
Mechanics
More Circular Motion

Lana Sheridan

De Anza College

Oct 25, 2018



Last time

• spring force

• circular motion



Overview

• banked turn

• vertical loop

• introducing energy



A Banked Turn

Curved roadways are often not flat. The are often banked, that is
sloped at an angle to the horizontal.

continued from previous page

Solution

1. Sum the x components of force to relate the force of static friction to the 
centripetal acceleration of the car: 
Since the car moves in a circular path, with the center of the circle in 
the x direction, it follows that Make this substitution, 
along with for the force of static friction:

2. Next, set the sum of the y components of force equal to zero (since ) 
to find the normal force, N: 
Solve for the normal force:

3. Substitute in step 1 and solve for v. Notice that the mass of 
the car cancels:

4. Substitute numerical values to determine v:

Insight
Note that the maximum speed is less if the radius is smaller (tighter corner) or if is smaller (slick road). The mass of the vehi-
cle, however, is irrelevant. For example, the maximum speed is precisely the same for a motorcycle rounding this corner as it is
for a large, heavily loaded truck.

Practice Problem
Suppose the situation described in this Example takes place on the Moon, where the acceleration of gravity is less than it is on
Earth. If a lunar rover goes around this same corner, is its maximum speed greater than, less than, or the same as the result found
in step 4? To check your answer, find the maximum speed for a lunar rover when it rounds a corner with and 
(On the Moon, ) [Answer: The maximum speed will be less. On the Moon we find ]
Some related homework problems: Problem 43, Problem 45, Problem 49
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If you try to round a corner too rapidly, you may experience a skid; that is,
your car may begin to slide sideways across the road. A common bit of road wis-
dom is that you should turn in the direction of the skid to regain control—which,
to most people, sounds counterintuitive. The advice is sound, however. Suppose,
for example, that you are turning to the left and begin to skid to the right. If you
turn more sharply to the left to try to correct for the skid, you simply reduce the
turning radius of your car, r. The result is that the centripetal acceleration, 
becomes larger, and an even larger force would be required from the road to make
the turn. The tendency to skid would therefore be increased. On the other hand, if
you turn slightly to the right when you start to skid, you increase your turning ra-
dius and the centripetal acceleration decreases. In this case your car may stop
skidding, and you can then regain control of your vehicle.

v2/r,

REAL-WORLD PHYSICS
Skids and banked roadways

▲ The steeply banked track at the Talladega Speedway in Alabama (left) helps to keep the rapidly moving cars from skidding off along a
tangential path. Even when there is no solid roadway, however, banking can still help—airplanes bank when making turns (center) to
keep from “skidding” sideways. Banking is beneficial in another way as well. Occupants of cars on a banked roadway or of a banking
airplane feel no sideways force when the banking angle is just right, so turns become a safer and more comfortable experience. For this
reason, some trains use hydraulic suspension systems to bank when rounding corners (right), even though the tracks themselves are level.
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This is so that a component of the normal force on the car can
help provide some or all of the centripetal force.

0Photo from Walker, “Physics”.



A Banked Turn

Sharp turns in roads are often banked inwards to assist cars in
making the turn: the centripetal force comes from the normal
force, not friction.

154 Chapter 6 Circular Motion and Other Applications of Newton’s Laws

Finalize This speed is equivalent to 30.0 mi/h. Therefore, if the speed limit on this roadway is higher than 30 mi/h, 
this roadway could benefit greatly from some banking, as in the next example! Notice that the maximum speed does 
not depend on the mass of the car, which is why curved highways do not need multiple speed limits to cover the various 
masses of vehicles using the road.

Suppose a car travels this curve on a wet day and begins to skid on the curve when its speed reaches only 
8.00 m/s. What can we say about the coefficient of static friction in this case?

Answer The coefficient of static friction between the tires and a wet road should be smaller than that between the 
tires and a dry road. This expectation is consistent with experience with driving because a skid is more likely on a wet 
road than a dry road.
 To check our suspicion, we can solve Equation (2) for the coefficient of static friction:

ms 5
v2

max

gr

Substituting the numerical values gives

ms 5
v2

max

gr
5

18.00 m/s 2219.80 m/s2 2 135.0 m 2 5 0.187

which is indeed smaller than the coefficient of 0.523 for the dry road.

WHAT IF ?

