple.
We use cubes, with one side labeled *. Whenever the star
side lands facing up, the player rerolls.

Figure 3. Strongest domination for sets of four dice.

By now it should not surprise you that these dice beat one
another in a nontransitive fashion. For a single roll the stron-
gest dominations occur in a cycle

A->B->C->D->E-A
Within this cycle, each domination is by at least 64%. But

how does this cycle vary as the number of rolls 7 increases?
When r = 2, the dominant cycle has changed to

2A 2D = 2B » 2E > 2C - 2A.
For r = 3, we reverse this to get

3A->3C—->3E-»3B->3D->3A
Next r'= 4 reverses the original cycle to yield

4A - 4E - 4D - 4C » 4B » 4A.

This is perverse reversal with a vengeance. After the first
player selects his die, the second may optimally select any
one of the remaining four dice, depending upon how many
rolls are intended. And what happens for r = 5? Surpris-
ingly we now have a transitive domination sequence
5E > 5D > 5A - 5C > 5B.
The first person can finally grab the advantage by selecting
E. All the second player can do is minimize his losses by
selecting D. Curiously, the domination pattern for each value
of r = 6 to 10 repeats the pattern for r — 5.
Many mysteries remain in the realm of nontransitive dice.

Why not invent your own and see what surprises you can
discover? i
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April is
Math Awareness Month!

What do Flatland, PIXAR, and A Wrinkle in Time all
have in common? They’re three of the features on
the interactive poster celebrating Math Awareness
Month 2000:

Math Spans All Dimensions

Check it out at:
http://mam2000 . .mathforum.com/

The MAA is responsible for the project this year, and is
grateful to Wolfram Research, Inc for its corporate sponsor-
ship. MAM2000 comes from the Joint Policy Board for Math-
ematics.
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PHILIBERT SCHOGT

The Wild Numbers

That first night, I set out in high spirits, following the path
Riedel had cut into the flanks of the Wild Number Problem.
The point that he had reached in 1912, his proof that there
were an infinite number of tame numbers, served me as a
base camp. From there, equipped with my specialized moun-
tain gear, that is, with Dimitri’s new concepts, I could con-
tinue my ascent. Every step I took required my fullest con-
centration; now and then I had to stop to catch my breath,
giving me a moment’s rest to marvel at the wondrous math-
ematical landscape all around me.

It seemed like an eternity since I had last ventured into
this realm with my undivided attention, {ree from voices tell-
ing me to turn back or urging me to hurry up and get some-
thing published. It was like a homecoming, a return to the
happiest moments of my childhood, when every new insight
made the world bigger and more mysterious, not smaller
and more banal, as was so often the case nowadays.

Back then, even the simplest rules and techniques of arith-
metic were a source of great joy. In grade two, for instance,
Miss Wallace explained to us how to “carry a one” when
adding very big numbers, like twenty-seven and thirty-five.
When I came home that afternoon, instead of going outside
to play (instead of going outside to develop my communica-
tion skills, Kate would say), T went upstairs to my room to
add. After adding pairs of numbers for a while, I tried add-
ing three at a time and was delighted to discover that at a
given point I had to “carry a two.” I then decided to go all
out, writing down ten rows of numbers consisting of nines
only. Just as I had hoped, I soon found myself having to
carry a nine, and another nine, and so on. My mother had
to call me three times before I finally came downstairs for
dinner. Later that evening, I stuffed a sweater into the crack
beneath my door so that my parents would not see my light
was on, wrote down twenty twenty-digit numbers and pro-
ceeded to add them. When I had completed and double-
checked the sum, I would have gladly started on an even
bigger one had I not been overcome with sleep.

PHILIBERT SCHOGT has a degree in mathematics and philosophy.
He lives in Amsterdam, The Netherlands. This is an excerpt from
his novel, The Wild Numbers.
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During the Christmas holidays that year, I spent most of
my time up in my room adding large numbers. My parents
were once again going through what they called “stormy
weather.” My younger brother Andrew fled outside; I fled
into the serene world of addition, soon too absorbed in my
work to pay attention to the screaming, the slamming of doors
and the leaden silences that followed. I was high up in the
mountains, where my parents’ quarrelling sounded as insig-
nificant as the pounding and squeaking of a lumber mill
deep down in the valley.

Subtraction, and “borrowing” ones, although presented
to us as the opposite of addition and carrying ones, turned
out to be much more difficult and subject to peculiar restric-
tions: Miss Wallace warned us that we were not allowed to
take a bigger number away from a smaller one. When 1 asked
her what would happen if we did, she hesitated before an-
swering, a panicky look in her eyes. “Well, let’s just say you
get zero, all right?” Her answer did not make sense. How
could five minus five equal zero and five minus eight equal
zero as well? The difference of three couldn’t just vanish into
thin air. “Stop worrying so much about it, Isaac,” she said.
“Just let it be zero for now.” Her reassurance only made me
more anxious. There was no such thing as “for now” in arith-
metic. If five minus eight did equal zero, it always had and it
always would.

That evening, I gathered all my courage and asked my
father the forbidden question: “How much is five minus
eight?”

“Negative three,” came his voice, god-like from behind
the newspaper. He usually did not like being disturbed while
reading, but to my delight he folded the paper and, writing
in the empty space in an automobile ad on the back page,
showed me that there were numbers lower than zero, num-
bers with a minus written in front of them. I was shocked and
thrilled by this new insight. Zero was no longer the absolute
bottom of the arithmetical world, but the portal to an arith-
metical underworld. It made such a impression on me that
when my father laid an arm around my shoulders and told
me that he was going to live somewhere else for a while, the
news didn’t really register.

Five minus eight equalled negative three. Fifteen minus
thirty-two equalled negative seventeen. I could not sleep that
night, the depths below zero giving me vertigo. Drawn to the
edge, at first terrified, I then abandoned myself to falling. 1
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Philibert Schogt and The Wild Numbers

The Wild Numbers 1s a rarity, a novel
about mathematics, which features Isaac
Swift, a competent mathematician who
dreams of becoming a great mathema-
tician. Solving a famous problem is, of
course, a quick path to fame. Yor a few
days, Isaac believes that he has solved
Beauregard’s Wild Number Problem.
There seems to be just one last obstacle
standing in the way of success: a stu-
dent accuses him of plagiarism. Dur-
ing Isaac’s short rise and terrible fall,
he reveals much about the mathemati-
cal enterprise—its competitiveness, iso-
lation, and stimulation. Along the way
Isaac encounters a collection of well-
drawn mathematical characters, includ-
ing a venerable and wise senior math-
ematician, a jealous colleague, and a
mathematical crank.

Since 1992, at least four fictional
works featuring mathematicians have
been published.* For mathematicians,
this is a veritable bumper crop. They
include three novels and a play. Twvo
of the four authors have advanced de-
grees in mathematics, and one of them,
Petsinis, is a professor of mathematics.

Given the special language and cul-
ture of mathematics, the fact that few
mathematical novels exist may not be
too surprising. The author, Philibert
Schogt, brings a background in math-

ematics to The Wild Numbers. Both of
his grandparents and an uncle on his
father’s side were mathematicians. His
grandmother was the first woman to
study mathematics at the University of
Amsterdam. Schogt himself minored in
mathematics while completing his MA
in philosophy, also at the University of
Amsterdam. “Math was always my favor-
ite subject at school,” he says, “until in
my teens I went through an anti-science
phase and my field of interest shifted
to the arts, in particular to writing... By
writing a novel about a mathematician,
I combined my two fields of interest.”
Schogt’s original plan in 1992 was
to write a novel about a mathematician
who thinks he has found a solution to
Fermat’s Last Theorem, a problem which
he worked on as a teenager. “I was not
sufficiently mathematically sophisti-
cated to experience any real success,”
Schogt says. “A mathematician friend
talked me out of writing a Fermat novel,
and that turned out to be a wise move,
for while working on The Wild Numbers,
Andrew Wiles was busy proving Fermat’s
Last Theorem. The story of Wiles, many
would argue, is better than fiction.”
Schogt says that, “I wanted the novel
to seem like an insider’s story, doing jus-
tice to pure math and its practitioners.
At the same time | wanted to keep it

Philibert Schogt

readable for outsiders, but without the
reassuring tone of popular science
books.” Several have commented favor-
ably on the insights Schogt has about
the mathematical community, includ-
ing Sir Roger Penrose, who says, “The
Wild Numbers provides excellent and
entertaining insights into the lives and
the ill-understood drives of working
mathematicians.”

If you're looking for a short novel
about mathematicians that includes a bit
of romance and even a dollop of vio-
lence, then The Wild Numbers is for you.

* 1992 Uncle Petros & Goldbach’s Conjecture —
Apostolos Doxiadis; 1993 Arcadia — Tom
Stoppard; 1996 Leaning Towards Infinity — Sue
Woolfe; 1997 The French Mathematician — Tom
Petsinis
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seemed to be sinking through my bed, my bed was sinking
through the floor, the house was sinking into the ground,
everything sank into the deep, dark world of negative num-
bers. And all of a sudden there was my father, in a magnifi-
cent purple mantle and with a crown on his head, waiting to
welcome me to his new kingdom.

The insights that I was gaining into the Wild Number
Problem twenty-eight years later were not as earthshaking as
my first acquaintance with negative numbers, though only by
a matter of degree. Every step I took, no matter how small,
revealed new mountain-tops and unexpected canyons in the
magnificent and bizarre region of mathematics first explored
by Anatole Millechamps de Beauregard.

This was mathematics at its very best. Unlike in other areas
of thought, where knowledge tends to increase gradually, in

mathematics the transition from ignorance to understanding
is instantaneous and absolute. Either you see it or you don’t.
Butif'you do, the new land presents itself in razor-sharp focus,
its beauty so intense that you feel you have grown wings and are
capable of flying. It is what makes mattiematics so addictive. I
would not be surprised if there was a biochemical correlate to
these flashes of understanding, some kind of opiate that the
brain releases into the nervous system every time they occur.

Fven Kate, who had a strong aversion to the exact sci-
ences, once experienced the ecstasy of a mathematical rev-
elation. The night that it happened, we fell in love.

Stan called one evening to ask me whether I was inter-
ested in saving a damsel in distress. Kate, a good friend of
his, was working on her Ph.D. thesis in psychology. Her
supervisor had demanded that she take a refresher course in
statistics. With the exam coming up soon, she was close to
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despair. Would I be willing to explain the basic concepts to
her? “By the way,” he said, “she’s kind of cute.”

