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Last time

• projectile trajectory equation

• projectile examples

• projectile motion and relative motion



Overview

• circular motion

• force

• net force



Circular motion

Objects that move along an arc of a circle are said to be
undergoing circular motion.
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▸ 4.5 c o n t i n u e d

By eliminating the time t between these equations and using differentiation to maximize d in terms of u, we arrive 
(after several steps; see Problem 88) at the following equation for the angle u that gives the maximum value of d :

u 5 458 2
f

2

For the slope angle in Figure 4.14, f 5 35.0°; this equation results in an optimal launch angle of u 5 27.5°. For a slope 
angle of f 5 0°, which represents a horizontal plane, this equation gives an optimal launch angle of u 5 45°, as we 
would expect (see Figure 4.10).

 

Pitfall Prevention 4.4
Acceleration of a Particle  
in Uniform Circular Motion  
Remember that acceleration in 
physics is defined as a change 
in the velocity, not a change in 
the speed (contrary to the every-
day interpretation). In circular 
motion, the velocity vector is 
always changing in direction, so 
there is indeed an acceleration.

4.4   Analysis Model: Particle  
in Uniform Circular Motion

Figure 4.15a shows a car moving in a circular path; we describe this motion by call-
ing it circular motion. If the car is moving on this path with constant speed v, we 
call it uniform circular motion. Because it occurs so often, this type of motion is 
recognized as an analysis model called the particle in uniform circular motion. We 
discuss this model in this section.
 It is often surprising to students to find that even though an object moves at a 
constant speed in a circular path, it still has an acceleration. To see why, consider the 
defining equation for acceleration, aS 5 d vS/dt (Eq. 4.5). Notice that the accelera-
tion depends on the change in the velocity. Because velocity is a vector quantity, an 
acceleration can occur in two ways as mentioned in Section 4.1: by a change in the 
magnitude of the velocity and by a change in the direction of the velocity. The latter 
situation occurs for an object moving with constant speed in a circular path. The 
constant-magnitude velocity vector is always tangent to the path of the object and 
perpendicular to the radius of the circular path. Therefore, the direction of the 
velocity vector is always changing.
 Let us first argue that the acceleration vector in uniform circular motion is 
always perpendicular to the path and always points toward the center of the circle. 
If that were not true, there would be a component of the acceleration parallel to 
the path and therefore parallel to the velocity vector. Such an acceleration compo-
nent would lead to a change in the speed of the particle along the path. This situa-
tion, however, is inconsistent with our setup of the situation: the particle moves with 
constant speed along the path. Therefore, for uniform circular motion, the accelera-
tion vector can only have a component perpendicular to the path, which is toward 
the center of the circle.
 Let us now find the magnitude of the acceleration of the particle. Consider the 
diagram of the position and velocity vectors in Figure 4.15b. The figure also shows 
the vector representing the change in position D rS for an arbitrary time interval. 
The particle follows a circular path of radius r, part of which is shown by the dashed 

Figure 4.15 (a) A car moving along a circular path at con-
stant speed experiences uniform circular motion. (b) As a 
particle moves along a portion of a circular path from ! to 
", its velocity vector changes from vSi to vSf . (c) The construc-
tion for determining the direction of the change in velocity 
DvS, which is toward the center of the circle for small DrS.
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▲ FIGURE 6–13 A particle moving in a
circular path centered on the origin
The speed of the particle is constant, but
its velocity is constantly changing.

6–5 Circular Motion
According to Newton’s second law, if no force acts on an object, it will move with
constant speed in a constant direction. A force is required to change the speed, the
direction, or both. For example, if you drive a car with constant speed on a circular
track, the direction of the car’s motion changes continuously. A force must act on
the car to cause this change in direction. We would like to know two things about
a force that causes circular motion: what is its direction, and what is its magnitude?

