Mechanics
 Newton's Laws (cont'd)

Lana Sheridan

De Anza College

Oct 16, 2018

Last time

- net force example
- Newton's first law
- Newton's second law
- mass vs weight
- force diagrams

Overview

- Newton's second law examples
- Newton's third law
- action-reaction pairs of forces

Diagrams of Forces: Free-Body Diagram

This is a free-body diagram. We represent the chair as a point-particle with force vectors pointing outward.

We also picked a coordinate system (x, y axes).

Force Diagrams, Newton's Second Law, and Kinematics

An astronaut uses a jet pack to push on a $655-\mathrm{kg}$ satellite. If the satellite starts at rest and moves 0.675 m after 5.00 seconds of pushing, what is the force, \mathbf{F}, exerted on it by the astronaut?

(a) Physical picture

Force Diagrams, Newton's Second Law, and Kinematics

An astronaut uses a jet pack to push on a $655-\mathrm{kg}$ satellite. If the satellite starts at rest and moves 0.675 m after 5.00 seconds of pushing, what is the force, \mathbf{F}, exerted on it by the astronaut?

Sketch:

(b) Free-body diagram

Force Diagrams, Newton's Second Law, and Kinematics

An astronaut uses a jet pack to push on a $655-\mathrm{kg}$ satellite. If the satellite starts at rest and moves 0.675 m after 5.00 seconds of pushing, what is the force, \mathbf{F}, exerted on it by the astronaut?

Given: $\boldsymbol{\Delta x}, t, m$
Want: F

Force Diagrams, Newton's Second Law, and Kinematics

An astronaut uses a jet pack to push on a $655-\mathrm{kg}$ satellite. If the satellite starts at rest and moves 0.675 m after 5.00 seconds of pushing, what is the force, \mathbf{F}, exerted on it by the astronaut?

Given: $\boldsymbol{\Delta x}, t, m$
Want: F
Strategy: to find the force we must find the acceleration.

$$
\Delta x=v_{0 x} t+\frac{1}{2} a_{x} t^{2}
$$

Force Diagrams, Newton's Second Law, and Kinematics

$$
\begin{aligned}
\Delta x & =v_{0 x} t^{0}+\frac{1}{2} a_{x} t^{2} \\
a_{x} & =\frac{2(\Delta x)}{t^{2}} \\
a_{x} & =0.0540 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Force Diagrams, Newton's Second Law, and Kinematics

$$
\begin{aligned}
\Delta x & =v_{0 x} t^{0}+\frac{1}{2} a_{x} t^{2} \\
a_{x} & =\frac{2(\Delta x)}{t^{2}} \\
a_{x} & =0.0540 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Newton's second law (x-component):

$$
\begin{aligned}
& F_{x}=m a_{x} \\
& F_{x}=35.4 \mathrm{~N}
\end{aligned}
$$

$$
\mathrm{F}=35.4 \mathrm{~N} \mathrm{i}
$$

Newton's Second Law Implications

Quick Quiz 5.3. ${ }^{1}$ You push an object, initially at rest, across a frictionless floor with a constant force for a time interval Δt, resulting in a final speed of v for the object. You then repeat the experiment, but with a force that is twice as large. What time interval is now required to reach the same final speed v ?

A $4 \Delta t$
B $2 \Delta t$
C $\frac{\Delta t}{2}$
D $\frac{\Delta t}{4}$

Newton's Second Law Implications

Quick Quiz 5.3. ${ }^{1}$ You push an object, initially at rest, across a frictionless floor with a constant force for a time interval Δt, resulting in a final speed of v for the object. You then repeat the experiment, but with a force that is twice as large. What time interval is now required to reach the same final speed v ?

A $4 \Delta t$
B $2 \Delta t$
C $\frac{\Delta t}{2}$

D $\frac{\Delta t}{4}$

Example

Consider a 0.3 kg hockey puck on frictionless ice. Find its acceleration.

Example

Consider a 0.3 kg hockey puck on frictionless ice. Find its acceleration.

Example

Consider a 0.3 kg hockey puck on frictionless ice. Find its acceleration.

$$
\begin{aligned}
\mathbf{F}_{\mathrm{net}}= & \mathbf{F}_{1}+\mathbf{F}_{2} \\
= & \left(F_{1} \cos (-20)+F_{2} \cos (60)\right) \mathbf{i} \\
& +\left(F_{1} \sin (-20)+F_{2} \sin (60)\right) \mathbf{j} \\
= & 8.70 \mathbf{i}+5.21 \mathbf{j} \mathrm{~N} \\
\mathbf{a}= & \frac{\mathbf{F}_{\mathrm{net}}}{m} \\
= & \frac{8.70 \mathrm{Ni}+5.21 \mathrm{~N} \mathbf{j}}{0.3 \mathrm{~kg}} \\
= & 29.0 \mathbf{i}+17.4 \mathbf{j} \mathrm{~ms}^{-2}
\end{aligned}
$$

Example

Consider a 0.3 kg hockey puck on frictionless ice. Find its acceleration.

Newton's Third Law

Newton's Third Law is commonly stated as "For every action, there is an equal and opposite reaction."

However it is more precisely stated:

Newton III

If two objects (1 and 2) interact the force that object 1 exerts on object 2 is equal in magnitude and opposite in direction to the force that object 2 exerts on object 1.

$$
\mathbf{F}_{1 \rightarrow 2}=-\mathbf{F}_{2 \rightarrow 1}
$$

Newton's Third Law

Main idea: you cannot push on something, without having it push back on you.

If object 1 pushes on (or interacts with) object 2, then the force that object 1 exerts on object 2 , and the force that object 2 exerts on object 1 form an action reaction pair.

Newton's Third Law: Action Reaction Pairs

Summary

- Newton's third law
- action-reaction pairs

Homework

- Ch 5 Ques: 9; Probs: 17, 29, 31, 33, 39, 45, 49, 53, 55, 87