“Cute” was not the first word that came to mind when I
showed her into my study the next evening. One would ex-
pect some token of gratitude for a stranger offering his help,
but instead, her dark eyes flashed accusing looks at me. While
unpacking her books, she fulminated against striving for
mathematical precision in the domain of human emotions. I
was not given the chance to agree with her. Being a math-
ematician, I was automatically one of the bad guys. The sta-
tistical approach to psychology was so revolting to her that
she was physically incapable of studying the material. It was
masculine thinking at its very worst. Why did we men de-
mand that something be quantifiable before considering it
scientific? She had the answer: because we panicked when
confronted with matters that defied order, and thus banned
them from our world. And why did we panic? Because the
most disorderly, formless matter of all was our own pent-up,
fucked-up emotionality.

“Why don’t you have a seat,” I said, sensing that it was
pointless to argue with her.

We read through the introductory chapter of her statistics
textbook. She was obviously intelligent enough to understand
the material, but whenever I introduced a mathematical sym-
bol into my story, she suffered a violent allergic reaction.

“Sigma this, sigma that,” she said, waving her arms, “You
keep assuming I know what you're talking about!”

“I'm sorry.” I explained to her what a sigma was.

“That’s not the way you were using it just a minute ago.”

“Yes it is.”

“Well, you weren’t very clear, then.”

And so the evening progressed. At three o’clock in the
morning, in the middle of yet another one of my attempts to
explain something, she threw her pencil down on the table.

“This is pointless. I'm sorry, but I guess I'm just too dumb
for this fascinating field of yours.”

“Of course you're not!” 1 cried, fed up with her obstinacy.
“And by the way, I'm not particularly fond of statistics either.”

For the first time that evening, she smiled.

“Now piease give it one more shot.”

“All right. For your sake.”

“Now look. First you make a column of these numbers,
you see?”

She pouted her lip and would not look at me as I went on
with my explanation, but at least she no longer objected to
every single step.

“And finally, to get the standard deviation, you add these
squares, divide by . ...”

“Wait wait, shut up for a second.” She studied the figures
on the paper with a painful grimace. “So what you're saying
is: add up this column, divide by that n over there, and ...”

What took place then was the miracle of mathematical
revelation: in a single instant, her dark brooding expression
turned into dazzling sunshine.

“I don’t believe this! I actually get it!”

Having completed the climb, we threw down our heavy
backpacks and wiped the sweat from our brows. We were now
standing together on the mountain pass, marvelling at the
mathematical landscape. When I saw the panorama reflected
in Kate’s eyes, I noticed for the first time how beautiful she
was. The women 1 had been attracted to over the years had
never understood my passion for numbers, leading me to
the conclusion that love and mathematics were mutually ex-
clusive. But now, my adolescent dream of being able to share
what mattered most to me with a girl was coming true.

“Unbelievable,” she said. “Is this all there is to it?”

I hoped she would not notice the clock on the bookshelf:
it was past four.

“Give me some more raw data,” she said hungrily. “Iwant
to see if I can figure this out all by myself. And don't make it
too easy.”

When I handed her a new list of numbers, she beamed as
if itwere a precious gift.

I'watched her fingers playing hopscotch on the calculator
keys, watched the way she bit her lower lip whenever she
scribbled down a result on the sheet of paper, the way she
chuckled when the figures still added up after double-check-
ing them. She let her hand rest on my forearm whenever she
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wanted to know something, and as we looked through her
calculations together I could feel the warmth of her cheek
near mine. I wondered whether I could get away with a kiss.
Later she told me that she had done everything to encourage
me. But I didn’t dare, and so she kept asking for new prob-
lems. We were still sitting at my desk when dawn began to
glow through the curtains.

For the first time since that memorable night with Kate, dawn
found me at my desk again. I was deeply content in spite of
having made little progress. My various attempts to apply
Dimitri’s method to the problem had been far too reckless,
as if I could reach the top by charging straight up the moun-
tain. Every time, I came tumbling back into base camp, drag-
ging an avalanche of mistaken notions down with me. But at
least I now knew how not to go about it, and besides, my first
inspired night in years was well worth a few conceptual bruises.
To unwind after the long night of hard work, I stepped
onto my balcony. It was freezing cold, and my eyes, painfully
dry from staring so long at equations on paper, were filled
with soothing tears. Down below, a Chronicle van rounded
the corner with screeching tires and went roaring down the
deserted street. It was too early for distinct colors: the city
was immersed in uniform blue-grey. Only in the distance,
the lights of the television mast flashed red and white, red,
white. Kate and I had stood here too, after that night, watch-
ing the city slowly come to life, holding hands, kissing.

Several hours later, I was awoken by the telephone. It was my
mother, to see if I felt like joining the others on Sunday. This
was a recurring ritual: Andrew, Liz and their two children
had dinner at her house every Sunday, and once in a while
she felt obliged as a mother to invite me too. Even more
sporadically, I felt obliged as a son to accept the invitation.
The get-togethers were awful: I had to put up with two spoiled
brats screaming all evening, while the conversation of the
adults — insofar as a conversation was possible — only con-
sisted of long-winded negotiations between grandma and
parents concerning which one of them would take which
child where at what time. As usual 1 politely declined the
invitation, and as usual my mother didn't insist.

Only when I had hung up did I feel how little I had slept.
Five plus four equalled nine. Seventeen minus twenty-eight
equalled negative eleven. But instead of clearing my mind,
the arithmetical exercise made my head throb. During the
few hours of sleep, all thoughts on the Wild Number Prob-
lem had congealed into a nagging headache.

In the bathroom mirror, I looked into the dazed eyes of
someone who had been alone far too long. “Hello,” I said.
“Hello, hello.” My voice sounded strange, as if it belonged
to someone else.

Eating breakfast was a chore: the granola, advertised on
the box as being extra crunchy, felt unpleasantly rough on
my tongue and made so much noise inside my head that I
set the bowl aside and settled for coffee. I was suffering from
an all too familiar feeling: a mathematical hangover.

Even when I was a child, my mathematical sprees invariable
ended in hangovers. On one such occasion, I had just discov-
ered a mysterious relationship between the square of the sum of
any number of variables and the sum of their squares. I was up
in my room, diligently writing it down in neat form.

(a+b)? =2(a2+b?)—(b-a)?2

(a+b+c)?=3(a®+b2+c?)-((c=b)2+(c—a)2+(b-a)?)

(a+b+c+d)? = 4(a®+b%+c?+d?) - ((d-c)?+

(d=b)2+(d-a)2+ (c=b)2+(c—a)2+(b-a)?)
Years later, I'was greatly disappointed to find out that the only
mystery lay in my unfamiliarity with certain mathematical laws,
the triviality of the relationship being hidden by the inefficient
way in which I had expressed it. At the time, however, I was so
thrilled by my discovery that my mother was halfway up the
stairs before I finally heard her calling my name.

As I grew older, I began to wonder whether mathematics
really was a passion and not an addiction, a painkiller to
dull the ache of unfulfilled desires. The pleasant effects of
doing mathematics were gradually weakening, so that ever
greater doses were needed, draining all the energy and healthy
longing out of me. Was it love or compulsion that made me
major in mathematics at university and later choose it as my
profession?

To Kate the answer was obvious.

It was in the period that she was living with me that my
career began to stagnate. My thesis, a detailed study on
Templeton functions with countless openings for further re-
search, had got me the job at the university. But even math-
ematics is subject to changing fashions, and of late every-
body seemed to be losing interest in my area of research.
Meanwhile, a former teaching assistant of mine, five years
younger than me, had submitted his first article to Number.
His name: Larry Oberdorfer. When he received the letter of
acceptance from the editors, he spent the rest of the day
roaming about in the hall. “It’s a bird! It’s a plane!” he would
cry, and then jump into a colleague’s office with his arms
outstretched. “It's Numberman!”

Although Dimitri insisted that dwindling interest in
Templeton functions was a matter of plain bad luck, and
Angela warned me not to let myself be intimidated by Larry,
I blamed myself for my lack of success; I had not worked
hard enough to show the world the value of my work.

In a last-ditch effort, I persuaded Kate to waive the rule
“No mathematics after dinner,” promising her that my nightly
sessions would only be temporary. After weeks of hard work,
I'was finally close to a publishable result. I had found a theo-
rem which I knew with certainty to be true, but working out
the details of the proof required an enormous amount of
patience and mathematical technique. There was little rea-
son to celebrate, for I knew in advance that the final result
would be too meager for Number. And it was unlikely to re-
kindle anyone’s love for Templeton functions. Was it worth
the bother? Meanwhile Kate was losing her patience, nag-
ging at me that we never went out anymore, that I was dis-
tant, that locking myself up like this was unhealthy.
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To appease her, agreed to go out that next Friday night.
The world-famous Deirdre Lindsay Dance Company, which
of course I had never heard of, was in town. Before the per-
formance, we went to a fancy restaurant. Throughout dinner,
we talked about our relationship, that is, Kate talked about
me and I listened. Templeton functions were still buzzing in
my head, making it difficult to concentrate on what she was
saying, let alone to defend myself.

She had come to the conclusion that I was using math-
ematics as an escape, as a means to hide from- my deeper
feelings. I stared at her glassily while she stroked my hand
and looked into my eyes with a warm, concerned expression.

“I don’t think you have ever stopped to realize how hurt
you were as a young child, when your parents got divorced.
All you did was go up to your room to add and subtract.”

I nodded. Mathematics was a drug, a painkiller. I had
thought of that years ago.

“And I don’t think you’ve ever come to terms with your
being jealous of Andrew. He got your mother’s love, he scored
with the girls...”

Yes, That made sense too. If only the noise in my head
stopped.

“And now you'’re upset by Larry publishing an article in
Number. Don’t you see the connection?

I shook my head.

“Larry is your younger brother Andrew all over again.”

This time, I felt compelled to react. “Don’t be ridiculous!”

Kate smiled and stroked my hand some more. “I hate to
play that old psychologist’s trick on you, but if it isn’t true,
then why are you reacting so emotionally?”

“Because you're not being fair.”

“Isaac, I am not an adversary. I am only trying to help
you. I have a feeling that there is a wealth of emotions that
you left behind in your childhood. I know they’re inside you
somewhere. You can be a very warm and loving person. But
you keep shutting yourself off, retreating into the safe, or-
derly world of abstraction.”

