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Last time

• finish Atwood machine

• friction



Overview

• another friction example

• springs and Hooke’s law

• air resistance concepts

• circular motion and force



Incline with Friction

Given a block of mass m = 1 kg on an incline of θ = 30◦ with a
coefficient of static friction of µs = 0.3, will the block slide?

132 Chapter 5 The Laws of Motion

Example 5.11   Experimental Determination of Ms and Mk 

The following is a simple method of measuring coefficients of friction. Suppose 
a block is placed on a rough surface inclined relative to the horizontal as shown 
in Figure 5.18. The incline angle is increased until the block starts to move. Show 
that you can obtain ms by measuring the critical angle uc at which this slipping just 
occurs.

Conceptualize Consider Figure 5.18 and imagine that the block tends to slide 
down the incline due to the gravitational force. To simulate the situation, place 
a coin on this book’s cover and tilt the book until the coin begins to slide. Notice 
how this example differs from Example 5.6. When there is no friction on an 
incline, any angle of the incline will cause a stationary object to begin moving. 
When there is friction, however, there is no movement of the object for angles less 
than the critical angle.

Categorize The block is subject to various forces. Because we are raising the 
plane to the angle at which the block is just ready to begin to move but is not mov-
ing, we categorize the block as a particle in equilibrium.

Analyze The diagram in Figure 5.18 shows the forces on the block: the gravitational force mgS, the normal force nS, and 
the force of static friction f

S
s . We choose x to be parallel to the plane and y perpendicular to it.

AM

S O L U T I O N

From the particle in equilibrium model, apply Equation 5.8 
to the block in both the x and y directions:

(1)   o Fx 5 mg sin u 2 fs 5 0

(2)   o Fy 5 n 2 mg cos u 5 0

Q uick Quiz 5.6 You press your physics textbook flat against a vertical wall with 
your hand. What is the direction of the friction force exerted by the wall on the 
book? (a) downward (b) upward (c) out from the wall (d) into the wall

Q uick Quiz 5.7 You are playing with your daughter in the snow. She sits on  
a sled and asks you to slide her across a flat, horizontal field. You have a  
choice of (a) pushing her from behind by applying a force downward on her 
shoulders at 30° below the horizontal (Fig. 5.17a) or (b) attaching a rope to  
the front of the sled and pulling with a force at 30° above the horizontal 
(Fig. 5.17b). Which would be easier for you and why?

Table 5.1
Coefficients of Friction
 Ms Mk

Rubber on concrete 1.0  0.8
Steel on steel 0.74 0.57
Aluminum on steel 0.61 0.47
Glass on glass 0.94 0.4
Copper on steel 0.53 0.36
Wood on wood 0.25–0.5 0.2
Waxed wood on wet snow 0.14 0.1
Waxed wood on dry snow — 0.04
Metal on metal (lubricated) 0.15 0.06
Teflon on Teflon 0.04 0.04
Ice on ice 0.1  0.03
Synovial joints in humans 0.01 0.003

Note: All values are approximate. In some cases, the coefficient of friction 
can exceed 1.0.
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Figure 5.17 (Quick Quiz 5.7) 
A father slides his daughter on a 
sled either by (a) pushing down 
on her shoulders or (b) pulling up 
on a rope.
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Figure 5.18 (Example 5.11) The 
external forces exerted on a block 
lying on a rough incline are the grav-
itational force mgS, the normal force 
nS, and the force of friction f

S
s . For 

convenience, the gravitational force 
is resolved into a component mg sin u 
along the incline and a component  
mg cos u perpendicular to the 
incline.

Table 5.1
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Figure 5.18 (Example 5.11) The 
external forces exerted on a block 
lying on a rough incline are the grav-
itational force mgS, the normal force 
nS, and the force of friction f

S
s . For 

convenience, the gravitational force 
is resolved into a component mg sin u 
along the incline and a component  
mg cos u perpendicular to the 
incline.

Table 5.1

If the net force is not zero, it will be downward parallel to the slope.
x-direction:

Fnet,x = mg sin θ− fs

Block will slip if:

mg sin θ− fs,max > 0

mg sin θ− µs(mg cos θ)
?
> 0

(1 kg)g(
1

2
− 0.3

√
3

2
)

?
> 0

2.35 N, downward along the incline > 0⇒ Yes, it slides.



Some types of forces

Elastic Forces

Springs exert forces as they are being compressed or extended.
They have a natural length, at which they remain if there are no
external forces acting.

Hooke’s Law gives
Fspring = −kx

where k is a constant. x is the displacement of one end of a spring
from it’s natural length. (The amount of compression or extension.

1Figure from CCRMA Stanford Univ.



Elasticity

The force that the spring exerts to restore itself to its original
length is proportional to how much it is compressed or stretched.

This is called Hooke’s Law:

Fspring = −kx

where k is a constant that depends on the spring itself. (The
“spring constant”).

If a very large force is put on the spring eventually it will break: it
will not return to its original shape. The elastic limit is the
maximum distance the spring can be stretched so that it still
returns to its original shape.
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Spring example

If a 2 kg painting is hung from a spring, the spring stretches 10
cm. What if instead a 4 kg painting is hung from the spring? How
far will it stretch?

(A) 10 cm

(B) 20 cm

(C) 30 cm

(D) None of the above.



Spring example

If a 2 kg painting is hung from a spring, the spring stretches 10
cm. What if instead a 4 kg painting is hung from the spring? How
far will it stretch?

(A) 10 cm

(B) 20 cm ←
(C) 30 cm

(D) None of the above.