Example 6.4   The Banked Roadway 

A civil engineer wishes to redesign the curved roadway in Example 6.3 in such a way 
that a car will not have to rely on friction to round the curve without skidding. In 
other words, a car moving at the designated speed can negotiate the curve even when 
the road is covered with ice. Such a road is usually banked, which means that the road-
way is tilted toward the inside of the curve as seen in the opening photograph for this 
chapter. Suppose the designated speed for the road is to be 13.4 m/s (30.0 mi/h) and 
the radius of the curve is 35.0 m. At what angle should the curve be banked?

Conceptualize The difference between this example and Example 6.3 is that the 
car is no longer moving on a flat roadway. Figure 6.5 shows the banked roadway, 
with the center of the circular path of the car far to the left of the figure. Notice 
that the horizontal component of the normal force participates in causing the car’s 
centripetal acceleration.

Categorize As in Example 6.3, the car is modeled as a particle in equilibrium in 
the vertical direction and a particle in uniform circular motion in the horizontal 
direction.

Analyze On a level (unbanked) road, the force that causes the centripetal accelera-
tion is the force of static friction between tires and the road as we saw in the pre-
ceding example. If the road is banked at an angle u as in Figure 6.5, however, the 
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Figure 6.5 (Example 6.4) A car 
moves into the page and is round-
ing a curve on a road banked at an 
angle u to the horizontal. When 
friction is neglected, the force that 
causes the centripetal accelera-
tion and keeps the car moving in 
its circular path is the horizontal 
component of the normal force.
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u
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▸ 6.3 c o n t i n u e d

Apply Equation 6.1 from the particle in uniform circular motion 
model in the radial direction for the maximum speed condition:

(1)   fs,max 5 msn 5 m 
v 2

max

r

Apply the particle in equilibrium model to the car in the verti-
cal direction:

o Fy 5 0  S  n 2 mg 5 0  S  n 5 mg

Solve Equation (1) for the maximum speed and substitute for n: (2)   vmax 5 Åmsnr
m

5 Åmsmgr
m

5 "ms gr

Substitute numerical values: vmax 5 "10.523 2 19.80 m/s2 2 135.0 m 2 5 13.4 m/s

←



A Banked Turn

A turn has a radius r . What should the angle θ be so that a car
traveling at speed v can turn the corner without relying on friction?
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Finalize This speed is equivalent to 30.0 mi/h. Therefore, if the speed limit on this roadway is higher than 30 mi/h, 
this roadway could benefit greatly from some banking, as in the next example! Notice that the maximum speed does 
not depend on the mass of the car, which is why curved highways do not need multiple speed limits to cover the various 
masses of vehicles using the road.

Suppose a car travels this curve on a wet day and begins to skid on the curve when its speed reaches only 
8.00 m/s. What can we say about the coefficient of static friction in this case?

Answer The coefficient of static friction between the tires and a wet road should be smaller than that between the 
tires and a dry road. This expectation is consistent with experience with driving because a skid is more likely on a wet 
road than a dry road.
 To check our suspicion, we can solve Equation (2) for the coefficient of static friction:

ms 5
v2

max

gr

Substituting the numerical values gives

ms 5
v2

max

gr
5
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which is indeed smaller than the coefficient of 0.523 for the dry road.

WHAT IF ?

Example 6.4   The Banked Roadway 

A civil engineer wishes to redesign the curved roadway in Example 6.3 in such a way 
that a car will not have to rely on friction to round the curve without skidding. In 
other words, a car moving at the designated speed can negotiate the curve even when 
the road is covered with ice. Such a road is usually banked, which means that the road-
way is tilted toward the inside of the curve as seen in the opening photograph for this 
chapter. Suppose the designated speed for the road is to be 13.4 m/s (30.0 mi/h) and 
the radius of the curve is 35.0 m. At what angle should the curve be banked?

Conceptualize The difference between this example and Example 6.3 is that the 
car is no longer moving on a flat roadway. Figure 6.5 shows the banked roadway, 
with the center of the circular path of the car far to the left of the figure. Notice 
that the horizontal component of the normal force participates in causing the car’s 
centripetal acceleration.

Categorize As in Example 6.3, the car is modeled as a particle in equilibrium in 
the vertical direction and a particle in uniform circular motion in the horizontal 
direction.