“So what do you want me to do? Give up mathematics?”

“Isaac!” she said reproachfully, but I didn’t get a real an-
swer.

She continued with her analysis of my personality during
dessert and coffee. The more she picked me apart, the warmer
her expression became. When it was time to go to the ballet,
she was deeply in love with me again.

“I am so happy we finally talked, Isaac,” she said, locking
her arm in mine as we crossed the street towards the theater.
“Aren’t you?”

“Uh-huh.”

When the lights in the theater were dimmed, she leaned
towards me and gave me a passionate kiss. Deirdre Lindsay
and her dancers began to prance about on the stage. “No
story, no hidden meanings,” according to the program, “just
an ode to life, natural and pure.” But I'was left unmoved by
what I saw, except for being mildly annoyed by the artificial-
ity of the dancers’ smiles. Kate held her hand in mine, our
fingers interlaced. Twvo flaps of human flesh, T thought. Sud-
denly, the buzzing in my head became louder. If I switched
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around two steps in my proof, not only would it be greatly
simplified, the implications of the theorem would be much
farther-reaching! If only I had pen and paper to write it all
down. I prayed that I could hold onto my thoughts. I could
already feel them slipping away.

In the intermission, I excused myself and hurried to the
washroom. Locking myself in one of the cubicles, 1 groped
around in the inside pocket of my jacket and found a pen,
yanked a strip of toilet paper from the roll and wrote down as
much as I could remember. Switching the steps around was
not as easy as I had thought: f(x) is an element of f'(x) is an
element of ... The gong sounded. Damn! I flushed the toilet
and stepped out of the cubicle. Several men by the urinals
turned and stared. I wiped the sweat from my forehead with
the toilet paper full of notes, then sruffed it into my pocket.

“Isaac, are you all right?” Kate asked me. “You were in
there for an awfully long time.”

“I'm fine. I'm fine.”

She fell asleep in my arms. I was wide awake, now only a few
minor steps away from cracking the problem. But I would
have to get to my study, to pen and paper. Ever so carefully,
I lifted her limp arm from my chest and let it fall onto the
pillow. She made some smacking sounds with her lips, rolled
over onto her other side and went on sleeping. I got out of
bed, swept up whatever garments I could find in the dark
and tiptoed out of the room.

Soon I was sitting at my desk, wearing pants but no shirt
and only one sock. Kate’s dress, accidentally brought along
too, was now hanging over the chair across from me. At first
I cast anxious looks at the door, but then I squared my shoul-
ders and gave the Templeton functions my full attention.
Alas, hours of meticulous work ended in deception: there
was nothing to be gained from switching around two steps in
my proof.

I stared at Kate’s dress. She had not even noticed how
distant I was during our lovemaking. On the contrary, she
thought we had never been so close. Her passion and ten-
derness had been wasted on me, all because of a bunch of
silly mathematical equations. In a delayed reaction, T was
flooded with warm feelings toward her.

With tears in my eyes and determined to make more of an
effort in the future, I crept back into bed and curled up
against her. I wanted to make love to her again, this time
with my undivided attention. I laid my hand on her thigh
and kissed her shoulder repeatedly, but she was too fast asleep
to respond.

Itwas the last time we came close to being close. The next
morning while I was still sleeping, Kate found her dress in
my study. Puzzled and upset, she woke me up. When I had
confessed my crime she was furious, as if just having found
out that in spite of assurances to the contrary, I was still see-
ing some other woman. [l

Excerpted from THE WILD NUMBERS by Philibert Schogt, pub-
lished by Four Walls Eight Windows. ©2000 Philibert Schogt. Re-
printed with the permission of the publisher.



DALE BUSKE and SANDRA KEITH

GIMPS Finds A

No, this pitch is not coming from

Ed McMahon or the Publishers’
Clearing House. Ifyou own a 200 MHz
(or better) Pentium computer, you too
can participate in the Great Internet
Prime Search (GIMPS). The Electronic
Frontier Foundation is offering
$100,000 to the individual or team
which finds the first ten-million-digit
prime number, and up to $250,000 for
larger primes. In 1996, George
Woltman, using networking software by
Scott Kurowski, created the database
GIMPS, which coordinates the efforts
of more than 8,000 computer users in-
ternationally in a practice known as
“distributed internet data processing.”
Woltman’s powerful “Prime Net” server
distributes and collects work from par-
ticipating individuals, effectively oper-
ating as a single, gigantic parallel pro-
cessor. Its ambition is to find whether
certain large numbers are prime.

In June 1999, GIMPS found its
fourth prime, the new world record:
26.:972,593 _ 1 While Woltman and
Kurowski must certainly share the credit,
this prime was plucked by Nayan
Hajratwala of Michigan. Like others in-
volved, Hajratwala had downloaded
GIMPS software that allowed his com-
puter to do the necessary computations
between clicks of the mouse and key-
strokes and while running overnight.
His prime is 2,098,960 digits long —
over 7 miles worth of digits and commas
— enough to fill a couple of calculus

Y OUTOO CAN BE A WINNER!!

DALE BUSKE is Assistant Professor of Math-
ematics and SANDRA KEITH is Professor of
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Marin Mersenne, courtesy Culver Pictures

books! A computer running uninter-
rupted might have made the discovery
in 2-3 weeks, but on idle time,
Hajratwala’s computer required several
months. The previous world-record
prime, 23921377 _ | was discovered in
1998 by a 19-year old student, Roland
Clarkson.

Primes seem to be universally fascinat-
ing. They can even be hard-working, not
merely pretty to look at. Primes helped
uncover the “Pentium bug.” In 1994,
Thomas Nicely, a professor at Lynchburg
College, noticed that on a Pentium I,
(1/824633702441) 824633702441 is not
1, but 0.99999999627470902. Nicely
had been calculating a series of recip-
rocals of prime numbers, in part to show
that PCs could hold their own with
supercomputers. His example used the
prime p = 3 - 2% — 18391,

Now GIMPS looks specifically for
Mersenne primes, primes of the form

p=2n—1.

nother Prime!

It is not too difficult to prove that in
order for p to be prime, #» must also be
prime. So for example, 3 is a Mersenne
prime, since 3 = 922 _ 1. After that comes
7 = 23— 1, then 31, and so on. As you
can imagine, the numbers on the list
get large very quickly. Only 38 Mersenne
primes are known, and they have not
been discovered in any particular order.
GIMPS is a methodical search — the
hope being to find some recognizable
pattern in the distribution of these
primes. It was just such a systematic
search that led to the discovery of the
Prime Number Theorem. (This theorem
says that the number of primes less than
a number N approaches N/In N as N
becomes large.)

People have been [ascinated with
Mersenne primes since the time of
Euclid because of their connection to
perfect numbers. A number is said to be
pertect ifit is the sum of its positive di-
visors. For example, 6 is perfect because
6 =3 + 2 + 1. When one writes out
the factorizations of the first four per-
fect numbers as:

6=2x%x3, 286=22x%x7,

496 = 21 x 31, 8128 = 26 x 127,
one might just notice, as Euclid did,
that these numbers have the special
form:

27-12" — 1), withn = 2,8, 5, 7.

In Euclid’s Elements we find a proof
of the fact that

A number of the form 2"71(2" — 1),

where 2" — 1 is prime, is perfect.

The proof is straightforward. Since
27-1(27 1) is already in its prime fac-
torization, just write down all possible
divisors and add them up. Descartes,
in a letter to Mersenne, claimed to pos-
sess a proof in the other direction, i.e.,

Math Horizons April 2000 19



that every even perfect number is of this
form. However, it was one hundred years
later that Euler published the first proof
of this fact. (See Euler: The Master of Us
All, by William Dunham for a very clear
account of this proof.)

Some earlier mathematicians had
wondered: if 2" - 1 is prime for n = 2,
3,5,7, dowe get a prime whenevern is
prime? When n = 11, for example?
Butin 1536, Hudalricus Regius showed
that 2!! — 1 factors non-trivially. Now
you may wonder why it took so long to
factor 2! — 1 = 2,047, not a very large
number. The fact is, the notion of ex-
ponentwas not even a 1 7th-century idea.
The Greeks had squares and cubes be-
cause of their geometry, but they were
not operating with any sense of alge-
bra, and the idea of factoring 2" - 1 at
the beginning of the Renaissance was al-
most out of the question. Getting a point
of view that lets you formulate a question
is a big deal, mathematically. And work-
ing with numbers in those days was very
much second fiddle to geometry.

Although other mathematicians
played the leading role in the theory of
these primes, they are named for Father
Marin Mersenne (1588-1648) whose fa-
mous conjecture inspired three centu-
ries of computation, controversy, and
theory. Mersenne, a Minim friar edu-
cated in France by Jesuits during the
time of the Inquisition, is something of
an enigma himself, simultaneously de-
scribed by historians as a kindly men-
tor (to the youthful Pascal), a gossipy
old geezer, a shrewd thinker, a brilliant
experimentalist, an advanced planner,
an inferior mathematician, and possi-

bly even a case study for psychoanalysis.
But surely, in that era, with the scien-
tific thought of many brilliant personae
beginning to take root in the skeptical
and hostile ground of the Church, a
person might be a little of this and a
little of that. A religious zealot as a
young man, Mersenne eventually came
to the conviction that the new science
of Galileo was the only true faith — that
it alone constituted the only irrefutable
evidence of God. Unfortunately for
Mersenne, his was a religion with a con-
vert of one. But Mersenne’s enthusiasm
that “scientific truth will out” caused
him sometimes to rub his friends the
wrong way. For example, in spite of
strict instructions to the contrary, he
shared the work of Descartes, his school-
boy chum, with a public which included
Descartes’ enemies — in those days,
Descartes’ work might have been per-
ceived as nearly heretical. And six years
after Galileo had been condemned to
silence by the Inquisition (1639),
Mersenne edited and published some
of his work. Galileo may have felt
qualms, but what a boon to science!
Mersenne’s real gift lay in hisrole asa
conduit and catalyst for speeding up the
exchange of ideas; he was a latter-day
mathematical interface, a networker, a
mathematical post office. At a time when
mathematics libraries and journals were
non-existent, Mersenne’s 10,000 pages,
or 15 volumes of correspondence,
brought together the thinking of the
greatest mathematicians of the day. (Con-
sider for a moment the scale on which
GIMPS continues that networking
legacy!) Mersenne also created a discus-

sion club in Paris and helped organize
the first attempt, albeit short-lived, of the
Paris Academy. Somewhat categorically
however, he declared that experimenta-
tion was the only profitable approach to
understanding the laws of nature. And
being stronger on guesswork than sup-
porting argument, he declared (although
he could not prove) that the circle could
not be squared, that sound is a mode of
motion, and that the pendulum could be
used as a timing device. His observations
and experiments filled volumes, but only
his guess about perfect numbers has sur-
vived obsolescence. That guess was, in
fact, incorrect.