Spring example

If a 2 kg painting is hung from a spring, the spring stretches 10
cm. What if instead a 4 kg painting is hung from the spring? How
far will it stretch?

We don’t know the spring constant, but we can work it out from
the information about the first 2 kg painting. The force on the
spring is just the weight of the painting.

k =
Fg
x

=
(2 kg)g

0.1 m
= 196.2 N/m

x =
F

k
=

(4 kg)g

(196.2 N/m)
= 0.2 m



Spring example

If a 2 kg painting is hung from a spring, the spring stretches 10
cm. What if instead a 4 kg painting is hung from the spring? How
far will it stretch?

We don’t know the spring constant, but we can work it out from
the information about the first 2 kg painting. The force on the
spring is just the weight of the painting.

k =
Fg
x

=
(2 kg)g

0.1 m
= 196.2 N/m

x =
F

k
=

(4 kg)g

(196.2 N/m)
= 0.2 m

If you put on twice the force, you stretch the spring twice as far!



Spring example

If a 2 kg painting is hung from a spring, the spring stretches 10 cm.

Now suppose a 6 kg painting is hung from the same spring. How
far does it stretch?

30 cm
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Fluid Resistance (Concepts only)

Galileo predicted (correctly) that all objects at the Earth’s surface
accelerate at the same rate, g .

This was a revolutionary idea because it seems obvious that less
massive objects should fall more slowly: consider a feather and a
bowling ball.

What is happening there?

Air resistance can play a big role in determining an object’s motion.
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Fluid Resistance

Resistive forces act on an object when it moves through a fluid
medium, like a liquid or gas.

Is this object accelerating?

162 Chapter 6 Circular Motion and Other Applications of Newton’s Laws

can be either a liquid or a gas. The medium exerts a resistive force R
S

 on the object 
moving through it. Some examples are the air resistance associated with moving 
vehicles (sometimes called air drag) and the viscous forces that act on objects mov-
ing through a liquid. The magnitude of R

S
 depends on factors such as the speed of 

the object, and the direction of R
S

 is always opposite the direction of the object’s 
motion relative to the medium. This direction may or may not be in the direction 
opposite the object’s velocity according to the observer. For example, if a marble 
is dropped into a bottle of shampoo, the marble moves downward and the resis-
tive force is upward, resisting the falling of the marble. In contrast, imagine the 
moment at which there is no wind and you are looking at a flag hanging limply on 
a flagpole. When a breeze begins to blow toward the right, the flag moves toward 
the right. In this case, the drag force on the flag from the moving air is to the right 
and the motion of the flag in response is also to the right, the same direction as 
the drag force. Because the air moves toward the right with respect to the flag, the 
flag moves to the left relative to the air. Therefore, the direction of the drag force 
is indeed opposite to the direction of the motion of the flag with respect to the air!
 The magnitude of the resistive force can depend on speed in a complex way, 
and here we consider only two simplified models. In the first model, we assume 
the resistive force is proportional to the velocity of the moving object; this model is 
valid for objects falling slowly through a liquid and for very small objects, such as 
dust particles, moving through air. In the second model, we assume a resistive force 
that is proportional to the square of the speed of the moving object; large objects, 
such as skydivers moving through air in free fall, experience such a force.

Model 1: Resistive Force Proportional to Object Velocity
If we model the resistive force acting on an object moving through a liquid or gas as 
proportional to the object’s velocity, the resistive force can be expressed as

 R
S

5 2bvS (6.2)
where b is a constant whose value depends on the properties of the medium and on 
the shape and dimensions of the object and vS is the velocity of the object relative to 
the medium. The negative sign indicates that R

S
 is in the opposite direction to vS.

 Consider a small sphere of mass m released from rest in a liquid as in Figure 6.13a. 
Assuming the only forces acting on the sphere are the resistive force R

S
 5 2bvS and 

the gravitational force F
S

g, let us describe its motion.1 We model the sphere as a par-

1A buoyant force is also acting on the submerged object. This force is constant, and its magnitude is equal to the weight 
of the displaced liquid. This force can be modeled by changing the apparent weight of the sphere by a constant fac-
tor, so we will ignore the force here. We will discuss buoyant forces in Chapter 14.
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time at which the sphere 
reaches a speed of 0.632vT.
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Figure 6.13 (a) A small sphere 
falling through a liquid. (b) A 
motion diagram of the sphere as 
it falls. Velocity vectors (red) and 
acceleration vectors (violet) are 
shown for each image after the 
first one. (c) A speed–time graph 
for the sphere.



Fluid Resistance

Air resistance increases with speed.

Will the object continue to increase it’s velocity without bound?

164 Chapter 6 Circular Motion and Other Applications of Newton’s Laws

Model 2: Resistive Force Proportional to Object Speed Squared
For objects moving at high speeds through air, such as airplanes, skydivers, cars, 
and baseballs, the resistive force is reasonably well modeled as proportional to the 
square of the speed. In these situations, the magnitude of the resistive force can be 
expressed as

 R 5 1
2 DrAv2 (6.7)

where D is a dimensionless empirical quantity called the drag coefficient, r is the 
density of air, and A is the cross-sectional area of the moving object measured in a 
plane perpendicular to its velocity. The drag coefficient has a value of about 0.5 for 
spherical objects but can have a value as great as 2 for irregularly shaped objects.
 Let us analyze the motion of a falling object subject to an upward air resistive 
force of magnitude R 5 1

2 DrAv2. Suppose an object of mass m is released from rest. 
As Figure 6.14 shows, the object experiences two external forces:2 the downward 
gravitational force F

