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Last time

• more circular motion with forces
• banked turns
• vertical loops

• introduced energy



Overview

• work

• the vector dot product

• net work

• work done by a varying force (?)



Work

Work is an amount of energy.

The amount of work, W , done on an object depends on the
applied force and the displacement of the object as the force acts.

If the force is in the same direction as the displacement,

W = Fd

180 CHAPTER 7 WORK AND KINETIC ENERGY
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FIGURE 7–1 Work: constant force in
the direction of motion
A constant force pushes a box through
a displacement In this special case,
where the force and displacement are in
the same direction, the work done on the
box by the force is W = Fd.
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7–1 Work Done by a Constant Force
In this section we define work—in the physics sense of the word—and apply our
definition to a variety of physical situations. We start with the simplest case;
namely, the work done when force and displacement are in the same direction.
Later in the section we generalize our definition to include cases where the force
and displacement are in arbitrary directions. We conclude with a discussion of the
work done on an object when it is acted on by more than one force.

Force in the Direction of Displacement
When we push a shopping cart in a store or pull a suitcase through an airport,
we do work. The greater the force, the greater the work; the greater the dis-
tance, the greater the work. These simple ideas form the basis for our definition
of work.

To be specific, suppose we push a box with a constant force as shown in
Figure 7–1. If we move the box in the direction of through a displacement the
work W we have done is Fd:

Definition of Work, W, When a Constant Force Is in the Direction of Displacement

7–1

SI unit: newton-meter 1N # m2 = joule, J

W = Fd
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Note that work is the product of two magnitudes, and hence it is a scalar. In addi-
tion, notice that a small force acting over a large distance gives the same work as
a large force acting over a small distance. For example, 

The dimensions of work are newtons (force) times meters (distance), or 
This combination of dimensions is called the joule (rhymes with school, as com-
monly pronounced) in honor of James Prescott Joule (1818–1889), a dedicated
physicist who is said to have conducted physics experiments even while on his
honeymoon. We define a joule as follows:

Definition of the joule, J

7–2

To get a better feeling for work and the associated units, suppose you exert a
force of 82.0 N on the box in Figure 7–1 and move it in the direction of the force
through a distance of 3.00 m. The work you have done is

Similarly, if you do 5.00 J of work to lift a book through a vertical distance of
0.750 m, the force you exerted on the book is

F = W
d

=
5.00 J

0.750 m
= 5.00 N # m

0.750 m
= 6.67 N

W = Fd = 182.0 N213.00 m2 = 246 N # m = 246 J

1 joule = 1 J = 1 N # m = 11kg # m/s22 # m = 1 kg # m2/s2

N # m.
1400 N211 m2. W = 11 N21400 m2 =
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Example

What is the work done in lifting a 3.0-kg book 0.50 m?

192 Chapter 7 Energy of a System

 Let us imagine a system consisting of a book and the Earth, interacting via the 
gravitational force. We do some work on the system by lifting the book slowly from 
rest through a vertical displacement D rS 5 1yf 2 yi 2 ĵ as in Figure 7.15. According 
to our discussion of work as an energy transfer, this work done on the system must 
appear as an increase in energy of the system. The book is at rest before we perform 
the work and is at rest after we perform the work. Therefore, there is no change in 
the kinetic energy of the system.
 Because the energy change of the system is not in the form of kinetic energy, 
the work-kinetic energy theorem does not apply here and the energy change must 
appear as some form of energy storage other than kinetic energy. After lifting the 
book, we could release it and let it fall back to the position yi . Notice that the book 
(and therefore, the system) now has kinetic energy and that its source is in the work 
that was done in lifting the book. While the book was at the highest point, the sys-
tem had the potential to possess kinetic energy, but it did not do so until the book was 
allowed to fall. Therefore, we call the energy storage mechanism before the book 
is released potential energy. We will find that the potential energy of a system can 
only be associated with specific types of forces acting between members of a system. 
The amount of potential energy in the system is determined by the configuration of 
the system. Moving members of the system to different positions or rotating them 
may change the configuration of the system and therefore its potential energy.
 Let us now derive an expression for the potential energy associated with an object 
at a given location above the surface of the Earth. Consider an external agent lift-
ing an object of mass m from an initial height yi above the ground to a final height 
yf as in Figure 7.15. We assume the lifting is done slowly, with no acceleration, so the 
applied force from the agent is equal in magnitude to the gravitational force on the 
object: the object is modeled as a particle in equilibrium moving at constant veloc-
ity. The work done by the external agent on the system (object and the Earth) as the 
object undergoes this upward displacement is given by the product of the upward 
applied force F