In 1644, Mersenne made the grand
conjecture that

2"~ lisprimefor n =2, 3,5, 7,

13,17, 19, 31, 67, 127, and 257,

and composite for all other posi-

tive integersn < 257.

Now, 227 — | is a tremendous num-
ber, and one might just wonder how
Mersenne the experimentalist came up
with his idea. Mersenne knew that
Fermat, a mathematician of no small
brain power, had made an interesting
discovery:

If g is a prime, and p is a prime

divisor of 27 -1, then p - 1 is a

multiple of g.

So in 1640, when Bernard Frenicle
asked Fermat, through Mersenne, a ques-
tion equivalent to asking whether 2%7 — 1
was prime (perhaps as a test), Fermat could
show that it was not. How did this work?
Since g = 37 is prime, any prime divisor
p would have the form p = 37k + 1, so
one can merely check out the primes of

areas are located nearby.
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this form. Indeed, one soon finds that
923 (= 6 X 37 + 1) isafactor of 237 — 1.
Fermat’s method allowed Mersenne to dis-
posc of many other smaller prime candi-
dates without too much eflort.

Now consider the following list:

5b=2%+1
7=22+3
17 =24+ 1
19=2"+3

Do you see a pattern? Then perhaps 67
= 26 4 3 could be a prime, and possibly,
even 257 = 28 + 1? Whatever his think-
ing, and we will probably never knowwhat
itwas, Mersenne must have had a “pow-
ers of two” thing going. Consider the
primes 31 and 127 in his conjecture:
these can be represented as 2° — 1 and
271 as well.

So it was big news in 1876, over 200
years afier Mersenne’s conjecture, when
Edouard Lucas showed that the number
267 — 1, on Mersenne’s list, was actually
composite. He used a strategic algorithm
devised by Lucas (1870s), later to be im-
proved by Lehmer (1930); GIMPS now
uses a variant of this algorithm.

For p odd, the number 2 - 1 is
prime if and only if 22 — 1 divides
S(p~1)where S(n + 1) = S(n)*-2
and S(1) = 4.
It didn’t take much longer to show that
961 _ 1 (which Mersenne had over-
looked) was prime. But because uncork-
ing the factors of a large number is far
more difficult than showing it prime,
there didn’t seem to be much hope, even
in the early 1900’s, for factoring the awk-
ward 257 — 1. Enter the algebraist Frank

Cole, whose talk, in an October 1903
meeting in New York of the American
Mathematical Society, is described by
E. T. Bell [1]:

Cole had a paper on the program
with the modest title “On the fac-
torization of large numbers.”
When the chairman called on him
for his paper, Cole — who was al-
ways a man of very few words —
walked to the board and, saying
nothing, proceeded to chalk up
the arithmetic for raising 2 to the
sixty-seventh power. Then he care-
fully subtracted 1. Without a word
he moved over to a clear space on
the board and multiplied out, by
longhand, 193,707,721 X
761,838,257,287. The two calcula-
tions agreed. Mersenne’s conjecture
— if such it was — vanished into
the limbo of mathematical mythol-
ogy. For the first and only time on
record, an audience of the Ameri-
can Mathematical Society vigorously
applauded the author of a paper
delivered betore it. Cole took his
seatwithout having uttered a word.
Nobody asked him a question.

Cole’s method had been to sift
through quadratic residues [2]. The
story goes that when asked, “how long
did it take you?”, he replied, “two years
of Sundays!” As of 1947, the conjecture
of Mersenne was corrected to assert:

2"—1is primefor n =2,3,5,7,
13, 17, 19, 31, 61, 89, 107, and
127 (Note: 61, 89, 107 added and
67 and 257 omitted.)

Are there infinitely many Mersenne
prime numbers? Is there a pattern about
them? Is there such a thing as an odd
perfect number? And what is it about
these questions that continues to fasci-
nate us? Since our own computers have
been doodling away drawing rotating
squeegees anyway, we decided to take
part in the search ourselves. After all,
in the time it took us to think how to
spell “squeegee”, our computer has per-
formed tens of thousands of calcula-
tions. In fact, we can announce with
pride that we are the individuals who
recently discovered that 2712111 _ ] and
27192501 _ 1 are not prime. No doubt
about it, prime hunting can become an
obsession: future generations, beware! [l

The authors owe many thanks for the
insights provided by Fernando Gouvéa
and Robert Burn.
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CHANCE ENCOUNTERS

Three Estimation Challenges
Penny Loss, Class Size, Drug Use

Pinching Pennies

Do you pick up pennies? Most people,
it seems, don’t bother anymore—and
with good reason. It’s hard to see how
picking up a penny or two will have any
material effect on your life, unless you're
just short of the cash you need for that
doughnut you’d like to buy.

One way to decide if i's worth your
time to pick up pennies is to perform
the following thought experiment:
imagine that there are an unlimited
number of pennies scattered all over the
ground, far enough apart that you could
only pick up one at a time. Estimate how
long it would take you to bend down for
each coin, then figure how much money
you’d collect in an hour. Would you be
willing to do such menial labor for the
hourly wage you’ve computed?

Inrecent years there have been several
calls to abolish the penny entirely.
Reporter John Tierney, writing in the
New York Times [ 1], notes that the United
States Mint is producing more than ten
billion pennies a year, most of which are
destined for oblivion. They make a one-
way trip to penny jars, sock drawers, piggy
banks and the spaces between couch
cushions. Tierney points out that the U.S.
Mint is working around the clock to re-
supply banks that have run out of
pennies, as according to the Mint two-
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thirds of the cents produced in the last
30 years have dropped out of circulation.

How the Mint estimates the rate at
which pennies disappear is not entirely
clear, but it is based on comparing the
number of one cent coins they supply
to the Federal Reserve Banks to the
number that these banks take in from
commercial banks.

You can estimate the attrition rate
yourself simply by keeping track of the
dates of pennies you come in contact
with. Table 1 shows how, using one
person’s actual sample [2]. Notice that
the great majority of coins that were
encountered are of very recent vintage.

First we need to create a mathematical
model of the situation. Such modeling
often proceeds by initially considering
avery simple, stripped down model, and
then successively building more features
of the problem into the model. So let’s
start with the following very basic model:
assume that there is a fixed probability
P that a penny will disappear in any one
year. We wish to estimate p. Also assume

that the same number N of pennies is
made every year.

Let ¢= 1-p be the probability of a
penny remaining in circulation from
one year to the next. Then the
expected number of pennies with the
date 1999 — £ still in circulation in 1999
is Ng¥, fork =0, 1,2, ..., so the numbers
of coins per year in a collection of
pennies should decrease approximately
geometrically. The chance that a
randomly encountered penny is from
the year 1999 — £ is then

oo

Py = Ng" =¥ N¢'
=0

=¢" +(1/1~¢) = pq'

(technically, this requires that pennies
have been produced infinitely far back
in time). A set of probabilities of this
form is known as a geometric distribution.

Readers who have had a course in
mathematical statistics may recall that
the optimal estimate of p for a geometric
distribution, obtained by the method of

1999 17 1988 5 1977 2 1966 0O 1955 0
1998 16 1987 7 1976 3 1965 1 1954 0
1997 16 1986 6 1975 3 1964 1 1933 0
1996 8 1985 8 1974 2 1963 0O 1952 1
1995 8 1984 2 1973 0 1962 1 1951 O
1994 7 1983 5 1972 1 1961 2 1950 0
1993 6 1982 9 1971 1 1960 2 1949 0
1992 9 1981 6 1970 0 1959 2 1948 0
1991 2 1980 3 1969 1 1958 0 1947 0
1990 4 1979 5 1968 3 1957 0 1946 1
1989 7 1978 4 1967 1 1956 1 1945 1
Table 1



maximum likelihood, is [7 =1/k where
k is the average age (in years) of the
coins in the sample. For the data above
we find &k =12.02, so we estimate the
attrition rate p as 1/12.02 = .083 =
8.3%. This answer makes intuitive
sense—if one out of every twelve pennies
is removed from circulation each year,
then it seems reasonable that the aver-
age time in circulation is twelve years.

A source of inaccuracy in the model
above is that the number of pennies
made each year has fluctuated
significantly over time, growing from
about halfa billion coins per year after
World War II to as high as 16.7 billion
in 1983 before dropping to 10.2 billion
in 1998. Also, the rate of production in
the years 1945—6 was far higher than in
the decade following, which helps to
explain the presence of these dates in
the sample above. We can refine our
model to take these variations in
production into account.

Let N, be the number of pennies
produced in the year 1999 — k. The
modified probability distribution of
penny dates now becomes

oo

P(k)=N,g" + Y Nig'
=0

fork =0,1,2,.... Finding the maximum
likelihood estimate of p under this
model turns out to be a complex
numerical problem. A simpler approach
1s to normalize each of the observed
counts to what they would have been if
the production for each year had been
the same—say, ten billion per year. (Of
course these adjusted counts will no
longer be integers.)

Recomputing p =1/k using these
adjusted counts yields a much smaller
estimated rate of penny loss of 5.0% per
year, based on an average penny life
span of 20.2 years. This figure is quite
close to the United States Mint's own
estimate of 5.5%. The lower estimated
attrition rate reflects the fact that the
decrease in penny counts by year is not
just due to pennies dropping out of
circulation, but also because far fewer
pennies were produced many years ago
than recently, a fact not incorporated
into the first model.

We conclude that the second model
is a much better description of reality
than the first. A still more sophisticated
model would allow the rate of penny loss
to vary with time. Substantially more
data would be required in order to

Hlustration by Greg Nemec.

employ such a model, however, due to
the need to estimate each year’s attrition
rate rather than just one.

A Size Paradox

What is the average class size at your
college or university? That’s a straight-
forward question, right? The registrar
could easily determine this figure from
a list of enrollments for each class in a
given term (as of a specified date). In
fact such figures are often computed and
used for publicity and recruitment.