S
g 5 mgS and the upward resistive force R

S
. Hence, the magni-

tude of the net force is

 a F 5 mg 2 1
2 DrAv2 (6.8)

where we have taken downward to be the positive vertical direction. Modeling the 
object as a particle under a net force, with the net force given by Equation 6.8, we 
find that the object has a downward acceleration of magnitude

 a 5 g 2 aDrA
2m

bv2 (6.9)

 We can calculate the terminal speed vT by noticing that when the gravitational 
force is balanced by the resistive force, the net force on the object is zero and there-
fore its acceleration is zero. Setting a 5 0 in Equation 6.9 gives

g 2 aDrA
2m

bvT
2 5 0

Find the time t at which the sphere reaches a speed  
of 0.900vT  by setting v 5 0.900vT in Equation 6.6 and 
solving for t :

0.900vT 5 vT(1 2 e2t/t)

1 2 e2t/t 5 0.900

e2t/t 5 0.100

2
t
t

5 ln 10.100 2 5 22.30

t 5 2.30t 5 2.30(5.10 3 1023 s) 5 11.7 3 1023 s

5   11.7 ms

Finalize The sphere reaches 90.0% of its terminal speed in a very short time interval. You should have also seen this 
behavior if you performed the activity with the marble and the shampoo. Because of the short time interval required 
to reach terminal velocity, you may not have noticed the time interval at all. The marble may have appeared to imme-
diately begin moving through the shampoo at a constant velocity.
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Figure 6.14   (a) An object  
falling through air experiences 
a resistive force R

S
 and a gravi-

tational force F
S

g 5 mgS. (b) The 
object reaches terminal speed 
when the net force acting on it is 
zero, that is, when R

S
5 2 F

S
g or 

R 5 mg. 2As with Model 1, there is also an upward buoyant force that we neglect.

Evaluate the time constant t: t 5
m
b

5 m a vt

mgb 5
vt

g

Substitute numerical values: t 5
5.00 cm/s
980 cm/s2 5 5.10 3 1023 s

 

▸ 6.8 c o n t i n u e d



Fluid Resistance

Air resistance increases with speed.

Will the object continue to increase it’s velocity without bound?
No.
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▸ 6.8 c o n t i n u e d

The velocity will not exceed some terminal value.



Resistive Forces
What is happening to the acceleration vector?
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can be either a liquid or a gas. The medium exerts a resistive force R
S

 on the object 
moving through it. Some examples are the air resistance associated with moving 
vehicles (sometimes called air drag) and the viscous forces that act on objects mov-
ing through a liquid. The magnitude of R

S
 depends on factors such as the speed of 

the object, and the direction of R
S

 is always opposite the direction of the object’s 
motion relative to the medium. This direction may or may not be in the direction 
opposite the object’s velocity according to the observer. For example, if a marble 
is dropped into a bottle of shampoo, the marble moves downward and the resis-
tive force is upward, resisting the falling of the marble. In contrast, imagine the 
moment at which there is no wind and you are looking at a flag hanging limply on 
a flagpole. When a breeze begins to blow toward the right, the flag moves toward 
the right. In this case, the drag force on the flag from the moving air is to the right 
and the motion of the flag in response is also to the right, the same direction as 
the drag force. Because the air moves toward the right with respect to the flag, the 
flag moves to the left relative to the air. Therefore, the direction of the drag force 
is indeed opposite to the direction of the motion of the flag with respect to the air!
 The magnitude of the resistive force can depend on speed in a complex way, 
and here we consider only two simplified models. In the first model, we assume 
the resistive force is proportional to the velocity of the moving object; this model is 
valid for objects falling slowly through a liquid and for very small objects, such as 
dust particles, moving through air. In the second model, we assume a resistive force 
that is proportional to the square of the speed of the moving object; large objects, 
such as skydivers moving through air in free fall, experience such a force.

Model 1: Resistive Force Proportional to Object Velocity
If we model the resistive force acting on an object moving through a liquid or gas as 
proportional to the object’s velocity, the resistive force can be expressed as

 R
S

5 2bvS (6.2)
where b is a constant whose value depends on the properties of the medium and on 
the shape and dimensions of the object and vS is the velocity of the object relative to 
the medium. The negative sign indicates that R

S
 is in the opposite direction to vS.

 Consider a small sphere of mass m released from rest in a liquid as in Figure 6.13a. 
Assuming the only forces acting on the sphere are the resistive force R

S
 5 2bvS and 

the gravitational force F
S

g, let us describe its motion.1 We model the sphere as a par-

1A buoyant force is also acting on the submerged object. This force is constant, and its magnitude is equal to the weight 
of the displaced liquid. This force can be modeled by changing the apparent weight of the sphere by a constant fac-
tor, so we will ignore the force here. We will discuss buoyant forces in Chapter 14.
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Figure 6.13 (a) A small sphere 
falling through a liquid. (b) A 
motion diagram of the sphere as 
it falls. Velocity vectors (red) and 
acceleration vectors (violet) are 
shown for each image after the 
first one. (c) A speed–time graph 
for the sphere.

Velocity increases up to the terminal velocity vT and a→ 0.



Velocity against Time with Fluid Resistance

For an object dropped from rest:
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The sphere approaches a 
maximum (or terminal) 
speed vT.

The time constant t is the 
time at which the sphere 
reaches a speed of 0.632vT.

t

Figure 6.13 (a) A small sphere 
falling through a liquid. (b) A 
motion diagram of the sphere as 
it falls. Velocity vectors (red) and 
acceleration vectors (violet) are 
shown for each image after the 
first one. (c) A speed–time graph 
for the sphere.