First, let’s consider the direction of the force. Imagine swinging a ball tied to a
string in a circle about your head, as shown in Figure 6–12. As you swing the ball,
you feel a tension in the string pulling outward. Of course, on the other end of the
string, where it attaches to the ball, the tension pulls inward, toward the center of
the circle. Thus, the force the ball experiences is a force that is always directed to-
ward the center of the circle. In summary,

To make an object move in a circle with constant speed, a force must act on it
that is directed toward the center of the circle.

Since the ball is acted on by a force toward the center of the circle, it follows
that it must be accelerating toward the center of the circle. This might seem odd at
first: How can a ball that moves with constant speed have an acceleration? The
answer is that acceleration is produced whenever the speed or direction of the
velocity changes—and in circular motion, the direction changes continuously.
The resulting center-directed acceleration is called centripetal acceleration
(centripetal is from the Latin for “center seeking”).

Let’s calculate the magnitude of the centripetal acceleration, for an object
moving with a constant speed v in a circle of radius r. Figure 6–13 shows the
circular path of an object, with the center of the circle at the origin. To calculate
the acceleration at the top of the circle, at point P, we first calculate the average
acceleration from point 1 to point 2:

6–10

The instantaneous acceleration at P is the limit of as points 1 and 2 move closer
to P.

Referring to Figure 6–13, we see that is at an angle above the horizontal,
and is at an angle below the horizontal. Both and have a magnitude v.
Therefore, we can write the two velocities in vector form as follows:

Substituting these results into gives

6–11

Note that points in the negative y direction—which, at point P, is toward the
center of the circle.

To complete the calculation, we need the time it takes the object to go from
point 1 to point 2. Since the object’s speed is v, and the distance from point 1 to
point 2 is where is measured in radians (see Appendix A, page A-2 for
a discussion of radians and degrees), we find

6–12

Combining this result for with the previous result for gives

6–13

To find at point P, we let points 1 and 2 approach P, which means letting go to
zero. Table 6–2 shows that as goes to zero the ratio goes to 1:
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TABLE 6–2

for Values of Approaching Zero

radians

1.00 0.841
0.500 0.959
0.250 0.990
0.125 0.997
0.0625 0.999
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▲ FIGURE 6–12 Swinging a ball in a circle
The tension in the string pulls outward
on the person’s hand and pulls inward
on the ball.
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It is possible that such an object moves with constant speed. But
does it move with constant velocity?

No!

1Left Figure: from Serway & Jewett, 9th ed. Right Figure: from Walker.
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Objects that move along an arc of a circle are said to be
undergoing circular motion.
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By eliminating the time t between these equations and using differentiation to maximize d in terms of u, we arrive 
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If that were not true, there would be a component of the acceleration parallel to 
the path and therefore parallel to the velocity vector. Such an acceleration compo-
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tion, however, is inconsistent with our setup of the situation: the particle moves with 
constant speed along the path. Therefore, for uniform circular motion, the accelera-
tion vector can only have a component perpendicular to the path, which is toward 
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 Let us now find the magnitude of the acceleration of the particle. Consider the 
diagram of the position and velocity vectors in Figure 4.15b. The figure also shows 
the vector representing the change in position D rS for an arbitrary time interval. 
The particle follows a circular path of radius r, part of which is shown by the dashed 

Figure 4.15 (a) A car moving along a circular path at con-
stant speed experiences uniform circular motion. (b) As a 
particle moves along a portion of a circular path from ! to 
", its velocity vector changes from vSi to vSf . (c) The construc-
tion for determining the direction of the change in velocity 
DvS, which is toward the center of the circle for small DrS.
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▲ FIGURE 6–13 A particle moving in a
circular path centered on the origin
The speed of the particle is constant, but
its velocity is constantly changing.

6–5 Circular Motion
According to Newton’s second law, if no force acts on an object, it will move with
constant speed in a constant direction. A force is required to change the speed, the
direction, or both. For example, if you drive a car with constant speed on a circular
track, the direction of the car’s motion changes continuously. A force must act on
the car to cause this change in direction. We would like to know two things about
a force that causes circular motion: what is its direction, and what is its magnitude?

