

Mechanics Springs Air Resistance Circular Motion

Lana Sheridan

De Anza College

Oct 24, 2018

#### Last time

- finish Atwood machine
- friction

# **Overview**

- another friction example
- springs and Hooke's law
- air resistance concepts
- circular motion and force

#### **Incline with Friction**

Given a block of mass m = 1 kg on an incline of  $\theta = 30^{\circ}$  with a coefficient of static friction of  $\mu_s = 0.3$ , will the block slide?



## **Incline with Friction**



If the net force is not zero, it will be downward parallel to the slope. x-direction:

$$F_{\text{net},x} = mg\sin\theta - f_s$$

Block will slip if:

2.35

$$\begin{array}{rcl} mg\sin\theta - f_{s,\max} &> & 0\\ mg\sin\theta - \mu_s(mg\cos\theta) &\stackrel{?}{>} & 0\\ (1\ \text{kg})g(\frac{1}{2} - 0.3\frac{\sqrt{3}}{2}) &\stackrel{?}{>} & 0\\ \text{N, downward along the incline} &> & 0 \Rightarrow \ \text{Yes, it slides.} \end{array}$$

### Some types of forces

# **Elastic Forces**

Springs exert forces as they are being compressed or extended. They have a natural length, at which they remain if there are no external forces acting.



Hooke's Law gives

$$\mathsf{F}_{\mathsf{spring}} = -k\mathbf{x}$$

where k is a constant. **x** is the displacement of one end of a spring from it's natural length. (The amount of compression or extension.

<sup>&</sup>lt;sup>1</sup>Figure from CCRMA Stanford Univ.

## **Elasticity**

The force that the spring exerts to restore itself to its original length is proportional to how much it is compressed or stretched.

This is called Hooke's Law:

$$\mathbf{F}_{\text{spring}} = -k\mathbf{x}$$

where k is a constant that depends on the spring itself. (The "spring constant").

### **Elasticity**

The force that the spring exerts to restore itself to its original length is proportional to how much it is compressed or stretched.

This is called Hooke's Law:

$$\mathbf{F}_{spring} = -k\mathbf{x}$$

where k is a constant that depends on the spring itself. (The "spring constant").

If a very large force is put on the spring eventually it will break: it will not return to its original shape. The *elastic limit* is the maximum distance the spring can be stretched so that it still returns to its original shape.

If a 2 kg painting is hung from a spring, the spring stretches 10 cm. What if instead a 4 kg painting is hung from the spring? How far will it stretch?

- (A) 10 cm
- (B) 20 cm
- (C) 30 cm
- (D) None of the above.

If a 2 kg painting is hung from a spring, the spring stretches 10 cm. What if instead a 4 kg painting is hung from the spring? How far will it stretch?

- (A) 10 cm
- (B) 20 cm ←
- (C) 30 cm
- (D) None of the above.

If a 2 kg painting is hung from a spring, the spring stretches 10 cm. What if instead a 4 kg painting is hung from the spring? How far will it stretch?

We don't know the spring constant, but we can work it out from the information about the first 2 kg painting. The force on the spring is just the weight of the painting.

$$k = \frac{F_g}{x} = \frac{(2 \text{ kg})g}{0.1 \text{ m}} = 196.2 \text{ N/m}$$
$$x = \frac{F}{k} = \frac{(4 \text{ kg})g}{(196.2 \text{ N/m})} = 0.2 \text{ m}$$

If a 2 kg painting is hung from a spring, the spring stretches 10 cm. What if instead a 4 kg painting is hung from the spring? How far will it stretch?

We don't know the spring constant, but we can work it out from the information about the first 2 kg painting. The force on the spring is just the weight of the painting.

$$k = \frac{F_g}{x} = \frac{(2 \text{ kg})g}{0.1 \text{ m}} = 196.2 \text{ N/m}$$
$$x = \frac{F}{k} = \frac{(4 \text{ kg})g}{(196.2 \text{ N/m})} = 0.2 \text{ m}$$

If you put on twice the force, you stretch the spring twice as far!

If a 2 kg painting is hung from a spring, the spring stretches 10 cm.

Now suppose a 6 kg painting is hung from the same spring. How far does it stretch?

If a 2 kg painting is hung from a spring, the spring stretches 10 cm.