The at first the velocity increases with time, but eventually it
converges to a maximum constant value, vT , the terminal velocity.



Reminder: Uniform Circular Motion
The velocity vector points along a tangent to the circle

 4.4 Analysis Model: Particle In Uniform Circular Motion 93

continued

Combining this equation with Equation 4.15, we find a relationship between angular 
speed and the translational speed with which the particle travels in the circular path:

 v 5 2pa v
2pr

b 5
v
r  S      v 5 rv (4.17)

Equation 4.17 demonstrates that, for a fixed angular speed, the translational speed 
becomes larger as the radial position becomes larger. Therefore, for example, if a 
merry-go-round rotates at a fixed angular speed v, a rider at an outer position at 
large r will be traveling through space faster than a rider at an inner position at 
smaller r. We will investigate Equations 4.16 and 4.17 more deeply in Chapter 10.
 We can express the centripetal acceleration of a particle in uniform circular 
motion in terms of angular speed by combining Equations 4.14 and 4.17:

ac 5
1rv 22

r
 ac 5 rv2 (4.18)

Equations 4.14–4.18 are to be used when the particle in uniform circular motion 
model is identified as appropriate for a given situation.

Q uick Quiz 4.4  A particle moves in a circular path of radius r with speed v. It then 
increases its speed to 2v while traveling along the same circular path. (i) The cen-
tripetal acceleration of the particle has changed by what factor? Choose one:  
(a) 0.25 (b) 0.5 (c) 2 (d) 4 (e) impossible to determine (ii) From the same choices,  
by what factor has the period of the particle changed?

Analysis Model   Particle in Uniform Circular Motion
Imagine a moving object that can be modeled as a particle. If it moves 
in a circular path of radius r at a constant speed v, the magnitude of its 
centripetal acceleration is 

 ac 5
v2

r
 (4.14)

and the period of the particle’s motion is given by 

 T 5
2pr
v

 (4.15)

The angular speed of the particle is

 v 5
2p

T
 (4.16)

Examples: 

of constant length 
-

fectly circular orbit (Chapter 13)
-

form magnetic field (Chapter 29)

nucleus in the Bohr model of the 
hydrogen atom (Chapter 42)

r

vSac
S

Example 4.6   The Centripetal Acceleration of the Earth 

(A) What is the centripetal acceleration of the Earth as it moves in its orbit around the Sun?

Conceptualize Think about a mental image of the Earth in a circular orbit around the Sun. We will model the Earth 
as a particle and approximate the Earth’s orbit as circular (it’s actually slightly elliptical, as we discuss in Chapter 13).

Categorize The Conceptualize step allows us to categorize this problem as one of a particle in uniform circular motion.

Analyze We do not know the orbital speed of the Earth to substitute into Equation 4.14. With the help of Equation 
4.15, however, we can recast Equation 4.14 in terms of the period of the Earth’s orbit, which we know is one year, and 
the radius of the Earth’s orbit around the Sun, which is 1.496 3 1011 m.
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Pitfall Prevention 4.5
Centripetal Acceleration  
Is Not Constant We derived the 
magnitude of the centripetal 
acceleration vector and found it to 
be constant for uniform circular 
motion, but the centripetal accelera-
tion vector is not constant. It always 
points toward the center of the 
circle, but it continuously changes 
direction as the object moves 
around the circular path.

For uniform circular motion:

• the radius is constant

• the speed is constant

• the magnitude of the acceleration is constant, a = v2

r , and
directed toward the center



Force and Circular motion

Newton’s first law tells us that an object in motion will continue
with a constant velocity unless acted upon by a net force.

What does that tell us about an object moving in a uniform circle?

It must be experiencing a non-zero net force.

Which way must the net force be directed?



Force and Circular motion

Newton’s first law tells us that an object in motion will continue
with a constant velocity unless acted upon by a net force.

What does that tell us about an object moving in a uniform circle?

It must be experiencing a non-zero net force.

Which way must the net force be directed?



Force and Circular motion

Something must provide this net force: 6.1 Extending the Particle in Uniform Circular Motion Model 151

The acceleration is called centripetal acceleration because aSc is directed toward 
the center of the circle. Furthermore, aSc is always perpendicular to vS. (If there 
were a component of acceleration parallel to vS, the particle’s speed would be 
changing.)
 Let us now extend the particle in uniform circular motion model from Section 
4.4 by incorporating the concept of force. Consider a puck of mass m that is tied 
to a string of length r and moves at constant speed in a horizontal, circular path 
as illustrated in Figure 6.1. Its weight is supported by a frictionless table, and the 
string is anchored to a peg at the center of the circular path of the puck. Why does 
the puck move in a circle? According to Newton’s first law, the puck would move 
in a straight line if there were no force on it; the string, however, prevents motion 
along a straight line by exerting on the puck a radial force F

S
r that makes it follow 

the circular path. This force is directed along the string toward the center of the 
circle as shown in Figure 6.1.
 If Newton’s second law is applied along the radial direction, the net force caus-
ing the centripetal acceleration can be related to the acceleration as follows:

 a  F 5 mac 5 m 
v2

r  (6.1)

A force causing a centripetal acceleration acts toward the center of the circular 
path and causes a change in the direction of the velocity vector. If that force 
should vanish, the object would no longer move in its circular path; instead, it 
would move along a straight-line path tangent to the circle. This idea is illustrated 
in Figure 6.2 for the puck moving in a circular path at the end of a string in a 
horizontal plane. If the string breaks at some instant, the puck moves along the 
straight-line path that is tangent to the circle at the position of the puck at this 
instant.