First, let’s consider the direction of the force. Imagine swinging a ball tied to a
string in a circle about your head, as shown in Figure 6–12. As you swing the ball,
you feel a tension in the string pulling outward. Of course, on the other end of the
string, where it attaches to the ball, the tension pulls inward, toward the center of
the circle. Thus, the force the ball experiences is a force that is always directed to-
ward the center of the circle. In summary,

To make an object move in a circle with constant speed, a force must act on it
that is directed toward the center of the circle.

Since the ball is acted on by a force toward the center of the circle, it follows
that it must be accelerating toward the center of the circle. This might seem odd at
first: How can a ball that moves with constant speed have an acceleration? The
answer is that acceleration is produced whenever the speed or direction of the
velocity changes—and in circular motion, the direction changes continuously.
The resulting center-directed acceleration is called centripetal acceleration
(centripetal is from the Latin for “center seeking”).

Let’s calculate the magnitude of the centripetal acceleration, for an object
moving with a constant speed v in a circle of radius r. Figure 6–13 shows the
circular path of an object, with the center of the circle at the origin. To calculate
the acceleration at the top of the circle, at point P, we first calculate the average
acceleration from point 1 to point 2:

6–10

The instantaneous acceleration at P is the limit of as points 1 and 2 move closer
to P.

Referring to Figure 6–13, we see that is at an angle above the horizontal,
and is at an angle below the horizontal. Both and have a magnitude v.
Therefore, we can write the two velocities in vector form as follows:

Substituting these results into gives

6–11

Note that points in the negative y direction—which, at point P, is toward the
center of the circle.

To complete the calculation, we need the time it takes the object to go from
point 1 to point 2. Since the object’s speed is v, and the distance from point 1 to
point 2 is where is measured in radians (see Appendix A, page A-2 for
a discussion of radians and degrees), we find

6–12

Combining this result for with the previous result for gives

6–13

To find at point P, we let points 1 and 2 approach P, which means letting go to
zero. Table 6–2 shows that as goes to zero the ratio goes to 1:
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▲ FIGURE 6–12 Swinging a ball in a circle
The tension in the string pulls outward
on the person’s hand and pulls inward
on the ball.
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It is possible that such an object moves with constant speed. But
does it move with constant velocity? No!

1Left Figure: from Serway & Jewett, 9th ed. Right Figure: from Walker.



Circular Motion

How large is the acceleration of the object?

It should depend on:

• the speed of the object - in this case, a higher the speed
means a larger acceleration

• the radius of the path - the tighter the turn, the smaller the
radius, the larger the acceleration



Circular Motion

How large is the acceleration of the object?

It should depend on:

• the speed of the object - in this case, a higher the speed
means a larger acceleration

• the radius of the path - the tighter the turn, the smaller the
radius, the larger the acceleration



Centripetal Acceleration

Centripetal acceleration

The acceleration of an object that follows a circular arc of radius,
r , at constant speed v . Its magnitude is

a =
v2

r

(See page 71 of textbook for the proof.)



Uniform Circular Motion

The velocity vector points along a tangent to the circle

 4.4 Analysis Model: Particle In Uniform Circular Motion 93

continued

Combining this equation with Equation 4.15, we find a relationship between angular 
speed and the translational speed with which the particle travels in the circular path:

 v 5 2pa v
2pr

b 5
v
r  S      v 5 rv (4.17)

Equation 4.17 demonstrates that, for a fixed angular speed, the translational speed 
becomes larger as the radial position becomes larger. Therefore, for example, if a 
merry-go-round rotates at a fixed angular speed v, a rider at an outer position at 
large r will be traveling through space faster than a rider at an inner position at 
smaller r. We will investigate Equations 4.16 and 4.17 more deeply in Chapter 10.
 We can express the centripetal acceleration of a particle in uniform circular 
motion in terms of angular speed by combining Equations 4.14 and 4.17:

ac 5
1rv 22

r
 ac 5 rv2 (4.18)

Equations 4.14–4.18 are to be used when the particle in uniform circular motion 
model is identified as appropriate for a given situation.