Analyze On a level (unbanked) road, the force that causes the centripetal accelera-
tion is the force of static friction between tires and the road as we saw in the pre-
ceding example. If the road is banked at an angle u as in Figure 6.5, however, the 
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▸ 6.3 c o n t i n u e d

Apply Equation 6.1 from the particle in uniform circular motion 
model in the radial direction for the maximum speed condition:

(1)   fs,max 5 msn 5 m 
v 2

max
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Apply the particle in equilibrium model to the car in the verti-
cal direction:

o Fy 5 0  S  n 2 mg 5 0  S  n 5 mg

Solve Equation (1) for the maximum speed and substitute for n: (2)   vmax 5 Åmsnr
m

5 Åmsmgr
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5 "ms gr

Substitute numerical values: vmax 5 "10.523 2 19.80 m/s2 2 135.0 m 2 5 13.4 m/s

Hint: consider what the net force vector must be in this case.
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A turn has a radius r . What should the angle θ be so that a car
traveling at speed v can turn the corner without relying on friction?

154 Chapter 6 Circular Motion and Other Applications of Newton’s Laws
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n cos θ = mg

n =
mg
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ceding example. If the road is banked at an angle u as in Figure 6.5, however, the 
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S O L U T I O N

Figure 6.5 (Example 6.4) A car 
moves into the page and is round-
ing a curve on a road banked at an 
angle u to the horizontal. When 
friction is neglected, the force that 
causes the centripetal accelera-
tion and keeps the car moving in 
its circular path is the horizontal 
component of the normal force.

nx

ny

u

u

Fg
S
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▸ 6.3 c o n t i n u e d

Apply Equation 6.1 from the particle in uniform circular motion 
model in the radial direction for the maximum speed condition:

(1)   fs,max 5 msn 5 m 
v 2

max

r

Apply the particle in equilibrium model to the car in the verti-
cal direction:

o Fy 5 0  S  n 2 mg 5 0  S  n 5 mg

Solve Equation (1) for the maximum speed and substitute for n: (2)   vmax 5 Åmsnr
m

5 Åmsmgr
m

5 "ms gr

Substitute numerical values: vmax 5 "10.523 2 19.80 m/s2 2 135.0 m 2 5 13.4 m/s

x-direction (horizontal, positive left):

Fx ,net = max

nx =
mv2

r

n sin θ =
mv2

r

mg

cos θ
sin θ =

mv2

r

tan θ =
v2

rg
⇒ θ = tan−1

(
v2

rg

)



Banked Turn Related Problems

This situation is called a “conical pendulum”. But notice, it is
actually a banked-turn-style problem in disguise!
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65. ••Aball of mass m is placed in a wedge, as shown in Figure 6–37,
in which the two walls meet at a right angle. Assuming the walls
of the wedge are frictionless, determine the magnitude of (a) con-
tact force 1 and (b) contact force 2.

66. •• A 2.0-kg box rests on a plank that is inclined at an angle of
65° above the horizontal. The upper end of the box is attached
to a spring with a force constant of 360 N/m, as shown in
Figure 6–38. If the coefficient of static friction between the box
and the plank is 0.22, what is the maximum amount the spring
can be stretched and the box remain at rest?

67. •• IP The blocks shown in Figure 6–39 are at rest. (a) Find the
frictional force exerted on block A given that the mass of block A
is 8.50 kg, the mass of block B is 2.25 kg, and the coefficient of
static friction between block A and the surface on which it rests
is 0.320. (b) If the mass of block A is doubled, does the frictional
force exerted on it increase, decrease, or stay the same? Explain.

68. •• In part (a) of Problem 67, what is the maximum mass block B
can have and the system still be in equilibrium?

69. •• IP A picture hangs on the wall suspended by two strings,
as shown in Figure 6–24. The tension in string 2 is 1.7 N. (a) Is
the tension in string 1 greater than, less than or equal to 1.7 N?
Explain. (b) Verify your answer to part (a) by calculating the
tension in string 1. (c) What is the mass of the picture?

70. •• IP Referring to Problem 49, suppose the Ferris wheel rotates
fast enough to make you feel “weightless” at the top. (a) How
many seconds does it take to complete one revolution in this
case? (b) How does your answer to part (a) depend on your
mass? Explain. (c) What is the direction and magnitude of your
acceleration when you are at the bottom of the wheel? Assume
that its rotational speed has remained constant.

71. •• A Conical Pendulum A 0.075-kg toy airplane is tied to the
ceiling with a string. When the airplane’s motor is started, it
moves with a constant speed of 1.21 m/s in a horizontal circle of
radius 0.44 m, as illustrated in Figure 6–40. Find (a) the angle the
string makes with the vertical and (b) the tension in the string.