Q uick Quiz 6.1 You are riding on a Ferris wheel that is rotating with constant 
speed. The car in which you are riding always maintains its correct upward ori-
entation; it does not invert. (i) What is the direction of the normal force on you 
from the seat when you are at the top of the wheel? (a) upward (b) downward  
(c) impossible to determine (ii) From the same choices, what is the direction of 
the net force on you when you are at the top of the wheel?

�W Force causing centripetal  
acceleration

m

r

r

r

F
S

F 
S

A force F  , directed 
toward the center 
of the circle, keeps 
the puck moving 
in its circular path.

S
r

Figure 6.1 An overhead view of a 
puck moving in a circular path in a 
horizontal plane.

Figure 6.2 The string holding the 
puck in its circular path breaks.

r

When the 
string breaks, 
the puck
moves in the
direction 
tangent
to the circle. 

vS

Pitfall Prevention 6.1
Direction of Travel When  
the String Is Cut Study Figure 
6.2 very carefully. Many students 
(wrongly) think that the puck will 
move radially away from the center 
of the circle when the string is cut. 
The velocity of the puck is tangent 
to the circle. By Newton’s first law, 
the puck continues to move in 
the same direction in which it is 
moving just as the force from the 
string disappears. 

It could be tension in a rope.



Force and Circular motion

Something must provide this net force: 

Example 6.2   How Fast Can It Spin? 

A puck of mass 0.500 kg is attached to the end of a cord 1.50 m long. The puck moves in a horizontal circle as shown in 
Figure 6.1. If the cord can withstand a maximum tension of 50.0 N, what is the maximum speed at which the puck can 
move before the cord breaks? Assume the string remains horizontal during the motion.

Conceptualize It makes sense that the stronger the cord, the faster the puck can move before the cord breaks. Also, we 
expect a more massive puck to break the cord at a lower speed. (Imagine whirling a bowling ball on the cord!)

Categorize Because the puck moves in a circular path, we model it as a particle in uniform circular motion.
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Analyze Incorporate the tension and the centripetal acceler-
ation into Newton’s second law as described by Equation 6.1:

T 5 m 
v2

r
 

continued

Solve for v: (1)   v 5 ÅTr
m

  

Example 6.3   What Is the Maximum Speed of the Car? 

A 1 500-kg car moving on a flat, horizontal road negotiates a curve as shown 
in Figure 6.4a. If the radius of the curve is 35.0 m and the coefficient of static 
friction between the tires and dry pavement is 0.523, find the maximum speed 
the car can have and still make the turn successfully.

Conceptualize Imagine that the curved roadway is part of a large circle so 
that the car is moving in a circular path.

Categorize Based on the Conceptualize step of the problem, we model the car 
as a particle in uniform circular motion in the horizontal direction. The car is not 
accelerating vertically, so it is modeled as a particle in equilibrium in the vertical 
direction.

Analyze Figure 6.4b shows the forces on the car. The force that enables the 
car to remain in its circular path is the force of static friction. (It is static 
because no slipping occurs at the point of contact between road and tires. If 
this force of static friction were zero—for example, if the car were on an icy 
road—the car would continue in a straight line and slide off the curved road.) 
The maximum speed vmax the car can have around the curve is the speed at 
which it is on the verge of skidding outward. At this point, the friction force 
has its maximum value fs,max 5 msn.

AM
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Find the maximum speed the puck can have, which corre-
sponds to the maximum tension the string can withstand:

vmax 5 ÅTmaxr
m

5 Å 150.0 N 2 11.50 m 2
0.500 kg

5  12.2 m/s

Finalize Equation (1) shows that v increases with T and decreases with larger m, as we expected from our conceptual-
ization of the problem.

Suppose the puck moves in a circle of larger radius at the same speed v. Is the cord more likely or less 
likely to break?

Answer The larger radius means that the change in the direction of the velocity vector will be smaller in a given time 
interval. Therefore, the acceleration is smaller and the required tension in the string is smaller. As a result, the string 
is less likely to break when the puck travels in a circle of larger radius.

WHAT IF ?

nS

fs
S

 

fs
S

 

mgS 

a

b

Figure 6.4 (Example 6.3) (a) The force 
of static friction directed toward the center 
of the curve keeps the car moving in a cir-
cular path. (b) The forces acting on the car.
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It could be friction.



Force and Circular motion

Question. What will the puck do if the string breaks?

(A) Fly radially outward.

(B) Continue along the circle.

(C) Move tangentially to the circle.
 6.1 Extending the Particle in Uniform Circular Motion Model 151

The acceleration is called centripetal acceleration because aSc is directed toward 
the center of the circle. Furthermore, aSc is always perpendicular to vS. (If there 
were a component of acceleration parallel to vS, the particle’s speed would be 
changing.)
 Let us now extend the particle in uniform circular motion model from Section 
4.4 by incorporating the concept of force. Consider a puck of mass m that is tied 
to a string of length r and moves at constant speed in a horizontal, circular path 
as illustrated in Figure 6.1. Its weight is supported by a frictionless table, and the 
string is anchored to a peg at the center of the circular path of the puck. Why does 
the puck move in a circle? According to Newton’s first law, the puck would move 
in a straight line if there were no force on it; the string, however, prevents motion 
along a straight line by exerting on the puck a radial force F

S
r that makes it follow 

the circular path. This force is directed along the string toward the center of the 
circle as shown in Figure 6.1.
 If Newton’s second law is applied along the radial direction, the net force caus-
ing the centripetal acceleration can be related to the acceleration as follows:

 a  F 5 mac 5 m 
v2

r  (6.1)

A force causing a centripetal acceleration acts toward the center of the circular 
path and causes a change in the direction of the velocity vector. If that force 
should vanish, the object would no longer move in its circular path; instead, it 
would move along a straight-line path tangent to the circle. This idea is illustrated 
in Figure 6.2 for the puck moving in a circular path at the end of a string in a 
horizontal plane. If the string breaks at some instant, the puck moves along the 
straight-line path that is tangent to the circle at the position of the puck at this 
instant.