Q uick Quiz 4.4  A particle moves in a circular path of radius r with speed v. It then 
increases its speed to 2v while traveling along the same circular path. (i) The cen-
tripetal acceleration of the particle has changed by what factor? Choose one:  
(a) 0.25 (b) 0.5 (c) 2 (d) 4 (e) impossible to determine (ii) From the same choices,  
by what factor has the period of the particle changed?

Analysis Model   Particle in Uniform Circular Motion
Imagine a moving object that can be modeled as a particle. If it moves 
in a circular path of radius r at a constant speed v, the magnitude of its 
centripetal acceleration is 

 ac 5
v2

r
 (4.14)

and the period of the particle’s motion is given by 

 T 5
2pr
v

 (4.15)

The angular speed of the particle is

 v 5
2p

T
 (4.16)

Examples: 

of constant length 
-

fectly circular orbit (Chapter 13)
-

form magnetic field (Chapter 29)

nucleus in the Bohr model of the 
hydrogen atom (Chapter 42)

r

vSac
S

Example 4.6   The Centripetal Acceleration of the Earth 

(A) What is the centripetal acceleration of the Earth as it moves in its orbit around the Sun?

Conceptualize Think about a mental image of the Earth in a circular orbit around the Sun. We will model the Earth 
as a particle and approximate the Earth’s orbit as circular (it’s actually slightly elliptical, as we discuss in Chapter 13).

Categorize The Conceptualize step allows us to categorize this problem as one of a particle in uniform circular motion.

Analyze We do not know the orbital speed of the Earth to substitute into Equation 4.14. With the help of Equation 
4.15, however, we can recast Equation 4.14 in terms of the period of the Earth’s orbit, which we know is one year, and 
the radius of the Earth’s orbit around the Sun, which is 1.496 3 1011 m.

AM

S O L U T I O N

Pitfall Prevention 4.5
Centripetal Acceleration  
Is Not Constant We derived the 
magnitude of the centripetal 
acceleration vector and found it to 
be constant for uniform circular 
motion, but the centripetal accelera-
tion vector is not constant. It always 
points toward the center of the 
circle, but it continuously changes 
direction as the object moves 
around the circular path.

For uniform circular motion:

• the radius is constant

• the speed is constant

• the magnitude of the acceleration is constant



Period

Period

The time for one complete orbit of an object that follows a circular
arc of radius, r , at constant speed v . Its magnitude is

T =
2πr

v



Uniform Circular Motion
We can also consider the rate at which the angular coordinate is
changing:

294 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

defining kinematic variables: position, velocity, and acceleration. We do the same 
here for rotational motion.
 Figure 10.1 illustrates an overhead view of a rotating compact disc, or CD. The 
disc rotates about a fixed axis perpendicular to the plane of the figure and passing 
through the center of the disc at O. A small element of the disc modeled as a par-
ticle at P is at a fixed distance r from the origin and rotates about it in a circle of 
radius r. (In fact, every element of the disc undergoes circular motion about O.) It is 
convenient to represent the position of P with its polar coordinates (r, u), where r is 
the distance from the origin to P and u is measured counterclockwise from some refer-
ence line fixed in space as shown in Figure 10.1a. In this representation, the angle u  
changes in time while r remains constant. As the particle moves along the cir-
cle from the reference line, which is at angle u 5 0, it moves through an arc of 
length s as in Figure 10.1b. The arc length s is related to the angle u through the 
relationship

 s 5 r u (10.1a)

 u 5
s
r  (10.1b)