20°

mg Contact
force 2

Center line

Contact
force 1

▲ FIGURE 6–37 Problem 65

65°

2.0 kg

▲ FIGURE 6–38 Problem 66

A
45°

B

▲ FIGURE 6–39 Problems 67 and 68

72. •• A tugboat tows a barge at constant speed with a 3500-kg
cable, as shown in Figure 6–41. If the angle the cable makes
with the horizontal where it attaches to the barge and the
tugboat is 22°, find the force the cable exerts on the barge in the
forward direction.

73. •• IP Two blocks, stacked one on top of the other, can move
without friction on the horizontal surface shown in Figure 6–42.
The surface between the two blocks is rough, however, with a
coefficient of static friction equal to 0.47. (a) If a horizontal force
F is applied to the 5.0-kg bottom block, what is the maximum
value F can have before the 2.0-kg top block begins to slip? (b) If
the mass of the top block is increased, does the maximum value
of F increase, decrease, or stay the same? Explain.

!

▲ FIGURE 6–40 Problem 71

22°22°

▲ FIGURE 6–41 Problem 72

F

2.0 kg

5.0 kg

▲ FIGURE 6–42 Problem 73

74. •• Find the coefficient of kinetic friction between a 4.5-kg
block and the horizontal surface on which it rests if an 85 N/m
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The role that was played by the normal force in the banked turn
problem is now played by the tension in the string.

1See probs 51, 70, Ch 6.



Vertical Loop

How can the daredevil ride through the loop upside down without
falling?

126 CHAPTE R 6 FORCE AN D MOTION—I I

Sample Problem

KEY I DEAS

1. A centripetal force must act on the car because the car
is moving around a circular arc; that force must be
directed toward the center of curvature of the arc (here,
that is horizontally).

2. The only horizontal force acting on the car is a frictional
force on the tires from the road. So the required cen-
tripetal force is a frictional force.

3. Because the car is not sliding, the frictional force must
be a static frictional force (Fig. 6-10a).

4. Because the car is on the verge of sliding, the magnitude
fs is equal to the maximum value fs,max ! msFN, where FN

is the magnitude of the normal force acting on the
car from the track.

Radial calculations: The frictional force is shown in the
free-body diagram of Fig. 6-10b. It is in the negative direc-

f
:

s

F
:

N

f
:

s

Car in flat circular turn

Upside-down racing: A modern race car is designed so
that the passing air pushes down on it, allowing the car to
travel much faster through a flat turn in a Grand Prix without
friction failing.This downward push is called negative lift. Can
a race car have so much negative lift that it could be driven up-
side down on a long ceiling, as done fictionally by a sedan in
the first Men in Black movie?

Figure 6-10a represents a Grand Prix race car of mass 
m ! 600 kg as it travels on a flat track in a circular arc of
radius R ! 100 m. Because of the shape of the car and the
wings on it, the passing air exerts a negative lift down-
ward on the car. The coefficient of static friction between
the tires and the track is 0.75. (Assume that the forces on the
four tires are identical.)

(a) If the car is on the verge of sliding out of the turn when
its speed is 28.6 m/s, what is the magnitude of the negative
lift acting downward on the car?F

:
L

F
:

L

Fig. 6-9 (a) Contemporary advertisement for Diavolo and
(b) free-body diagram for the performer at the top of the loop.
(Photograph in part a reproduced with permission of Circus
World Museum)
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(b) 

(a) 

Diavolo  
and bicycle 

a 

Fg 

FN 
The net force
provides the
toward-the-center
acceleration.

The normal force
is from the
overhead loop.

Calculations: The forces on the particle when it is at the
top of the loop are shown in the free-body diagram of Fig 6-
9b. The gravitational force is downward along a y axis; so is
the normal force on the particle from the loop; so also is
the centripetal acceleration of the particle. Thus, Newton’s
second law for y components (Fnet,y ! may) gives us

"FN " Fg ! m("a)

and (6-19)

If the particle has the least speed v needed to remain in
contact, then it is on the verge of losing contact with the loop
(falling away from the loop), which means that FN ! 0 at the
top of the loop (the particle and loop touch but without any
normal force). Substituting 0 for FN in Eq. 6-19, solving for v,
and then substituting known values give us

(Answer)

Comments: Diavolo made certain that his speed at the top
of the loop was greater than 5.1 m/s so that he did not lose
contact with the loop and fall away from it. Note that this
speed requirement is independent of the mass of Diavolo
and his bicycle. Had he feasted on, say, pierogies before his
performance, he still would have had to exceed only 5.1 m/s
to maintain contact as he passed through the top of the loop.