Q uick Quiz 6.1 You are riding on a Ferris wheel that is rotating with constant 
speed. The car in which you are riding always maintains its correct upward ori-
entation; it does not invert. (i) What is the direction of the normal force on you 
from the seat when you are at the top of the wheel? (a) upward (b) downward  
(c) impossible to determine (ii) From the same choices, what is the direction of 
the net force on you when you are at the top of the wheel?

�W Force causing centripetal  
acceleration

m

r

r

r

F
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A force F  , directed 
toward the center 
of the circle, keeps 
the puck moving 
in its circular path.

S
r

Figure 6.1 An overhead view of a 
puck moving in a circular path in a 
horizontal plane.

Figure 6.2 The string holding the 
puck in its circular path breaks.

r

When the 
string breaks, 
the puck
moves in the
direction 
tangent
to the circle. 

vS

Pitfall Prevention 6.1
Direction of Travel When  
the String Is Cut Study Figure 
6.2 very carefully. Many students 
(wrongly) think that the puck will 
move radially away from the center 
of the circle when the string is cut. 
The velocity of the puck is tangent 
to the circle. By Newton’s first law, 
the puck continues to move in 
the same direction in which it is 
moving just as the force from the 
string disappears. 



Force and Circular motion

Question. What will the puck do if the string breaks?

(A) Fly radially outward.

(B) Continue along the circle.

(C) Move tangentially to the circle. ← 6.1 Extending the Particle in Uniform Circular Motion Model 151

The acceleration is called centripetal acceleration because aSc is directed toward 
the center of the circle. Furthermore, aSc is always perpendicular to vS. (If there 
were a component of acceleration parallel to vS, the particle’s speed would be 
changing.)
 Let us now extend the particle in uniform circular motion model from Section 
4.4 by incorporating the concept of force. Consider a puck of mass m that is tied 
to a string of length r and moves at constant speed in a horizontal, circular path 
as illustrated in Figure 6.1. Its weight is supported by a frictionless table, and the 
string is anchored to a peg at the center of the circular path of the puck. Why does 
the puck move in a circle? According to Newton’s first law, the puck would move 
in a straight line if there were no force on it; the string, however, prevents motion 
along a straight line by exerting on the puck a radial force F
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the circular path. This force is directed along the string toward the center of the 
circle as shown in Figure 6.1.
 If Newton’s second law is applied along the radial direction, the net force caus-
ing the centripetal acceleration can be related to the acceleration as follows:

 a  F 5 mac 5 m 
v2

r  (6.1)

A force causing a centripetal acceleration acts toward the center of the circular 
path and causes a change in the direction of the velocity vector. If that force 
should vanish, the object would no longer move in its circular path; instead, it 
would move along a straight-line path tangent to the circle. This idea is illustrated 
in Figure 6.2 for the puck moving in a circular path at the end of a string in a 
horizontal plane. If the string breaks at some instant, the puck moves along the 
straight-line path that is tangent to the circle at the position of the puck at this 
instant.

Q uick Quiz 6.1 You are riding on a Ferris wheel that is rotating with constant 
speed. The car in which you are riding always maintains its correct upward ori-
entation; it does not invert. (i) What is the direction of the normal force on you 
from the seat when you are at the top of the wheel? (a) upward (b) downward  
(c) impossible to determine (ii) From the same choices, what is the direction of 
the net force on you when you are at the top of the wheel?
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Figure 6.1 An overhead view of a 
puck moving in a circular path in a 
horizontal plane.

Figure 6.2 The string holding the 
puck in its circular path breaks.
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Pitfall Prevention 6.1
Direction of Travel When  
the String Is Cut Study Figure 
6.2 very carefully. Many students 
(wrongly) think that the puck will 
move radially away from the center 
of the circle when the string is cut. 
The velocity of the puck is tangent 
to the circle. By Newton’s first law, 
the puck continues to move in 
the same direction in which it is 
moving just as the force from the 
string disappears. 



Ferris Wheel Forces

A Ferris wheel is a ride you tend to see at fairs and theme parks.
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 Figure 6.6 (Example 6.5) (a) A child rides on a Ferris wheel. 
(b) The forces acting on the child at the bottom of the path.  
(c) The forces acting on the child at the top of the path.

 6.1 Extending the Particle in Uniform Circular Motion Model 155

continued

Write Newton’s second law for the car in the radial direc-
tion, which is the x direction:

(1)   a  Fr 5 n sin u 5
mv 2

r

Apply the particle in equilibrium model to the car in the 
vertical direction:

 o Fy 5 n cos u 2 mg 5 0

(2)   n cos u 5 mg

Divide Equation (1) by Equation (2): (3)   tan u 5
v 2

rg

Solve for the angle u: u 5 tan21 c 113.4 m/s 22135.0 m 2 19.80 m/s2 2 d 5 27.68

Finalize Equation (3) shows that the banking angle is independent of the mass of the vehicle negotiating the curve. If a 
car rounds the curve at a speed less than 13.4 m/s, the centripetal acceleration decreases. Therefore, the normal force, 
which is unchanged, is sufficient to cause two accelerations: the lower centripetal acceleration and an acceleration of the 
car down the inclined roadway. Consequently, an additional friction force parallel to the roadway and upward is needed 
to keep the car from sliding down the bank (to the left in Fig. 6.5). Similarly, a driver attempting to negotiate the curve 
at a speed greater than 13.4 m/s has to depend on friction to keep from sliding up the bank (to the right in Fig. 6.5).