Because u is the ratio of an arc length and the radius of the circle, it is a pure num-
ber. Usually, however, we give u the artificial unit radian (rad), where one radian is 
the angle subtended by an arc length equal to the radius of the arc. Because the cir-
cumference of a circle is 2pr, it follows from Equation 10.1b that 3608 corresponds 
to an angle of (2pr/r) rad 5 2p rad. Hence, 1 rad 5 3608/2p < 57.38. To convert an 
angle in degrees to an angle in radians, we use that p rad 5 1808, so

u 1rad 2 5
p

1808
 u 1deg 2

For example, 608 equals p/3 rad and 458 equals p/4 rad.
 Because the disc in Figure 10.1 is a rigid object, as the particle moves through an 
angle u from the reference line, every other particle on the object rotates through 
the same angle u. Therefore, we can associate the angle u with the entire rigid 
object as well as with an individual particle, which allows us to define the angular 
position of a rigid object in its rotational motion. We choose a reference line on 
the object, such as a line connecting O and a chosen particle on the object. The 
angular position of the rigid object is the angle u between this reference line on 
the object and the fixed reference line in space, which is often chosen as the x axis. 
Such identification is similar to the way we define the position of an object in trans-
lational motion as the distance x between the object and the reference position, 
which is the origin, x 5 0. Therefore, the angle u plays the same role in rotational 
motion that the position x does in translational motion.
 As the particle in question on our rigid object travels from position ! to posi-
tion " in a time interval Dt as in Figure 10.2, the reference line fixed to the object 
sweeps out an angle Du 5 uf 2 ui. This quantity Du is defined as the angular dis-
placement of the rigid object:

Du ; uf 2 ui 

The rate at which this angular displacement occurs can vary. If the rigid object 
spins rapidly, this displacement can occur in a short time interval. If it rotates 
slowly, this displacement occurs in a longer time interval. These different rotation 
rates can be quantified by defining the average angular speed vavg (Greek letter 
omega) as the ratio of the angular displacement of a rigid object to the time inter-
val Dt during which the displacement occurs:

 vavg ;
uf 2 ui

tf 2 ti
5

Du

Dt
 (10.2)Average angular speed X

Reference
line

O P
r

O

P

Reference
line

r s
u

To define angular position 
for the disc, a fixed reference 
line is chosen. A particle at P 
is located at a distance r from 
the rotation axis through O.

As the disc rotates, a particle at 
P moves through an arc length 
s on a circular path of radius r. 
The angular position of P is u.

a

b

Figure 10.1  A compact disc 
rotating about a fixed axis 
through O perpendicular to the 
plane of the figure.

Pitfall Prevention 10.1
Remember the Radian In rota-
tional equations, you must use 
angles expressed in radians.  
Don’t fall into the trap of using 
angles measured in degrees in 
rotational equations.

x

y

", t f

!, ti
r

i

O

fu

u

Figure 10.2  A particle on a rotat-
ing rigid object moves from ! to 
" along the arc of a circle. In the 
time interval Dt 5 tf 2 ti , the radial 
line of length r moves through an 
angular displacement Du 5 uf 2 ui.

∆θ = θf − θi

Then we can define the angular speed, ω, as

ω =
dθ

dt
where θ is measured in radians



Uniform Circular Motion

ω gives the amount by which the angle θ advances in radians, per
unit time. Therefore,

ω =
2π

T

where T is the period (time for one revolution).

Putting in the expression for T (T = 2πr
v ):

ω = 2π
v

2πr

ω =
v

r

This gives us another expression for the centripetal acceleration:

a = ω2r



Uniform Circular Motion

ω gives the amount by which the angle θ advances in radians, per
unit time. Therefore,

ω =
2π

T

where T is the period (time for one revolution).

Putting in the expression for T (T = 2πr
v ):

ω = 2π
v

2πr

ω =
v

r

This gives us another expression for the centripetal acceleration:

a = ω2r



Uniform Circular Motion

ω gives the amount by which the angle θ advances in radians, per
unit time. Therefore,

ω =
2π

T

where T is the period (time for one revolution).