 ! 5.1 m/s.

 v ! 2gR ! 2(9.8 m/s2)(2.7 m)

"FN " mg ! m!"
v2

R".

F
:

N

F
:

g
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If the daredevil’s speed is high enough, the centripetal acceleration
needed to keep on the circle can be greater than g .

1Picture from Halliday, Resnick, Walker, 9th ed.



Vertical Loop

How can the daredevil ride through the loop upside down without
falling?

126 CHAPTE R 6 FORCE AN D MOTION—I I

Sample Problem

KEY I DEAS

1. A centripetal force must act on the car because the car
is moving around a circular arc; that force must be
directed toward the center of curvature of the arc (here,
that is horizontally).

2. The only horizontal force acting on the car is a frictional
force on the tires from the road. So the required cen-
tripetal force is a frictional force.

3. Because the car is not sliding, the frictional force must
be a static frictional force (Fig. 6-10a).

4. Because the car is on the verge of sliding, the magnitude
fs is equal to the maximum value fs,max ! msFN, where FN

is the magnitude of the normal force acting on the
car from the track.

Radial calculations: The frictional force is shown in the
free-body diagram of Fig. 6-10b. It is in the negative direc-
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Car in flat circular turn

Upside-down racing: A modern race car is designed so
that the passing air pushes down on it, allowing the car to
travel much faster through a flat turn in a Grand Prix without
friction failing.This downward push is called negative lift. Can
a race car have so much negative lift that it could be driven up-
side down on a long ceiling, as done fictionally by a sedan in
the first Men in Black movie?

Figure 6-10a represents a Grand Prix race car of mass 
m ! 600 kg as it travels on a flat track in a circular arc of
radius R ! 100 m. Because of the shape of the car and the
wings on it, the passing air exerts a negative lift down-
ward on the car. The coefficient of static friction between
the tires and the track is 0.75. (Assume that the forces on the
four tires are identical.)

(a) If the car is on the verge of sliding out of the turn when
its speed is 28.6 m/s, what is the magnitude of the negative
lift acting downward on the car?F

:
L

F
:

L

Fig. 6-9 (a) Contemporary advertisement for Diavolo and
(b) free-body diagram for the performer at the top of the loop.
(Photograph in part a reproduced with permission of Circus
World Museum)
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(a) 

Diavolo  
and bicycle 
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Fg 

FN 
The net force
provides the
toward-the-center
acceleration.

The normal force
is from the
overhead loop.

Calculations: The forces on the particle when it is at the
top of the loop are shown in the free-body diagram of Fig 6-
9b. The gravitational force is downward along a y axis; so is
the normal force on the particle from the loop; so also is
the centripetal acceleration of the particle. Thus, Newton’s
second law for y components (Fnet,y ! may) gives us

"FN " Fg ! m("a)

and (6-19)

If the particle has the least speed v needed to remain in
contact, then it is on the verge of losing contact with the loop
(falling away from the loop), which means that FN ! 0 at the
top of the loop (the particle and loop touch but without any
normal force). Substituting 0 for FN in Eq. 6-19, solving for v,
and then substituting known values give us

(Answer)

Comments: Diavolo made certain that his speed at the top
of the loop was greater than 5.1 m/s so that he did not lose
contact with the loop and fall away from it. Note that this
speed requirement is independent of the mass of Diavolo
and his bicycle. Had he feasted on, say, pierogies before his
performance, he still would have had to exceed only 5.1 m/s
to maintain contact as he passed through the top of the loop.

 ! 5.1 m/s.

 v ! 2gR ! 2(9.8 m/s2)(2.7 m)

"FN " mg ! m!"
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If the daredevil’s speed is high enough, the centripetal acceleration
needed to keep on the circle can be greater than g .

1Picture from Halliday, Resnick, Walker, 9th ed.



Vertical Loop
If (s)he is on the verge of being able to make it around, the place
(s)he would just start to fall is the top of the loop. At the top of
the loop:

System:

daredevil + bicycle

126 CHAPTE R 6 FORCE AN D MOTION—I I

Sample Problem

KEY I DEAS

1. A centripetal force must act on the car because the car
is moving around a circular arc; that force must be
directed toward the center of curvature of the arc (here,
that is horizontally).