Imagine that this same roadway were built on Mars in the future to connect different colony centers. 
Could it be traveled at the same speed?

Answer The reduced gravitational force on Mars would mean that the car is not pressed as tightly to the roadway. The 
reduced normal force results in a smaller component of the normal force toward the center of the circle. This smaller 
component would not be sufficient to provide the centripetal acceleration associated with the original speed. The cen-
tripetal acceleration must be reduced, which can be done by reducing the speed v.
 Mathematically, notice that Equation (3) shows that the speed v is proportional to the square root of g for a roadway 
of fixed radius r banked at a fixed angle u. Therefore, if g is smaller, as it is on Mars, the speed v with which the roadway 
can be safely traveled is also smaller.

WHAT IF ?

normal force nS has a horizontal component toward the center of the curve. Because the road is to be designed so that 
the force of static friction is zero, the component nx 5 n sin u is the only force that causes the centripetal acceleration.

 

▸ 6.4 c o n t i n u e d

Example 6.5   Riding the Ferris Wheel 

A child of mass m rides on a Ferris wheel as shown 
in Figure 6.6a. The child moves in a vertical circle of 
radius 10.0 m at a constant speed of 3.00 m/s.

(A) Determine the force exerted by the seat on the 
child at the bottom of the ride. Express your answer in 
terms of the weight of the child, mg.

Conceptualize Look carefully at Figure 6.6a. Based 
on experiences you may have had on a Ferris wheel or 
driving over small hills on a roadway, you would expect 
to feel lighter at the top of the path. Similarly, you 
would expect to feel heavier at the bottom of the path. 
At both the bottom of the path and the top, the nor-
mal and gravitational forces on the child act in opposite 
directions. The vector sum of these two forces gives a 
force of constant magnitude that keeps the child moving in a circular path at a constant speed. To yield net force vec-
tors with the same magnitude, the normal force at the bottom must be greater than that at the top.
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During the ride the speed, v , is constant.



Ferris Wheel Forces

Quick Quiz 6.11 You are riding on a Ferris wheel that is rotating
with constant speed. The car in which you are riding always
maintains its correct upward orientation; it does not invert.

(i) What is the direction of the normal force on you from the seat
when you are at the top of the wheel?

(A) upward

(B) downward

(C) impossible to determine

1Page 153, Serway & Jewett
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(ii) From the same choices, what is the direction of the net force
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(B) downward
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Ferris Wheel
Assume the speed, v , is constant.
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 Figure 6.6 (Example 6.5) (a) A child rides on a Ferris wheel. 
(b) The forces acting on the child at the bottom of the path.  
(c) The forces acting on the child at the top of the path.

 6.1 Extending the Particle in Uniform Circular Motion Model 155

continued

Write Newton’s second law for the car in the radial direc-
tion, which is the x direction:

(1)   a  Fr 5 n sin u 5
mv 2

r

Apply the particle in equilibrium model to the car in the 
vertical direction:

 o Fy 5 n cos u 2 mg 5 0

(2)   n cos u 5 mg

Divide Equation (1) by Equation (2): (3)   tan u 5
v 2

rg

Solve for the angle u: u 5 tan21 c 113.4 m/s 22135.0 m 2 19.80 m/s2 2 d 5 27.68

Finalize Equation (3) shows that the banking angle is independent of the mass of the vehicle negotiating the curve. If a 
car rounds the curve at a speed less than 13.4 m/s, the centripetal acceleration decreases. Therefore, the normal force, 
which is unchanged, is sufficient to cause two accelerations: the lower centripetal acceleration and an acceleration of the 
car down the inclined roadway. Consequently, an additional friction force parallel to the roadway and upward is needed 
to keep the car from sliding down the bank (to the left in Fig. 6.5). Similarly, a driver attempting to negotiate the curve 
at a speed greater than 13.4 m/s has to depend on friction to keep from sliding up the bank (to the right in Fig. 6.5).

Imagine that this same roadway were built on Mars in the future to connect different colony centers. 
Could it be traveled at the same speed?

Answer The reduced gravitational force on Mars would mean that the car is not pressed as tightly to the roadway. The 
reduced normal force results in a smaller component of the normal force toward the center of the circle. This smaller 
component would not be sufficient to provide the centripetal acceleration associated with the original speed. The cen-
tripetal acceleration must be reduced, which can be done by reducing the speed v.
 Mathematically, notice that Equation (3) shows that the speed v is proportional to the square root of g for a roadway 
of fixed radius r banked at a fixed angle u. Therefore, if g is smaller, as it is on Mars, the speed v with which the roadway 
can be safely traveled is also smaller.

WHAT IF ?

normal force nS has a horizontal component toward the center of the curve. Because the road is to be designed so that 
the force of static friction is zero, the component nx 5 n sin u is the only force that causes the centripetal acceleration.

 

▸ 6.4 c o n t i n u e d

Example 6.5   Riding the Ferris Wheel 

A child of mass m rides on a Ferris wheel as shown 
in Figure 6.6a. The child moves in a vertical circle of 
radius 10.0 m at a constant speed of 3.00 m/s.

(A) Determine the force exerted by the seat on the 
child at the bottom of the ride. Express your answer in 
terms of the weight of the child, mg.