Now suppose a 6 kg painting is hung from the same spring. How far does it stretch?

30 cm

# Fluid Resistance (Concepts only)

Galileo predicted (correctly) that all objects at the Earth's surface accelerate at the same rate, g.

This was a revolutionary idea because it seems obvious that less massive objects should fall more slowly: consider a feather and a bowling ball.

What is happening there?

# Fluid Resistance (Concepts only)

Galileo predicted (correctly) that all objects at the Earth's surface accelerate at the same rate, g.

This was a revolutionary idea because it seems obvious that less massive objects should fall more slowly: consider a feather and a bowling ball.

What is happening there?

Air resistance can play a big role in determining an object's motion.

# **Fluid Resistance**

Resistive forces act on an object when it moves through a fluid medium, like a liquid or gas.

Is this object accelerating?



#### **Fluid Resistance**

Air resistance increases with speed.

Will the object continue to increase it's velocity without bound?



#### **Fluid Resistance**

Air resistance increases with speed.

Will the object continue to increase it's velocity without bound? No.



The velocity will not exceed some terminal value.

#### **Resistive Forces**

What is happening to the acceleration vector?



### Velocity against Time with Fluid Resistance

For an object dropped from rest:



The at first the velocity increases with time, but eventually it converges to a maximum constant value,  $v_T$ , the terminal velocity.

# **Reminder: Uniform Circular Motion**

The velocity vector points along a tangent to the circle



For uniform circular motion:

- the radius is constant
- the speed is constant
- the magnitude of the acceleration is constant,  $a = \frac{v^2}{r}$ , and directed toward the center

Newton's first law tells us that an object in motion will continue with a constant velocity unless acted upon by a net force.

What does that tell us about an object moving in a uniform circle?

Newton's first law tells us that an object in motion will continue with a constant velocity unless acted upon by a net force.

What does that tell us about an object moving in a uniform circle?

It must be experiencing a non-zero net force.

Which way must the net force be directed?

Something must provide this net force:



It could be tension in a rope.

Something must provide this net force:



It could be friction.

Question. What will the puck do if the string breaks?

- (A) Fly radially outward.
- (B) Continue along the circle.
- (C) Move tangentially to the circle.



Question. What will the puck do if the string breaks?

- (A) Fly radially outward.
- (B) Continue along the circle.
- (C) Move tangentially to the circle.  $\leftarrow$



A Ferris wheel is a ride you tend to see at fairs and theme parks.



During the ride the speed, v, is constant.

**Quick Quiz 6.1**<sup>1</sup> You are riding on a Ferris wheel that is rotating with constant speed. The car in which you are riding always maintains its correct upward orientation; it does not invert.

(i) What is the direction of the normal force on you from the seat when you are at the top of the wheel?

- (A) upward
- (B) downward
- (C) impossible to determine

**Quick Quiz 6.1**<sup>1</sup> You are riding on a Ferris wheel that is rotating with constant speed. The car in which you are riding always maintains its correct upward orientation; it does not invert.

(i) What is the direction of the normal force on you from the seat when you are at the top of the wheel?

- (A) upward
- (B) downward
- (C) impossible to determine

**Quick Quiz 6.1**<sup>1</sup> You are riding on a Ferris wheel that is rotating with constant speed. The car in which you are riding always maintains its correct upward orientation; it does not invert.

(ii) From the same choices, what is the direction of the net force on you when you are at the top of the wheel?

- (A) upward
- (B) downward
- (C) impossible to determine

**Quick Quiz 6.1**<sup>1</sup> You are riding on a Ferris wheel that is rotating with constant speed. The car in which you are riding always maintains its correct upward orientation; it does not invert.

(ii) From the same choices, what is the direction of the net force on you when you are at the top of the wheel?

- (A) upward
- (B) downward ←
- (C) impossible to determine

#### **Ferris Wheel**

Assume the speed, v, is constant.

 $n_{top} < mg$ : **F**<sub>net</sub> points down





 $n_{bot} > mg$ :  $\mathbf{F}_{net}$  points up



## Summary

- friction example
- springs and Hooke's law
- air resistance concepts
- circular motion and force

# Quiz tomorrow.

#### Homework

- Ch 6 Prob: 25
- Ch 6 Probs: 41, 45, 49 (circular motion)
- Ch 7 Prob: 67 (springs)