2. The only horizontal force acting on the car is a frictional
force on the tires from the road. So the required cen-
tripetal force is a frictional force.

3. Because the car is not sliding, the frictional force must
be a static frictional force (Fig. 6-10a).

4. Because the car is on the verge of sliding, the magnitude
fs is equal to the maximum value fs,max ! msFN, where FN

is the magnitude of the normal force acting on the
car from the track.

Radial calculations: The frictional force is shown in the
free-body diagram of Fig. 6-10b. It is in the negative direc-
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Car in flat circular turn

Upside-down racing: A modern race car is designed so
that the passing air pushes down on it, allowing the car to
travel much faster through a flat turn in a Grand Prix without
friction failing.This downward push is called negative lift. Can
a race car have so much negative lift that it could be driven up-
side down on a long ceiling, as done fictionally by a sedan in
the first Men in Black movie?

Figure 6-10a represents a Grand Prix race car of mass 
m ! 600 kg as it travels on a flat track in a circular arc of
radius R ! 100 m. Because of the shape of the car and the
wings on it, the passing air exerts a negative lift down-
ward on the car. The coefficient of static friction between
the tires and the track is 0.75. (Assume that the forces on the
four tires are identical.)

(a) If the car is on the verge of sliding out of the turn when
its speed is 28.6 m/s, what is the magnitude of the negative
lift acting downward on the car?F

:
L

F
:

L

Fig. 6-9 (a) Contemporary advertisement for Diavolo and
(b) free-body diagram for the performer at the top of the loop.
(Photograph in part a reproduced with permission of Circus
World Museum)
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The net force
provides the
toward-the-center
acceleration.

The normal force
is from the
overhead loop.

Calculations: The forces on the particle when it is at the
top of the loop are shown in the free-body diagram of Fig 6-
9b. The gravitational force is downward along a y axis; so is
the normal force on the particle from the loop; so also is
the centripetal acceleration of the particle. Thus, Newton’s
second law for y components (Fnet,y ! may) gives us

"FN " Fg ! m("a)

and (6-19)

If the particle has the least speed v needed to remain in
contact, then it is on the verge of losing contact with the loop
(falling away from the loop), which means that FN ! 0 at the
top of the loop (the particle and loop touch but without any
normal force). Substituting 0 for FN in Eq. 6-19, solving for v,
and then substituting known values give us

(Answer)

Comments: Diavolo made certain that his speed at the top
of the loop was greater than 5.1 m/s so that he did not lose
contact with the loop and fall away from it. Note that this
speed requirement is independent of the mass of Diavolo
and his bicycle. Had he feasted on, say, pierogies before his
performance, he still would have had to exceed only 5.1 m/s
to maintain contact as he passed through the top of the loop.
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 v ! 2gR ! 2(9.8 m/s2)(2.7 m)
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y -direction:

Fnet,y = may

−N − Fg = m(−a)

−N −mg = −
mv2

r

If (s)he falls, the normal force is zero. If
(s)he is on the verge of falling, that is also
true: the bike wheels just touch, but there
is no normal force from the track.

−mg = −
mv2

r

v =
√
rg



Vertical Loop
If (s)he is on the verge of being able to make it around, the place
(s)he would just start to fall is the top of the loop. At the top of
the loop:

System:

daredevil + bicycle
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Sample Problem

KEY I DEAS

1. A centripetal force must act on the car because the car
is moving around a circular arc; that force must be
directed toward the center of curvature of the arc (here,
that is horizontally).

2. The only horizontal force acting on the car is a frictional
force on the tires from the road. So the required cen-
tripetal force is a frictional force.

3. Because the car is not sliding, the frictional force must
be a static frictional force (Fig. 6-10a).

4. Because the car is on the verge of sliding, the magnitude
fs is equal to the maximum value fs,max ! msFN, where FN

is the magnitude of the normal force acting on the
car from the track.

Radial calculations: The frictional force is shown in the
free-body diagram of Fig. 6-10b. It is in the negative direc-
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Car in flat circular turn

Upside-down racing: A modern race car is designed so
that the passing air pushes down on it, allowing the car to
travel much faster through a flat turn in a Grand Prix without
friction failing.This downward push is called negative lift. Can
a race car have so much negative lift that it could be driven up-
side down on a long ceiling, as done fictionally by a sedan in
the first Men in Black movie?