Conceptualize Look carefully at Figure 6.6a. Based 
on experiences you may have had on a Ferris wheel or 
driving over small hills on a roadway, you would expect 
to feel lighter at the top of the path. Similarly, you 
would expect to feel heavier at the bottom of the path. 
At both the bottom of the path and the top, the nor-
mal and gravitational forces on the child act in opposite 
directions. The vector sum of these two forces gives a 
force of constant magnitude that keeps the child moving in a circular path at a constant speed. To yield net force vec-
tors with the same magnitude, the normal force at the bottom must be greater than that at the top.
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 Figure 6.6 (Example 6.5) (a) A child rides on a Ferris wheel. 
(b) The forces acting on the child at the bottom of the path.  
(c) The forces acting on the child at the top of the path.
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continued

Write Newton’s second law for the car in the radial direc-
tion, which is the x direction:

(1)   a  Fr 5 n sin u 5
mv 2

r

Apply the particle in equilibrium model to the car in the 
vertical direction:

 o Fy 5 n cos u 2 mg 5 0

(2)   n cos u 5 mg

Divide Equation (1) by Equation (2): (3)   tan u 5
v 2

rg

Solve for the angle u: u 5 tan21 c 113.4 m/s 22135.0 m 2 19.80 m/s2 2 d 5 27.68

Finalize Equation (3) shows that the banking angle is independent of the mass of the vehicle negotiating the curve. If a 
car rounds the curve at a speed less than 13.4 m/s, the centripetal acceleration decreases. Therefore, the normal force, 
which is unchanged, is sufficient to cause two accelerations: the lower centripetal acceleration and an acceleration of the 
car down the inclined roadway. Consequently, an additional friction force parallel to the roadway and upward is needed 
to keep the car from sliding down the bank (to the left in Fig. 6.5). Similarly, a driver attempting to negotiate the curve 
at a speed greater than 13.4 m/s has to depend on friction to keep from sliding up the bank (to the right in Fig. 6.5).

Imagine that this same roadway were built on Mars in the future to connect different colony centers. 
Could it be traveled at the same speed?

Answer The reduced gravitational force on Mars would mean that the car is not pressed as tightly to the roadway. The 
reduced normal force results in a smaller component of the normal force toward the center of the circle. This smaller 
component would not be sufficient to provide the centripetal acceleration associated with the original speed. The cen-
tripetal acceleration must be reduced, which can be done by reducing the speed v.
 Mathematically, notice that Equation (3) shows that the speed v is proportional to the square root of g for a roadway 
of fixed radius r banked at a fixed angle u. Therefore, if g is smaller, as it is on Mars, the speed v with which the roadway 
can be safely traveled is also smaller.

WHAT IF ?

normal force nS has a horizontal component toward the center of the curve. Because the road is to be designed so that 
the force of static friction is zero, the component nx 5 n sin u is the only force that causes the centripetal acceleration.

 

▸ 6.4 c o n t i n u e d

Example 6.5   Riding the Ferris Wheel 

A child of mass m rides on a Ferris wheel as shown 
in Figure 6.6a. The child moves in a vertical circle of 
radius 10.0 m at a constant speed of 3.00 m/s.

(A) Determine the force exerted by the seat on the 
child at the bottom of the ride. Express your answer in 
terms of the weight of the child, mg.

Conceptualize Look carefully at Figure 6.6a. Based 
on experiences you may have had on a Ferris wheel or 
driving over small hills on a roadway, you would expect 
to feel lighter at the top of the path. Similarly, you 
would expect to feel heavier at the bottom of the path. 
At both the bottom of the path and the top, the nor-
mal and gravitational forces on the child act in opposite 
directions. The vector sum of these two forces gives a 
force of constant magnitude that keeps the child moving in a circular path at a constant speed. To yield net force vec-
tors with the same magnitude, the normal force at the bottom must be greater than that at the top.
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 Figure 6.6 (Example 6.5) (a) A child rides on a Ferris wheel. 
(b) The forces acting on the child at the bottom of the path.  
(c) The forces acting on the child at the top of the path.
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continued

Write Newton’s second law for the car in the radial direc-
tion, which is the x direction:

(1)   a  Fr 5 n sin u 5
mv 2

r

Apply the particle in equilibrium model to the car in the 
vertical direction:

 o Fy 5 n cos u 2 mg 5 0

(2)   n cos u 5 mg

Divide Equation (1) by Equation (2): (3)   tan u 5
v 2

rg

Solve for the angle u: u 5 tan21 c 113.4 m/s 22135.0 m 2 19.80 m/s2 2 d 5 27.68
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at a speed greater than 13.4 m/s has to depend on friction to keep from sliding up the bank (to the right in Fig. 6.5).
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Could it be traveled at the same speed?
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reduced normal force results in a smaller component of the normal force toward the center of the circle. This smaller 
component would not be sufficient to provide the centripetal acceleration associated with the original speed. The cen-
tripetal acceleration must be reduced, which can be done by reducing the speed v.
 Mathematically, notice that Equation (3) shows that the speed v is proportional to the square root of g for a roadway 
of fixed radius r banked at a fixed angle u. Therefore, if g is smaller, as it is on Mars, the speed v with which the roadway 
can be safely traveled is also smaller.
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Summary

• friction example

• springs and Hooke’s law

• air resistance concepts

• circular motion and force

Quiz tomorrow.

Homework
• Ch 6 Prob: 25

• Ch 6 Probs: 41, 45, 49 (circular motion)

• Ch 7 Prob: 67 (springs)