S
app and the upward displacement of this force, D rS 5 Dy ĵ:

 Wext 5 1 F
S

app 2 ? D rS 5 1mg  ĵ 2 ? 3 1yf 2 yi 2  ĵ 4 5 mgyf 2 mgyi (7.18)

where this result is the net work done on the system because the applied force is the 
only force on the system from the environment. (Remember that the gravitational 
force is internal to the system.) Notice the similarity between Equation 7.18 and Equa-
tion 7.15. In each equation, the work done on a system equals a difference between 
the final and initial values of a quantity. In Equation 7.15, the work represents a trans-
fer of energy into the system and the increase in energy of the system is kinetic in 
form. In Equation 7.18, the work represents a transfer of energy into the system and 
the system energy appears in a different form, which we have called potential energy.
 Therefore, we can identify the quantity mgy as the gravitational potential 
energy Ug  of the system of an object of mass m and the Earth:
 Ug ; mgy (7.19)

The units of gravitational potential energy are joules, the same as the units of work 
and kinetic energy. Potential energy, like work and kinetic energy, is a scalar quan-
tity. Notice that Equation 7.19 is valid only for objects near the surface of the Earth, 
where g is approximately constant.3
 Using our definition of gravitational potential energy, Equation 7.18 can now be 
rewritten as
 Wext 5 DUg (7.20)

which mathematically describes that the net external work done on the system in 
this situation appears as a change in the gravitational potential energy of the system.
 Equation 7.20 is similar in form to the work–kinetic energy theorem, Equation 
7.17. In Equation 7.17, work is done on a system and energy appears in the system as 
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Figure 7.15 An external agent 
lifts a book slowly from a height yi 
to a height yf .
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Pitfall Prevention 7.7
Potential Energy The phrase 
potential energy does not refer to 
something that has the poten-
tial to become energy. Potential 
energy is energy.

Pitfall Prevention 7.8
Potential Energy Belongs to a 
System Potential energy is always 
associated with a system of two or 
more interacting objects. When 
a small object moves near the 
surface of the Earth under the 
influence of gravity, we may some-
times refer to the potential energy 
“associated with the object” rather 
than the more proper “associ-
ated with the system” because the 
Earth does not move significantly. 
We will not, however, refer to the 
potential energy “of the object” 
because this wording ignores the 
role of the Earth.

3The assumption that g is constant is valid as long as the vertical displacement of the object is small compared with 
the Earth’s radius.

To lift a book with constant velocity, requires Fapp = mg

W = Fd = (3.0 kg)(9.81 m/s2)(.50 m) = 14.7 J
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Work

If the force, F , is in the same direction as the displacement, the
work done by F is given by

W = Fd
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Work

What if the force is not in the direction of the displacement?

 7.2 Work Done by a Constant Force 179

eraser, which we identify as the system, and the eraser slides along the tray. If we 
want to know how effective the force is in moving the eraser, we must consider not 
only the magnitude of the force but also its direction. Notice that the finger in Fig-
ure 7.1 applies forces in three different directions on the eraser. Assuming the mag-
nitude of the applied force is the same in all three photographs, the push applied 
in Figure 7.1b does more to move the eraser than the push in Figure 7.1a. On the 
other hand, Figure 7.1c shows a situation in which the applied force does not move 
the eraser at all, regardless of how hard it is pushed (unless, of course, we apply a 
force so great that we break the chalkboard tray!). These results suggest that when 
analyzing forces to determine the influence they have on the system, we must con-
sider the vector nature of forces. We must also consider the magnitude of the force. 
Moving a force with a magnitude of 0 FS 0 5 2 N through a displacement represents a 
greater influence on the system than moving a force of magnitude 1 N through the 
same displacement. The magnitude of the displacement is also important. Moving 
the eraser 3 m along the tray represents a greater influence than moving it 2 cm if 
the same force is used in both cases.
 Let us examine the situation in Figure 7.2, where the object (the system) under-
goes a displacement along a straight line while acted on by a constant force of mag-
nitude F that makes an angle u with the direction of the displacement.