Imagine, for example, that you attend
a small college that has twenty classes,
of which ten have enrollments of thirty
cach, eight are small lab classes with ten
students in each, and two are large
lecture classes each containing 100
persons. The registrar computes the
average class size as the total class
enrollment divided by the number of
classes, or (10 X 30 + 8 X 10 + 2 X
100) + 20 = 580 + 20 = 29.0 students
per class.

Aswith the penny loss problem, you
could estimate this value yourself from
the information you encounter
personally. The obvious approach is to

Math Horizons April 2000 23



i

simply average the sizes of the classes
you are enrolled in. You could improve
your estimate by asking a couple of
friends to give you their class counts as
well (choosing people with different
majors from your own).

Suppose to get perfect accuracy you
decide to distribute a survey to every
class at the college, asking each person
in the class to give the class enrollment.
When the results are compiled, you find
that the average class size is 35.5. When
your survey result is reported in the
school newspaper, there is grumbling
in the registrar’s office that lots of
students must have given inaccurate
answers. But did they?

Notice that the number of surveys
returned in each class (assuming a 100%
response rate) is equal to the class size.
Thus there is an overrepresentation of the
large classes and an underrepresentation
of the small classes in the survey.
Specifically, the average class size
computed from all 580 responses is
(10X 30X 30+8Xx10x10+2x
100 X 100) + 580, which isindeed 35.5.

No matter what the distribution of
class sizes is at a school, the students’
average must always be at least as large
as the registrar’s average. You might wish
to try and show this. (Hint: use the
Cauchy-Schwarz inequality.) Obviously
universities prefer to report the
registrar’s average. Which average is the
most relevant to prospective students?

Surveying Sensitive Questions
(Reprise)

In the last column of Chance Encounters
[3] a discussion was given of how survey
researchers can gather honest responses
to sensitive questions. The explanation
I provided there was in error. The
statement given was “For example: ‘Have
you taken illegal drugs during the past
twelve months? Toss a coin and answer
truthfully if the coin comes up heads,
answer ‘No’ if the coin turns up tails.””

Clearly this protocol would reveal
some drug users, namely all those who
answer “Yes.” What I had intended to
write was “Toss a coin and answer
truthfully if the coin comes up heads;
if the coin turns up tails, toss the coin
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again and answer Yes if the coin gives
heads and No if the coin gives tails.”

This method preserves confidential-
ity in that “Yes” answers can be due
simply to the result of coin tosses rather
than to actual drug use. But there is a
costlor theresearcher: abouthalfofthe
responses represent statistical “noise,”
with no way to distinguish these re-
sponses from the ones actually contain-
ing answers to the drug use question.
How much accuracy does this lose?

For an ordinary survey, the propor-
tion p of the population with a certain
trait (e.g., illegal drug use) is estimated
by the proportion j of the survey re-
spondentswith that trait. The standard
deviation of this estimate is easily shown
tobe o =,/p(l - p)/n Forexample,ifp
= 50% of the population owns a com-
puter, then forasurvey of 400 randomly
selected individuals o = 2.5%. By the
Central Limit Theorem, thereisabouta
95% chance that the proportion f ofthe
sample whoreportthat they ownacom-
puterwill differ from p by less than 20 =
5%.

For the confidentiality-preserving
survey, in which half of the n surveys
have relevant answers while the other
half have answers based only on a coin
toss, pisestimated notby p butby 2/ —.5,
and the standard deviation of this
estimate turns out to be

2p(1-p)+.5

n

o* =

(Readers who have had a course in
mathematical statistics can try to verify
these two facts.)

Clearly 0* ismuch larger thanofora
givenn. Comparing o too*we find that
n must be at least four times larger in
order for a confidentiality-preserving
survey to achieve the same sampling
error as an ordinary survey (see if can
you show this). The price of preserving
confidentiality, while likely to at least
yield truthful answers, is large indeed [l

Endnote

The efficiency of the confidentiality-
preserving survey method can be increased
by reducing the percentage of respondents
whowillnotbe asked to answer the sensitive
question. For example, the instructions
could be changed to “Toss a coin lwice and
answer truthfully if the coin comesup heads
atleast once. If the coin turnsup tails both times,
toss the coin again and answer ‘Yes' if the
coin gives heads and ‘No’ if the coin gives
tails.” Unfortunately the confidential nature
of the survey is eroded by such a scheme, in
that the chance that someone actually uses
illegal drugs (for example) given that they
answered “yes” can be quite high. Exactly
how high can be determined from Bayes
formula, which can be found in virtually any
introductory probability textbook.
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Call For Papers

Thirteenth Annual MAA
Undergraduate Student Paper Sessions

The Thirteenth MAA Undergraduate Student Paper Sessions will take place at
the MAA summer meeting in Los Angeles, CA August 3-5, 2000.

The program for the MAA summer meeting will include sessions for student
papers. Partial support for travel by students presenting papers will be available
on a limited basis. This information is available on the MAA home page at
http://www.maa.org/students/students_index.html. Students are
advised to begin making plans now regarding participation. The deadline for
student paper submissions is Friday, June 30, 2000.

Please direct all inquiries to Dr. Charles Diminnie via email at
charles.diminnie@angelo.edu or by phone at (915)942-2317 EXT 238.
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The Duplicity of Two

second year of the WordWise column (two reasons!),
we thought it would be fitting to take a glance or two at
the word “two” itself.

One, two, buckle my shoe ... two is the first number that a
child learns. And well it should be: the child can point to
pairs of eves, ears, feet, and shoes. In contrast, three, the
next largest whole number, is not so biological, while zero
and one are actually rather subtle. As the German scholar
Karl Menninger has put it, “The number two is a frontier in
counting” (Menninger, 1969, p. 15).

We were not surprised, then, to find roots for “two” play-
ing many roles in our language—although some of our find-
ings were quite unexpected.

A s we round out the second millennium, and begin a

One Word Twigs Off From Another

Our word “two” stems from the Germanic fwa or {wai, also
the basis for our word “twig.” The etymology of “twig” sug-
gests a branch forking into two pieces. The same root has
also given us a host of related words:

twice — two times

twenty — two tens

twain — pair or couple

twins — two children born at once

twilight — two lights, daylight and evening, that we see at
dusk

betwixt and between — in the middle of two things

twist — to wrap two filaments around one another

twine — string made of two strands twisted together

twill, tweed — fabric patterns made with doubled thread

Even our English counting word “twelve” has “two” hid-
ing in it: it derives from the German {wa lif meaning “two
left.” When you group by tens, twelve has two left over. The
same reasoning applies to “eleven,” from ain [if “one left.”

RHETA RUBENSTEIN and RANDY SCHWARTZ are professors of math-

emaltics at Schoolcraft College in Livonia, Michigan.

The Germanic twa twigged off from an even older Indo-
European stem, dwo (“two”). In Greek this became di, duo.
Consider our word “diploma,” the certificate sought by col-
lege students everywhere as proof of all their hard work. The
Romans adopted the Greek word diploma, literally meaning
“doubled” or “folded,” to refer to a bound pair of bronze
tablets, on the inner surface of which a veteran soldier’s privi-
leges would be enscribed. In time, “diploma” was applied to
many other types of certificates, and it gave us our word “dip-
lomat,” someone certified to speak for a state.

Among the many other English “two” words related to the
Greek di, duo:

diptych — painting on two panels hinged at the center

dichromatic — having two colors

dichotomy — division into two categories

dilemma — two-choice decision

dihedral — edge or angle formed by two planes

duo, duet — pair of performers

dual — paired, twinned

duel — fight between two antagonists, from duellem which
also gave the Romans their term bellum, “war”

dyad — a pair

deuce — “two” in cards, dice, tennis and other games

duplicate — second copy

duplicity — the coexistence of two sets of motives

duplex — twofold, such as two dwellings in one frame, or
two directions of transmission over one cable

double — folded in two

doppelgianger — ghostly double of a living person

doubt — the condition of being of “two minds”

dozen — a group of twelve

duodecimal — base-12 numeration system (duo + deca =
2+ 10)

dodecagon — polygon with 12 sides

dodecahedron — polyhedron with 12 sides

We Challenge You to a “Dual”

There is an additional mathematical connection between the
terms “dual” and “dodecahedron.” A regular dodecahedron
is a solid with 12 identical plane faces, each face being an
equilateral and equiangular pentagon. The centers of these
pentagons form the vertices of a regular icosahedron, a solid
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Figure 1. Among the five Platonic solids, the dodecahedron and icosahedron are dual (left), as are the cube and octahedron (center), while the

letrahedron is self-dual (right).

with 20 identical plane faces (from the Greek eikosi, “twenty”),
each face being an equilateral triangle. Conversely, the cen-
ters of the faces of the icosahedron form the vertices of a new
dodecahedron. The icosahedron and dodecahedron are said
to be dual to one another, since they are “paired” or “twinned”
in this manner. All of the Platonic solids are dual in this
sense (see Fig. 1).

The word “dual” is often used to refer to such mathemati-
cal twins. In the study of projective geometry, points and
lines are conceived as “dual” to one another; for example,
Jjust as two distinct points determine a line, so also two inter-
secting lines determine a point. In the field of operations
research, every linear programming problem whose objec-
tive is to maximize a given function subject to a given set of
constraints has a natural twin, a “dual” problem whose ob-
jective is to minimize a related function. Although the final
answer to the two problems is identical, the process of find-
ing this answer is often easier for one of the dual problems
than for the other, furnishing a very useful shortcut. The
Duality Theorem of Gale, Kuhn and Tucker (1951) estab-
lished this central fact of linear programming.