Figure 6-10a represents a Grand Prix race car of mass 
m ! 600 kg as it travels on a flat track in a circular arc of
radius R ! 100 m. Because of the shape of the car and the
wings on it, the passing air exerts a negative lift down-
ward on the car. The coefficient of static friction between
the tires and the track is 0.75. (Assume that the forces on the
four tires are identical.)

(a) If the car is on the verge of sliding out of the turn when
its speed is 28.6 m/s, what is the magnitude of the negative
lift acting downward on the car?F

:
L

F
:

L

Fig. 6-9 (a) Contemporary advertisement for Diavolo and
(b) free-body diagram for the performer at the top of the loop.
(Photograph in part a reproduced with permission of Circus
World Museum)
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Calculations: The forces on the particle when it is at the
top of the loop are shown in the free-body diagram of Fig 6-
9b. The gravitational force is downward along a y axis; so is
the normal force on the particle from the loop; so also is
the centripetal acceleration of the particle. Thus, Newton’s
second law for y components (Fnet,y ! may) gives us

"FN " Fg ! m("a)

and (6-19)

If the particle has the least speed v needed to remain in
contact, then it is on the verge of losing contact with the loop
(falling away from the loop), which means that FN ! 0 at the
top of the loop (the particle and loop touch but without any
normal force). Substituting 0 for FN in Eq. 6-19, solving for v,
and then substituting known values give us

(Answer)

Comments: Diavolo made certain that his speed at the top
of the loop was greater than 5.1 m/s so that he did not lose
contact with the loop and fall away from it. Note that this
speed requirement is independent of the mass of Diavolo
and his bicycle. Had he feasted on, say, pierogies before his
performance, he still would have had to exceed only 5.1 m/s
to maintain contact as he passed through the top of the loop.
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(s)he is on the verge of falling, that is also
true: the bike wheels just touch, but there
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Vertical Loop
If (s)he is on the verge of being able to make it around, the place
(s)he would just start to fall is the top of the loop. At the top of
the loop:

System:

daredevil + bicycle
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Sample Problem

KEY I DEAS

1. A centripetal force must act on the car because the car
is moving around a circular arc; that force must be
directed toward the center of curvature of the arc (here,
that is horizontally).

2. The only horizontal force acting on the car is a frictional
force on the tires from the road. So the required cen-
tripetal force is a frictional force.

3. Because the car is not sliding, the frictional force must
be a static frictional force (Fig. 6-10a).

4. Because the car is on the verge of sliding, the magnitude
fs is equal to the maximum value fs,max ! msFN, where FN

is the magnitude of the normal force acting on the
car from the track.

Radial calculations: The frictional force is shown in the
free-body diagram of Fig. 6-10b. It is in the negative direc-
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Car in flat circular turn

Upside-down racing: A modern race car is designed so
that the passing air pushes down on it, allowing the car to
travel much faster through a flat turn in a Grand Prix without
friction failing.This downward push is called negative lift. Can
a race car have so much negative lift that it could be driven up-
side down on a long ceiling, as done fictionally by a sedan in
the first Men in Black movie?

Figure 6-10a represents a Grand Prix race car of mass 
m ! 600 kg as it travels on a flat track in a circular arc of
radius R ! 100 m. Because of the shape of the car and the
wings on it, the passing air exerts a negative lift down-
ward on the car. The coefficient of static friction between
the tires and the track is 0.75. (Assume that the forces on the
four tires are identical.)

(a) If the car is on the verge of sliding out of the turn when
its speed is 28.6 m/s, what is the magnitude of the negative
lift acting downward on the car?F
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Fig. 6-9 (a) Contemporary advertisement for Diavolo and
(b) free-body diagram for the performer at the top of the loop.
(Photograph in part a reproduced with permission of Circus
World Museum)
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Calculations: The forces on the particle when it is at the
top of the loop are shown in the free-body diagram of Fig 6-
9b. The gravitational force is downward along a y axis; so is
the normal force on the particle from the loop; so also is
the centripetal acceleration of the particle. Thus, Newton’s
second law for y components (Fnet,y ! may) gives us

"FN " Fg ! m("a)

and (6-19)

If the particle has the least speed v needed to remain in
contact, then it is on the verge of losing contact with the loop
(falling away from the loop), which means that FN ! 0 at the
top of the loop (the particle and loop touch but without any
normal force). Substituting 0 for FN in Eq. 6-19, solving for v,
and then substituting known values give us

(Answer)

Comments: Diavolo made certain that his speed at the top
of the loop was greater than 5.1 m/s so that he did not lose
contact with the loop and fall away from it. Note that this
speed requirement is independent of the mass of Diavolo
and his bicycle. Had he feasted on, say, pierogies before his
performance, he still would have had to exceed only 5.1 m/s
to maintain contact as he passed through the top of the loop.
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If (s)he falls, the normal force is zero. If
(s)he is on the verge of falling, that is also
true: the bike wheels just touch, but there
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Vertical Loop

As long as (s)he manages to keep a speed of v =
√
rg at the top

of the track, the daredevil will not fall.