Putting in the expression for T (T = 2πr
v ):

ω = 2π
v

2πr

ω =
v

r

This gives us another expression for the centripetal acceleration:

a = ω2r



Circular Motion

Quick Quiz 4.41 A particle moves in a circular path of radius r
with speed v . It then increases its speed to 2v while traveling
along the same circular path.

(i) The centripetal acceleration of the particle has changed by
what factor? Choose one:

A 0.25

B 0.5

C 2

D 4

1Page 93, Serway & Jewett
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Circular Motion

Quick Quiz 4.41 A particle moves in a circular path of radius r
with speed v . It then increases its speed to 2v while traveling
along the same circular path.

(ii) From the same choices, by what factor has the period of the
particle changed?

A 0.25

B 0.5
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Circular Motion
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Non-Uniform Circular Motion

94 Chapter 4 Motion in Two Dimensions

Path of
particle at

ar

at

ar at
araS 

aS 

aS !

"

#

Figure 4.16 The motion of a 
particle along an arbitrary curved 
path lying in the xy plane. If the 
velocity vector vS (always tangent 
to the path) changes in direction 
and magnitude, the components 
of the acceleration aS are a tan-
gential component at and a radial 
component ar.

(B) What is the angular speed of the Earth in its orbit around the Sun?

Analyze 

S O L U T I O N

Substitute numerical values: ac 5
4p2 11.496 3 1011 m 211 yr 22 a 1 yr

3.156 3 107 s
b2

5  5.93 3 1023 m/s2

Finalize The acceleration in part (A) is much smaller than the free-fall acceleration on the surface of the Earth. An 
important technique we learned here is replacing the speed v in Equation 4.14 in terms of the period T of the motion. 
In many problems, it is more likely that T is known rather than v. In part (B), we see that the angular speed of the 
Earth is very small, which is to be expected because the Earth takes an entire year to go around the circular path once.

4.5 Tangential and Radial Acceleration
Let us consider a more general motion than that presented in Section 4.4. A parti-
cle moves to the right along a curved path, and its velocity changes both in direction 
and in magnitude as described in Figure 4.16. In this situation, the velocity vector 
is always tangent to the path; the acceleration vector aS, however, is at some angle 
to the path. At each of three points !, ", and # in Figure 4.16, the dashed blue 
circles represent the curvature of the actual path at each point. The radius of each 
circle is equal to the path’s radius of curvature at each point.
 As the particle moves along the curved path in Figure 4.16, the direction of the 
total acceleration vector aS changes from point to point. At any instant, this vec-
tor can be resolved into two components based on an origin at the center of the 
dashed circle corresponding to that instant: a radial component ar along the radius 
of the circle and a tangential component at perpendicular to this radius. The total 
acceleration vector aS can be written as the vector sum of the component vectors:

 aS 5 aSr 1 aSt (4.19)

The tangential acceleration component causes a change in the speed v of the particle. 
This component is parallel to the instantaneous velocity, and its magnitude is given by

 at 5 ` dv
dt

`  (4.20)

Total acceleration X

Tangential acceleration X

▸ 4.6 c o n t i n u e d

Combine Equations 4.14 and 4.15: ac 5
v2

r
5

a2pr
T

b2

r
5

4p2r
T 2

 

Substitute numerical values into Equation 4.16: v 5
2p

1 yr
 a 1 yr

3.156 3  107
 s
b 5  1.99 3  1027

 s21

ar is the centripetal acceleration. It changes the direction of the
particle’s velocity.

The tangential acceleration at speeds up or slows down the
particle.
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Vote!

https://registertovote.ca.gov/

If you are eligible, and you haven’t registered, do it this week!

Election day: Tuesday, Nov 6.



Taylor Swift wants You to Vote!

“For a lot of us, we may never find a candidate or party with
whom we agree 100% on every issue, but we have to vote anyway.