The root duo- can also be found in the name of one of the
oldest algorithms in mathematics. Duplation and mediation,
aphrase derived from roots meaning “double” and “middle,
halfway,” is an ancient method of multiplying a pair of num-
bers. The algorithm, apparently used in ancient Egypt and
also known today as the Russian Peasant method, is based on
repeatedly doubling one number and halving the other until
a one results. When any whole number is divided by two, not
coincidentally there are exactly two types of results, depend-
ing on whether the dividend is even or odd. See, then, whether
you can reconstruct how duplation and mediation works based
on the following illustration (discussed by Sgroi 1998: 81—
85), in which 26 is multiplied by 55.
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26 55
13 110
6 220
3 440
1 _880

1430, answer

Getting Ambitious About “Bi-”

Just as the Greek root for “two” is di- or duo-, the Latin is bi-
or bis-, the basis for such words as:

bicycle — two-wheeled conveyance

biped — two-legged animal

bigamy — having two wives

bicameral — having two chambers, like the U.S. Congress
or the human brain

bicentennial — two-hundredth anniversary

combine — put two things together

bias — fabric cut across the grain, or a statistical sample
that is slanted, from a root meaning “looking two ways”

balance — a scale with two arms

biscuit — an item that has been twice cooked (think of the
Irench for cook, cuit) In German we have the same
roots to form zwieback, a cookie that is twice baked!

bisque — a thick broth that has been thoroughly or twice
cooked

bis — a European call at the theater for an encore, or
“second performance”; also, on European roadsigns,
an indicator for an alternate route

In mathematics, expressions having two terms, such as x
+y or 4x? - 3)13, are called “binomials,” from the Latin bz,
“two” + nomin “name, term” as in “denominator.” Can you



explain why powers of two keep appearing when we add up
the “binomial coefficients”?

1 +2+1=4=9
1+3+3+1=8=2

ety = 1t + Ay + 6B + o’ + 1k
l1+4+6+4+1=16=21

(x4v)2 = 1x% + 2xy + 1%
x=y)? = 1% + 3l + 32 + 1yY;

Suppose that a sports team goes through a streak of wins
and losses: WWWWWLLLLIWWLLIWWWW. Since there are
two letters involved, this is called a “binomial sequence.”
The odds that such a streak will occur can be calculated us-
ing the “binomial distribution” formula.

Further mathematical occurrences of bi- include:

bisect — to cut into two parts

binary number — a base-two number; each digit is called
a binary digit, or “bit” for short

binary search — an algorithm that searches a list by re-
peatedly chopping it in two

biconditional — an if..then... statement that is true in
both directions: “If A, then B” and “If B, then A.”

bimodal — said of a statistical distribution having two
modes, or predominant values

bijection — a function that is both injective (one-to-one)
and surjective (onto)

bifurcation — a function or graph that splits into two
branches like the prongs of a fork

Can you guess what a “birectangular” triangle would be?
In spherical geometry it is a triangle with two right angles!
(See Fig. 2.)

We also find - in “billion,” although the billions of earth-
lings vary in how they construe this word. Originally “bil-
lion” was intended to refer to a number with twice as many
zeroes as in one million. Since a million is 106, a billion
should be 102, and so it is in the British Isles. The French
and Americans, however, were concerned that 10° was left
without a name, so they moved “billion” back to 10°. So
beware! If you are traveling in England, you need a million
(not a thousand) millions to make one of their “billions”!

The Greek amphi and the Latin ambi mean “on both sides”
or “on all sides.” More “two words” derive from these:

amphibian — animal that lives both on land and in water
amphora — ancient Greek vase with two handles

Figure 2. On a sphere, a birectangular triangle has two right angles.

N
7

A C C
Figure 3. Side-side-angle (SSA) is an ambiguous case in geometry.

amphitheater — double theater, two semi-circular banks
of seats.

ambidextrous — using both hands with ease

ambition — an ardent or zealous moving about, from amb-
ire, “to go back and forth”

ambivalent — feeling both attracted to and repulsed by
something

ambiguous — having two (or more) meanings

In trigonometry, if you are given the lengths of two sides
of a triangle and the measure of one of the two angles not
between them, there might be two different triangles satisfy-
ing these conditions. For this reason, the case SSA (side-
side-angle) is called “ambiguous” (see Fig. 3).

Redoubling Our Findings

Because the concept is so important in our world, “twoness”
is expressed in many different forms. Here are some other
words whose roots are worth exploring:

second — derives from the same root as “sequel,” suggest-
ing “following or falling behind in order.”

pair — from a root meaning “equal,” the same root that
gave us “peer,” a person of rank equal to another, and
“par,” an accepted standard value, as in golf.

couple — from a root meaning “to fasten together.” From
“couple” we also get “couplet,” two successive lines of
verse forming a unit.

yoke — from a root meaning “to join,” this wooden bar
joins two draft animals so they can be driven together.

brace — a support that fastens two pieces together; or a
pair of gamefowl (“a brace of partridges”).

half — from healf, related to Latin scalpere, “to cut.” When
children talk about “the bigger half,” their misunder-
standing parallels this origin, which focused more on
the number of pieces than on their sizes.

semicircle — from the Latin semi-, “half”

hemisphere — from the Greek hemi-, “half™”

And mathematics is certainly not the only science replete
with such words. You might enjoy hunting down the twoness
in the meanings of these bits of jargon:

Physics: dipole; binocular; bifocal; bifilar pendulum
Chemistry: deuterium; DDT; diatom; dimer; amphoteric
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Biology: bicuspid; bivalve; binomial nomenclature; dicoty-

ledon; diploid; duodenum

Psychology: bipolar disorder; ambiverted
Linguistics: bilingual; diglossia; diphthong; gemination

Why is it that “two” has so many faces- bi-, di-, twi-, ambi-,
and others? It must be that the concept of “twoness” is so
basic that its uses diverged, like twigs, at many points in the
growth of the tree of language. With your new knowledge of
roots meaning “two,” you shouldn’t be surprised to learn of
the term used by etymologists for pairs like “two” and “duo,” 4
which derive ultimately from the same source but have
changed in form: they are called “doublets™! Il
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and because I have learned at least some
of their language. I think Alex
Grossmann played a very important role
that way. I have met Jean Morlet several
times, I think he’s a very interesting man,
but I find it very hard to talk with him.
I mean, of course, not talking socially,
but to really understand his ideas. Be-
cause it’s not even that I can see that
here’s an idea and I know that I don’t
understand the formal mathematics, it’s
that I don’t even understand the idea:
that I don’t even notice or can’t tell if
there is something there or not.

“The problem is you don’t know
what are ideas and what aren’t: he prob-
ably knows the different layers of what
he’s saying, but for me it’s impossible.
Alex Grossmann can talk to him. It's
good to have a chain of people. I think
so. And I think that’s the role that I
played. In some sense you could say that
I didn’t discover anything that anybody
didn’t know because there’s this one
aspect of the mathematical roots, but
then there’s the other one which has to
do with an algorithm for implementing
the whole thing. If there wasn’t an algo-
rithm, then none of this would be hap-
pening anyway. But that algorithm ex-
isted in electrical engineering: it’s called
sub-band filtering. There was no con-
nection with any of the pure mathemat-
ics, and I don’t know that that connec-
tion ever would have been made if it
weren’t for this chain of people. I mean,
once this connection was made, then
you had mathematicians interested in
hearing about the algorithms and clectri-
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cal engineers interested in hearing about
the mathematics.

“I'm a mathematician. I feel like one.
I feel like a mathematician, but Iam very
much motivated by applications. I like
to go off on a mathematical tangent, but
1 like to get back to applications. So in
that sense, I'm an applied mathemati-
cian. At one time, and still today for
some people, applied mathematics
meant only certain types of results ob-
tained by solving certain types of par-
tial differential equations. I'm not that
type of mathematician at all. So I very
much feel I'm an applied mathemati-
cian, but what I apply is functional
analysis, rather than PDE theory. Actu-
ally, there’s no such field as applied
mathematics: I think there are subfields
within mathematics and that, as a math-
ematician, you always really like it when
different subfields get into contact with
each other. I think that virtually all of
these mathematical subfields can have
contacts with applications, so in some
sense I'm an applied harmonic analyst,
not an applied PDE person, but one can
just as easily be, say, an applied num-
ber theorist.

“Ideally, I think there’s an important
place for pure mathematics and an im-
portant place for pure mathematicians;
I see my role as identifying and bring-
ing to more pure mathematicians than
myself very interesting problems com-
ing from applications. Ithink that’s an
important role to play and that it is
good for pure mathematics. There was
a while when pure mathematics wasn’t

open to this, but I think that mathemati-
cians are starting to open up more. It’s
very important to remember that whole
fields in pure mathematics have come
from applications. That doesn’t mean
that all the pure math that was done in
that area can therefore be described as
applied. No, it’s just mathematics. But
it also suggests that it’s very well pos-
sible for other fields of mathematics to
start to be fostered by applications. I
mean applied mathematics is not just
learning some nice mathematics and not
being upset by getting your hands dirty
on some problems where things are not
as neat but they will have an applica-
tion—it’s also identifying opportunities
for mathematical thinking, which can
lead to other fields of mathematics. 1
don’t know which other fields. I can’t pre-
dict. I mean it’s the ones that you cannot
predict that are the most interesting.”

A Life in Mathematics

Problems are the lifeblood of mathematics
and Daubechies, like most mathematicians,
has several going at once. All the ones she
tells us about come from real world applica-
tions. It’s quite clear listening to her ex-
plain her problems that she is a phenomenal
teacher — the explanations are so clear and
the problems sound so exciling that we're
itching to get out of the interview and gel
to work on them.

“Before this meeting I was at a mo-
lecular biology meeting. I got really in-



terested in people who can add proteins;
for some proteins they know in which
order all the atoms go, but then they
don’t know what the thing will look like,
and they have to ‘solve it’ to know what
it looks like, and these are really impor-
tant to understand their functions.
There are groups that try to predict the
form of proteins from energetic compu-
tations from just the formula, and they
have it organized so that they have a
way to objectively compare how good
their predictions are with what the
grand truth is by finding out about pro-
teins that will be solved. I mean you can
reasonably predict when things will get
solved, but are not solved yet. So they
use all those formulas, and they all work
on it: they have a deadline. At some
point it’s clear when the thing will be
solved, and they say ‘now, you have to
submit.” And you submit at that time,
and it gets compared with the grand
truth, and in that way you can score dif-
ferent prediction programs.

Okay, so one guy was explaining
about his prediction program: because
it’s just too big a space to exhaustively
search, he searched in a multi-resolu-
tion way. He first tried to build a coarse
model, then find the best coarse model
given, then build it up from there. Now
his first-level coarse model, was indeed
very coarse, but he was putting it on a
regular lattice, and his method was do-
ing very well. But it struck me that if we
have a good idea of how to compress,
how to find subdivision schemes for
curves, we could look at all the proteins
that they know, and try to find that sub-
division scheme that will be adapted to
the protein world. I've been always look-
ing at smoothness; they don’t care about
smoothness. These proteins actually do
all kinds of strange things. But one
could try to find a subdivision scheme
that would adapt to their goal, and that
could give you a good idea of what kind
of coarse things to start from. So that’s
something that hasn’t started, but some-
thing I'm very excited about and I hope
to work on this spring.