It doesn’t depend on the daredevil’s mass!



Energy

Energy is a difficult concept to define, but it is very important for
physics.

Energy can take many different forms.

Knowing the amount of energy a system has can tell us about
what states or configurations we can find the system in.

One way that energy is often described is that it represents the
ability of a system to do work.

We need to know what work is!
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Work

Work is an amount of energy.

The amount of work, W , done on an object depends on the
applied force and the displacement of the object as the force acts.

If the force is in the same direction as the displacement,

W = Fd

180 CHAPTER 7 WORK AND KINETIC ENERGY

d

F F

FIGURE 7–1 Work: constant force in
the direction of motion
A constant force pushes a box through
a displacement In this special case,
where the force and displacement are in
the same direction, the work done on the
box by the force is W = Fd.

d
!
.
F
!

▲

7–1 Work Done by a Constant Force
In this section we define work—in the physics sense of the word—and apply our
definition to a variety of physical situations. We start with the simplest case;
namely, the work done when force and displacement are in the same direction.
Later in the section we generalize our definition to include cases where the force
and displacement are in arbitrary directions. We conclude with a discussion of the
work done on an object when it is acted on by more than one force.

Force in the Direction of Displacement
When we push a shopping cart in a store or pull a suitcase through an airport,
we do work. The greater the force, the greater the work; the greater the dis-
tance, the greater the work. These simple ideas form the basis for our definition
of work.

To be specific, suppose we push a box with a constant force as shown in
Figure 7–1. If we move the box in the direction of through a displacement the
work W we have done is Fd:

Definition of Work, W, When a Constant Force Is in the Direction of Displacement

7–1

SI unit: newton-meter 1N # m2 = joule, J

W = Fd
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Note that work is the product of two magnitudes, and hence it is a scalar. In addi-
tion, notice that a small force acting over a large distance gives the same work as
a large force acting over a small distance. For example, 

The dimensions of work are newtons (force) times meters (distance), or 
This combination of dimensions is called the joule (rhymes with school, as com-
monly pronounced) in honor of James Prescott Joule (1818–1889), a dedicated
physicist who is said to have conducted physics experiments even while on his
honeymoon. We define a joule as follows:

Definition of the joule, J

7–2

To get a better feeling for work and the associated units, suppose you exert a
force of 82.0 N on the box in Figure 7–1 and move it in the direction of the force
through a distance of 3.00 m. The work you have done is

Similarly, if you do 5.00 J of work to lift a book through a vertical distance of
0.750 m, the force you exerted on the book is

F = W
d

=
5.00 J

0.750 m
= 5.00 N # m

0.750 m
= 6.67 N

W = Fd = 182.0 N213.00 m2 = 246 N # m = 246 J

1 joule = 1 J = 1 N # m = 11kg # m/s22 # m = 1 kg # m2/s2

N # m.
1400 N211 m2. W = 11 N21400 m2 =
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Work

Work is an amount of energy.

The amount of work, W , done on an object depends on the
applied force and the displacement of the object as the force acts.

If the force is in the same direction as the displacement,

W = Fd
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FIGURE 7–1 Work: constant force in
the direction of motion
A constant force pushes a box through
a displacement In this special case,
where the force and displacement are in
the same direction, the work done on the
box by the force is W = Fd.
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Work

W = Fd

Units of Work?

They have a special name: Joules, symbol J.

1 joule = 1 J = 1 Nm

Work is not a vector. Work is a scalar.



Summary

• banked turn

• vertical loop

• introduced energy

Homework
• Ch 6 Prob: 481, 51, 57, 70

1Prob 48, assume the car is locked onto the rails so that the “normal force”
from the track on the car could up or down. Answers: (a) 3.7× 103 N, (b) up,
(c) 1.3× 103 N, (d) down.