“So many intelligent, thoughtful, self-possessed people have
turned 18 in the past two years and now have the right and
privilege to make their vote count. But first you need to register,
which is quick and easy to do. [...] Go to vote.org and you can

find all the info. Happy Voting! !"# ”

– Taylor Swift, Instagram post



Forces

Up until now we have predicted the motion of objects from
knowledge of their motional quantities, eg. their initial velocities,
accelerations, etc.

We did not consider what the causes of this motion might be. We
now will think about that.

We will understand forces as the cause of changes in the motion
of objects.

Forces are a “push” or “pull” that an object experiences
because of an interaction.

Forces are vectors.
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Forces

Two types of forces

• contact forces
another object came into contact with the object

• field forces
a kind of interaction between objects without them touching
each other



Forces

Force type examples:
112 Chapter 5 The Laws of Motion

orbit around the Earth. This change in velocity is caused by the gravitational force 
exerted by the Earth on the Moon.
 When a coiled spring is pulled, as in Figure 5.1a, the spring stretches. When a 
stationary cart is pulled, as in Figure 5.1b, the cart moves. When a football is kicked, 
as in Figure 5.1c, it is both deformed and set in motion. These situations are all 
examples of a class of forces called contact forces. That is, they involve physical contact 
between two objects. Other examples of contact forces are the force exerted by gas 
molecules on the walls of a container and the force exerted by your feet on the floor.
 Another class of forces, known as field forces, does not involve physical contact 
between two objects. These forces act through empty space. The gravitational force 
of attraction between two objects with mass, illustrated in Figure 5.1d, is an example 
of this class of force. The gravitational force keeps objects bound to the Earth and 
the planets in orbit around the Sun. Another common field force is the electric force 
that one electric charge exerts on another (Fig. 5.1e), such as the attractive electric 
force between an electron and a proton that form a hydrogen atom. A third example 
of a field force is the force a bar magnet exerts on a piece of iron (Fig. 5.1f).
 The distinction between contact forces and field forces is not as sharp as you may 
have been led to believe by the previous discussion. When examined at the atomic 
level, all the forces we classify as contact forces turn out to be caused by electric 
(field) forces of the type illustrated in Figure 5.1e. Nevertheless, in developing mod-
els for macroscopic phenomena, it is convenient to use both classifications of forces. 
The only known fundamental forces in nature are all field forces: (1) gravitational 
forces between objects, (2) electromagnetic forces between electric charges, (3) strong 
forces between subatomic particles, and (4) weak forces that arise in certain radioac-
tive decay processes. In classical physics, we are concerned only with gravitational 
and electromagnetic forces. We will discuss strong and weak forces in Chapter 46.

The Vector Nature of Force
It is possible to use the deformation of a spring to measure force. Suppose a verti-
cal force is applied to a spring scale that has a fixed upper end as shown in Fig-
ure  5.2a. The spring elongates when the force is applied, and a pointer on the 
scale reads the extension of the spring. We can calibrate the spring by defining a 
reference force F

S
1 as the force that produces a pointer reading of 1.00 cm. If we 

now apply a different downward force F
S

2 whose magnitude is twice that of the ref-
erence force F

S
1 as seen in Figure 5.2b, the pointer moves to 2.00 cm. Figure 5.2c 

shows that the combined effect of the two collinear forces is the sum of the effects 
of the individual forces.
 Now suppose the two forces are applied simultaneously with F

S
1 downward and 

F
S

2 horizontal as illustrated in Figure 5.2d. In this case, the pointer reads 2.24 cm.  
The single force F

S
 that would produce this same reading is the sum of the two vec-

tors F
S

1 and F
S

2 as described in Figure 5.2d. That is, 0 FS1 0 5 !F1
2 1 F2

2 5 2.24 units, 

b c

M

Field forces

d

!qm "Q

e

Iron N S

f

Contact forces

a

Figure 5.1 Some examples of 
applied forces. In each case, a force 
is exerted on the object within the 
boxed area. Some agent in the 
environment external to the boxed 
area exerts a force on the object.