“Another thing that I'm very involved
in is understanding the mathematical
properties of coarsely quantized but very
oversampled audio signals, modeled by
so-called band-limited functions. There

are really neat links to dy-
namical systems. I'd like to
do that for other wavelet
transforms. I think we can
do it. If we can do it, |
think it’s going to have very
useful applications, plus I
think mathematically it’s
going to be very interest-
ing. Already for the band-
limited functions it’s much
more interesting that I had
expected a year ago.

“I have a graduate stu-
dent with whom I work on
applications of wavelets to
the generation and com-
pression of surfaces. People
represent surfaces with tri-
angulations with tens and
hundreds of thousands of
triangles, so you'd like to
compress that information.
Well, you can do that via
multi-resolution, and then
you can wonder what kind
of wavelets are associated
with that. Then you can
think about smoothness. In some appli-
cations, smoothness again is very impor-
tant. So that's another project.

“What else? I look at my students and
collaborators because everything I work
on I work on with a collaborator. I'm
still working with one of my former stu-
dents on away of using frames for trans-
mitting information over multiple chan-
nels, but that’s very theoretical work, and
I’'m not sure how close it’s going to get
to applications. I have the impression
I'm forgetting something.

“Tlove to talk about mathematics and
so I enjoy all the courses I teach. I teach
regular undergraduate math courses, |
developed a course of mathematics for
non-math majors. For many students in
our calculus classes this will be their last
contact with mathematics. I don’t think
this is a very good idea. Many of them
are really not turned on by calculus, and
it’s hard to get a really meaningful ap-
plication in a course if you also want to
teach calculus tools. You can try to fitin
some applications, but they really feel
very contrived. The real applications of
calculus are all the physics and other
math courses, but they won'’t ever see

Daubechies, pregnant with daughter Cavrolyn, lecturing on
wavelets.

that, and they’re not interested in see-
ing that. I wanted to get mathematical
ideas across without teaching technique.

“I call the course Math Alive; in two-
week units we visit different concepts. |
do one on voting and fair share, and
one on error correction and compression,
and I have one on probability and statis-
tics, and one on cryptography, and there’s
one (actually not taught by me, it’s a course
we co-teach) on Why Newton Had to In-
vent Calculus, that’s a unit students have
more trouble with. Then there’s one on
dynamical systems and population explo-
sion, it gets into population models. I've
enjoyed this course a lot. 'm teaching it
this spring for the fifth time, and I'd like
to document it so that it can be taught by
somebody else the next time, because
that’s the best way to prove a concept, if
it can be done by somebody else.

“I want these students to go away
knowing that mathematics is really im-
portant, that it turns up in lots of things
where they may be impressed by the
technology, but they don’t realize there’s
very deep mathematics in there. I want
them to see that mathematics is neat in
that you really solve a problem. You
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think your way out of it. And basically,
if they remember that, that’s fine. I'm
sure that when people meet historians,
they don’t say, “you must know all the
dates.” They know it's something else.
Well, they don’t know that it’s something
other than balancing a checkbook in
mathematics. I'd like themn to know that.
“I also teach graduate courses — of-
ten a starting graduate course in wave-
lets, sometimes a more advanced course.
1 enjoy teaching undergraduate courses
more than graduate courses. Not be-
cause I don’t like teaching graduate
courses, but because at graduate study
level, the starting graduate courses I can
see work well, but I think an advanced
graduate course works better as a read-
ing course than as a lecture course.”

An American Life

Daubechies is married to Robert Calderbank,
a distinguished British mathematician. They
have two children, Carolyn and Michael. If
you're wondering what it must be like to
have a genius for a mom, well, it sounds a
lot like having a mom.

“I go to my children’s school and the
tables are in groups and the classroom is
full of wonderful things. In my school
days classrooms might have had some
stuff, but we had little desks which were
all ined up in rows, maybe that’s the way
things were here as well in the sixties. I
think the new way is much more fun. It
may well be different in Belgium now; I
haven’tvisited the elementary schools. All
my elementary and secondary education
was in single-sex schools. That was the
way it was in Belgium at that time. I went
to public schools, but all public schools
at that time were gender-separated.

“I have mixed feelings about that. At
the time I thought it was a bad thing;
it's better if you don’t see another gen-
der as a different species because at some
point you will start looking for a com-
panion, and if you haven’t really met
any people of the other gender until
you're 18, it’s very artificial. So I didn’t
like it at the time, but then after I got to
university I realized that people in class-
rooms were less likely to ask me to give
an answer than some boys that were
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there. Atleast in the beginning. After a
while, when they knew I was interested,
then it was different. But you always felt
that there was a bigger hurdle to get over
as a girl to get noticed than as a boy. 1
hadn’t thought about that in great de-
tail, but then coming to this country and
hearing all the debate here about it —1
can see how it might be good for some
girls to have separate gender schools.
In an ideal world there would not be
this effect, but given it exists, I can see
how it might help in building self-as-
surance in girls. My daughter goes to
public school and it’s mixed gender,
and she’s happy, but I'm wondering if
at some point there might be a prob-
lem. I think she’s a smart little girl, and
if at some point I feel that because she
is in a mixed-gender school she is not
getting as much of an opportunity, I
might consider a single-gender school.
I haven't, she’s only seven, and it’s not
an issue at this time. It's something that
ten years ago I would not have thought
I would ever consider, but now I would.

“I don’t know if going to all-girl
schools had an eftect on me. My par-
ents always made it clear I could do
anything. It didn’t occur to me until I
went to university that people could
think I was less good at something be-
cause I was a girl. I think I'was very for-
tunate, because at that age, you're 100
old to take that prejudice seriously, and
when you encounter someone with that
attitude, you think, ‘You're a jerk.’

“As I said, my parents, especially my
father, really influenced my education.
So did popular psychology actually.
When I was little the prevailing theory
was that it wasn’t good to mix languages
too early. You might really confuse chil-
dren and then they wouldn’t really be
able to use any of the languages in great
depth and it would leave marks on them
the rest of their lives. My parents were
in an ideal situation to bring my brother
and Iup bilingually, because they spoke
French to each other and we lived in
the Flemish part of Belgium, where
people speak Dutch. But since there was
this myth that mixing languages early
was not good, they decided to bring us
up in Dutch, which is my mother’s
tongue; my father’s fluent in it since he
went to school in Dutch.

“Theories having changed now; I
bring my children up bilingually in
Dutch and English. I thought it would
be too hard doing it in a language that
is not my mother tongue. My French is
fluent, but in the beginning especially
it took quite an effort to have a bilin-
gual household because my husband is
British and he didn’t speak Dutch. He
has learned together with the children.
So I'speak English with him, but Dutch
with the children.

“My husband since he has learned
Dutch would like to have practice speak-
ing, but my children won’t allow it. They
roll on the floor when he tries it. They
think it’s quite incredibly funny. My son
went through a stage where when my
husband would say something in En-
glish that he knew was of interest to me
too, he would turn to me and translate
for me.

“English is their first language be-
cause they go to school in English. So
in Dutch they sometimes have more dif-
ficulty finding words, but I really try to
encourage them to find the words rather
than switch to English, and so some-
times before my daughter tries to tell
me something, she’ll say ‘how do you
say that word in Dutch?’ They had been
talking in school about different lan-
guages, and she really wanted to tell me,
so she said, in Dutch ‘How do you say
‘Dutch’ in Dutch?’ But at the end of the
sentence the name was already there.

“Qur son is talented in math, and I
think our daughter might be too. We,
of course, like to stimulate that when we
ask questions, but we are not pushing
them hard. What we are pushing is that
they have to cooperate and work at
school and do the best they can, not
just in math, but in everything. In fact,
I'm more concerned about writing and
things like that. Trying to get ideas in
an organized way on paper I think is
important in mathematics as well as
elsewhere.

“I like to go to my children’s school
and help out, especially on science day.
When I'm there I'm not that woman
professor mathematician, I'm Michael’s

mom and Carolyn’s mom, and I like
that. I like that.” [l
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Problem Section

Guest Editors

Titu Andreescu
American Mathemalics Compeltitions

This section features problems for students at the undergradu-
ate and (challenging) high school levels. Included are “Math-
ematical Quickies,” problems which can be solved laboriously
but with proper insight and knowledge can be solved easily.
These problems will not be identified as such except for their
solutions appearing at the end of the section (so no solutions
should be submitted for these problems). S designated prob-

o
;
.

Kiran Kedlaya
Massachuselts Institute of Technology

lems are problems set particularly for secondary school students
and/or undergraduates.

All solutions should be submitted in duplicate in easily legi-
ble form on separate sheets containing the contributor’s name,
mailing address, school affiliation, and academic status (i.e.,
high school student, undergraduate, teacher, etc.) and sent to
Steve Kennedy, Department of Mathematics, Carleton College,
Northfield, MN 55057.

Proposals

To be considered for publication, solutions to the following

S-39. Proposed by Gregory Galperin, Eastern Illi-
nois University. Prove, for positive real numbers
T1,Z2,...,Ty, that

1 1 1 1
Ty — )\ Tt — ) 2Tt ) Tt
T b x2 Al

> 2™

S-40. Proposed by Titu Andreescu, American Mathe-
matics Competitions. Find all solutions to the system of
equations

6z—y ) =3y—z")=20z-2"") =zyz — (xyz)”"

in nonzero real numbers z, y, 2.

S-41. Proposed by Gerald Heuer, Concordia College. If
a and b are rational and a # 0, the linear function az +b
assumes rational values when z is rational and irrational
values when z is irrational. Are there any polynomials of
degree greater than 1 with this property?

S-42. Proposed by Titu Andreescu, American Mathe-
matics Competitions. Let ay, . .., a,, be real numbers such
that a; +---+a, >n? and a3 +--- 4+ a2 < n®+ 1. Prove
thatn — 1 <ap <n+1 for all k.

Problem 131. Proposed by James Propp, University of
Wisconsin, Madison. The vertices of a dodecahedron are
labeled with real numbers so that adjacent vertices are
labeled by numbers that differ by at most 1. Prove that
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problems should be received by September 1, 2000.

there exists a pair of antipodal vertices labeled by num-
bers that differ by at most 1.