Isaac Newton
English physicist and mathematician 
(1642–1727)
Isaac Newton was one of the most 
brilliant scientists in history. Before 
the age of 30, he formulated the basic 
concepts and laws of mechanics, 
discovered the law of universal gravita-
tion, and invented the mathematical 
methods of calculus. As a consequence 
of his theories, Newton was able to 
explain the motions of the planets, 
the ebb and flow of the tides, and 
many special features of the motions 
of the Moon and the Earth. He also 
interpreted many fundamental obser-
vations concerning the nature of light. 
His contributions to physical theories 
dominated scientific thought for two 
centuries and remain important today.
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1Serway & Jewett, “Physics for Scientists and Engineers”.



Forces are Vectors

We typically draw them like this2:

The block is the object that experiences the forces. There are two
forces here, N and W, they are drawn as arrows to indicate their
direction.

1Figure from www.sparknotes.com
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and its direction is u 5 tan21 (20.500) 5 226.6°. Because forces have been experi-
mentally verified to behave as vectors, you must use the rules of vector addition to 
obtain the net force on an object.

5.2 Newton’s First Law and Inertial Frames
We begin our study of forces by imagining some physical situations involving a puck 
on a perfectly level air hockey table (Fig. 5.3). You expect that the puck will remain 
stationary when it is placed gently at rest on the table. Now imagine your air hockey 
table is located on a train moving with constant velocity along a perfectly smooth 
track. If the puck is placed on the table, the puck again remains where it is placed. 
If the train were to accelerate, however, the puck would start moving along the 
table opposite the direction of the train’s acceleration, just as a set of papers on 
your dashboard falls onto the floor of your car when you step on the accelerator.
 As we saw in Section 4.6, a moving object can be observed from any number of 
reference frames. Newton’s first law of motion, sometimes called the law of inertia, 
defines a special set of reference frames called inertial frames. This law can be stated 
as follows:

If an object does not interact with other objects, it is possible to identify a ref-
erence frame in which the object has zero acceleration.

Such a reference frame is called an inertial frame of reference. When the puck is 
on the air hockey table located on the ground, you are observing it from an inertial 
reference frame; there are no horizontal interactions of the puck with any other 
objects, and you observe it to have zero acceleration in that direction. When you 
are on the train moving at constant velocity, you are also observing the puck from 
an inertial reference frame. Any reference frame that moves with constant veloc-
ity relative to an inertial frame is itself an inertial frame. When you and the train 
accelerate, however, you are observing the puck from a noninertial reference frame 
because the train is accelerating relative to the inertial reference frame of the 
Earth’s surface. While the puck appears to be accelerating according to your obser-
vations, a reference frame can be identified in which the puck has zero acceleration. 

WW Newton’s first law

WW Inertial frame of reference
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Figure 5.2 The vector nature 
of a force is tested with a spring 
scale.

Airflow

Electric blower

Figure 5.3 On an air hockey 
table, air blown through holes 
in the surface allows the puck 
to move almost without friction. 
If the table is not accelerating, 
a puck placed on the table will 
remain at rest.

1Figure from Serway & Jewett.



Net Force

Net Force

the vector sum of all forces acting on an object.

Fnet =
∑
i

Fi
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Figure 5.3 On an air hockey 
table, air blown through holes 
in the surface allows the puck 
to move almost without friction. 
If the table is not accelerating, 
a puck placed on the table will 
remain at rest.

In the diagram F = F1 + F2.
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Figure 5.3 On an air hockey 
table, air blown through holes 
in the surface allows the puck 
to move almost without friction. 
If the table is not accelerating, 
a puck placed on the table will 
remain at rest.

In the diagram F = F1 + F2.

The magnitude of F is

F =
√
F 2
1 + F 2

2 =
√

12 + 22 = 2.23 N

The direction of F is

θ = tan−1(F1/F2) = 26.6◦



Summary

• circular motion

• forces

• net force

Homework
• new: Ch 4 Probs: 57, 59, 67 (circular motion)

• read ahead in Ch 5