Problem 132. Proposed by Zuming Ieng, Phillips Ex-

eter Academy. Let ABCD and EFGH be two squares in

the plane such that they have the same center O, AB is
parallel to EF, and AB > EF. Find all points P in the
plane with the following properties.

(@) P lies outside of ABCD.

(b) There exists a circle centered at P that meets ABC'D
at K and N and meets EFGH at L and M, such that
KLMN is a convex quadrilateral and the lines KL
and M N meet at O.

Problem 133. Proposed by Cecil Rousscau, University
of Memphis. At a party attended by 4n persons, no three
persons are mutually acquainted, and no three have the
same number of acquaintances at the party. Prove that
the set of persons attending the party can be partitioned
into two subsets A and B, each consisting of mutual
strangers.

Problem 134. Proposed by Titu Andreescu, American
Mathematics Competitions. Let f : [-7/2,7/2] — [—1,1]
be a differentiable function whose derivative is contin-
uous and nonnegative. Prove that there exists zp €
[—7/2,7/2] such that

(f(zo)* + (f(z0))? < 1.

Problems $-39, S-41, 131, 132, and 133 were originally submitted for
the USAMO 2000.
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Solutions

$-32. A Point Not on the Euler Line

Prove that the incenter of a triangle lies on its Euler line
(the line through the circumcenter and the centroid), if
and only if the triangle is isosceles.

Solution by Zuming Feng, Phillips Exeter Academy. Let I,
H, O be the incenter, orthocenter, circumcenter of ABC,
respectively. It is a basic fact from plane geometry (ob-
tained by chasing appropriate angles) that the lines Aff
and AO are interchanged by a reflection through Al
Therefore AI is an angle bisector (internal or external)
of the triangle AOH, and similarly with B or C'in place
of A.

Now suppose I lies on the Euler line OH. If OH
passes through a vertex of ABC, say A, then the line
AOH is an altitude from A (since it passes through
the orthocenter) and a median from A (since it passes
through the centroid), and so ABC is isosceles. Suppose
on the contrary that none of A4, B, C' lies on OH. Then by
the conclusion of the previous paragraph and the angle
bisector theorem,

OI/IH = OA/AH = OB/BH = OC/CH.

Since OA = OB = OC, we have HA = HB = HC and
so H is the circumcenter of O and ABC is equilateral
(which gives a contradiction, since such a triangle has no
Fuler line).

We conclude that if I lies on the Euler line, then
ABC is isosceles.

$-34. Sums of Consecutive Squares

Can the sum of the squares of 61 consecutive integers
ever be a perfect square?

Solution by Mark Krusemeyer, Carleton College. This is
impossible. Modulo 4, consecutive squares alternate
0,1,0,1,... so the sum of 61 consecutive squares is con-
gruent to 30 or 31 modulo 4, and so cannot be a perfect
square.

Solution by the editors.
30.....z+301s

The sum of the squares of z —

61x® +2(1% + - + 30%) = 612% 4 10 x 31 x 61.
Suppose this equals y2. Modulo 31, we have

y? = 6122 = —22.
However, since 31 =3 (mod 4), —1 is not a quadratic
residue modulo 31, so y*> = —2? (mod 31) is only pos-
sible if 2 and y are divisible by 31. But then y? — 6122 =
10 x 31 x 61 would be divisible by 312, contradiction.

Problem 123. A Harmonic Integral
Evaluate the integral [ zd(1 —e *)™.

Solution by the editors. Let f(n) denote the given integral.
We will show that f(n) — f(n — 1) = 1/n, and notice that
J(0) = 0 since the integrand is identically zero. From this
it will follow that

. 1 1
fny=14+<=+-+—.
2 n
Now some calculation shows that
fo - fn-1) = [ wdl@ ey = @ - ey
Jo
= zd[—e " (1—e )]

ze (1 —ne )1 - e_m)”f2 dz

S|= S~— —

o0

0

Problem 124. Two Equilateral Triangles

Starting with an equilateral triangle ABC and its circum-
circle, we construct an equilateral triangle A’B’C’ so that
it circumscribes the circle and the vertex C” lies on the
extended line BC. Determine the angle a between BC
and B’C" (here A lies above BC and C' lies below BC).

Solution by the editors.  Let O be the circumcenter of ABC
and D the point where BC touches the incircle of ABC.
Let » = OD be the inradius of ABC. Then the circum-
radius of ABC'is 2r and that of A’B’C" is 4r. Therefore
1

oD
4 —_ H — ar M —
Z0C"D = arcsin o arcsin 1

and

1
o= % —-/0C'D = % — arcsin 7

Problem 125. Equal Volumes

Let f(z) be a continuous increasing function on [0, a]
such that f(0) = 0. Define by R the region bounded
by f(z), ¢ = a and y = 0. Now consider the solid of
revolution when R is revolved about the y-axis as a sort
of dish. Determine f(z) such that the volume of water
the dish can hold is equal to the volume of the dish itself
(for all a).

Solution by the editors. It is equivalent to ask that the vol-
ume of the dish be half that of the solid of revolution
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formed by the rectangle 0 <z <aand 0 <y < f(a). In
equations, this condition states that

/ .27r.1'f(1') dz = %wazf(a).
0

Applying the Second Fundamental Theorem of Calculus,
we obtain that

2raf(a) = maf(a) + %szf'(a).

(The differentiability of f is also a consequence of the
SFT) This implies (log f(a)) = f'(a)/f(a) = 2/a and so
f(a) = ca? for some constant ¢ > 0.

Problem 126. Iterating the Sine Function

The sequence {m,} is defined by 7,1 = 7, +sinm,, n =
1,2,..., where 7 is a real number. (i) If ¢, = |7, — 7| <
V20, show that €, < €2 /6. (ii) For any given number
m show that lim,,_, ., m, exists and describe the limit.

Solution by the editors.
(1) Putt, =7, — 7, so that t, 1 =1, —sint,. Then

t3 o0 tii+1 t4i+3
tn+1 =0 Z N - _n .
3 \(i+1) (4i+3)

Assuming 0 < ¢, < /20, all of the terms in the sum
are positive (since t2 < 20 < (44 + 2)(4i + 3)), so
tnt1] < |t2/6]. The argument is similar for 0 > ¢, >
—/20.

(i1) We will show that

lim =, =
nT—>00

2mm T = 2mm
(2m+ D)7 2mr < m < (2m+ 2)7.

Let us first consider the case 0 < 7; < 7. As in (i),
put ¢, = m, — m, so that 0 < ¢t; < 7 and the claim is
that lim,,_,, ¢, = 0. Given that 0 < ¢, < m, we have
0 <ty since sine < z forall z > 0, and ¢, < ¢,
since sini,, > 0. Thus the ¢,, forming a decreasing se-
quence of positive real numbers, converge to a limit
L € ]0,t;]. However,

L= lim t, = lim t,_; —sint,_; = L —sinL
n—>00 11— 00

by continuity. The only possible L € [0,¢] is thus

L =0, and so lim,,_,o t, = .

If 7 < 7 < 2w, we can apply the above reasoning
to the sequence starting with 2r — 7, since (27 —
x) + sin(2x — x) = 27 — (z + sinz), and deduce that
lim,, o0 ™, = 7 again. For the general case, note that
(2mn 4 ) + sin(2mn + z) = 27n + (z + sinz), so we
can deduce the general case by choosing n so that
2mn 4+ m € (0, 27) and replacing 7, with 27n + ;.
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S$-39. (Quickie) Two Inequalities

To prove the left inequality, multiply through by
Z)...ZT,, so that the desired result becomes

(2 + 1) (@7 + 1) 2 (22 + 1) (@ + 1),
Then note that (z? + 1)(23 + 1) > (z1z2 + 1), since

the difference between the two sides is 2% + 23 — 2z, 5.
Multiplying the analogous inequalities and taking square
roots yields the claim.

To prove the right inequality, note that z; + 1/2, >
2y/x1 /22 by AM-GM. Multiplying the analogous inequal-

ities yields the claim.

$-40. (Quickie) A System of Equations

The only solutions are s =y=z=1landz =y =2 =
—1. The given equalities imply that '

(z—y N+y—zYH+ (z—271) =zyz ~ (zy2)"",

which factors as

(z—y Ny—2"z—2"1)=0.

1 1

Thus one of z — y~t,y — 27,2 — 27! is zero, but the

given equalities then imply thar all three are zero. Thus
zy=yz=zx =1 (zyz)? =landsoz=y=z=1or
r=y=2z=—1
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Those among us who fancy ourselves
amateur wordsmiths or late-night poets
— or who just need a distraction from
our Calculus takehome — have penned
our fair share of limericks and haiku.
Occasionally our burning passion for
mathematics drives our Muse to whis-
per beautiful (and sometimes even rhym-
ing) mathematics in our ear as we write.
After all, who among us has not, on con-
sidering Euclid’s Elements, felt the cre-
ative inspiration to write “There once
was an old man from Crete, Whose par-
allel lines did not meet,...”

Perhaps your brain prefers the oppo-
site metric (long, short, short, long, short,
short), found in the double-dactyl:

Mathematicians are
Totally awesome, they
Teach us mathematics,
Then leave with a smirk

Homework assigned gives us
Nightmares at bedtime with
Epsilon-delta proofs

Which will not work.

Summon up your creative juices,
sharpen your pencil and grab some pa-
per lor this issue’s contest.

"Two years ago, Salon Magazine sug-
gested to readers to create computer er-
ror messages in haiku. (Haiku is an epi-
grammatic Japanese poetry form of three
unrhyming lines with syllable counts 5,
7, 5.) Many of the entries were quite
clever:

With searching comes loss
and the presence of absence:
“My Novel” not found.
— Howard Korder

Acrash reduces
your expensive computer
to a simple stone.
— James Lopez

Having been erased,
The document you're seeking
Must now be retyped.

— Judy Birmingham

Out of memory.
We wish to hold the whole sky,
But we never will.

— Francis Heaney

A file that big?
It might be very useful.
But now it is gone.
— David ]J. Liszewski

Here is the chance of a lifetime to
become a published poet. Write some
mathematical haiku: pithy or profound,
witty or sober, simple or eloquent, and
send it to dhaunspe@carleton.edu
by May 15th. Selected entries will be
published in the next Math Horizons;
the best entries will receive Math Hori-
zons t-shirts. This Is your opportunity
to bare your mathematical soul before
all humankind — and to put off your
takehome just a few minutes more.

Hllustration by John Johnson.