The work W done on a system by an agent exerting a constant force on the 
system is the product of the magnitude F of the force, the magnitude Dr of 
the displacement of the point of application of the force, and cos u, where u is  
the angle between the force and displacement vectors:

 W ; F Dr cos u (7.1)

 Notice in Equation 7.1 that work is a scalar, even though it is defined in terms 
of two vectors, a force F

S
 and a displacement D rS. In Section 7.3, we explore how to 

combine two vectors to generate a scalar quantity.
 Notice also that the displacement in Equation 7.1 is that of the point of application 
of the force. If the force is applied to a particle or a rigid object that can be modeled 
as a particle, this displacement is the same as that of the particle. For a deformable 
system, however, these displacements are not the same. For example, imagine press-
ing in on the sides of a balloon with both hands. The center of the balloon moves 
through zero displacement. The points of application of the forces from your hands 
on the sides of the balloon, however, do indeed move through a displacement as 
the balloon is compressed, and that is the displacement to be used in Equation 7.1. 
We will see other examples of deformable systems, such as springs and samples of 
gas contained in a vessel.
 As an example of the distinction between the definition of work and our every-
day understanding of the word, consider holding a heavy chair at arm’s length for 
3 min. At the end of this time interval, your tired arms may lead you to think you 

�W  Work done by a  
constant force

a b c

Figure 7.1  An eraser being pushed along a chalkboard tray by a force acting at different angles 
with respect to the horizontal direction. 
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Figure 7.2  An object undergoes 
a displacement D rS under the 
action of a constant force F
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Pitfall Prevention 7.2
Work Is Done by . . . on . . . Not 
only must you identify the system, 
you must also identify what agent 
in the environment is doing work 
on the system. When discussing 
work, always use the phrase, “the 
work done by . . . on . . . .” After 
“by,” insert the part of the environ-
ment that is interacting directly 
with the system. After “on,” insert 
the system. For example, “the work 
done by the hammer on the nail” 
identifies the nail as the system, 
and the force from the hammer 
represents the influence from the 
environment.
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We need to extend our definition of work.



Work
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The weightlifter at right does more
work in raising 150 kilograms above her
head than Atlas, who is supporting the
entire world. Why?

▲

FIGURE 7–2 Work: force at an angle
to direction of motion
A person pulls a suitcase with a strap at
an angle to the direction of motion. The
component of force in the direction of
motion is and the work done by
the person is W = 1F cos u2d.F cos u,

u

▲

from your efforts. Similarly, if you stand in one place holding a 50-pound suitcase
in your hand, you do no work on the suitcase. The fact that we become tired when
we push against a wall or hold a heavy object is due to the repeated contraction
and expansion of individual cells within our muscles. Thus, even when we are “at
rest,” our muscles are doing mechanical work on the microscopic level.
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! F cos
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Force at an Angle to the Displacement
In Figure 7–2 we see a person pulling a suitcase on a level surface with a strap that
makes an angle with the horizontal—in this case the force is at an angle to the
direction of motion. How do we calculate the work now? Well, instead of force
times distance, we say that work is the component of force in the direction of dis-
placement times the magnitude of the displacement. In Figure 7–2, the compo-
nent of force in the direction of displacement is and the magnitude of the
displacement is d. Therefore, the work is times d:

Definition of Work When the Angle Between a Constant Force and the Displacement Is 

7–3

SI unit: joule, J

Of course, in the case where the force is in the direction of motion, the angle is
zero; then in agreement with Equation 7–1.

Equally interesting is a situation in which the force and the displacement are
at right angles to one another. In this case and the work done by the force
F is zero; 

This result leads naturally to an alternative way to think about the expression
In Figure 7–3 we show the displacement and the force for the suitcaseW = Fd cos u.

W = Fd cos 90° = 0.
u = 90°

W = Fd cos 0° = Fd # 1 = Fd,
u

W = 1F cos u2d = Fd cos u

U

F cos u
F cos u

u
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For a constant applied force, Work is defined as:

W = F · d = Fd cos θ

In the above expression we use something called the dot product
of two vectors.
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For a constant applied force, Work is defined as:

W = F · d = Fd cos θ

In the above expression we use something called the dot product
of two vectors.



Vectors Properties and Operations
Multiplication by a vector:
The Dot Product

Let A = Ax i+ Ay j
B = Bx i+ By j,

A · B = AxBx + AyBy

The output of this operation is a scalar.

Equivalently,

A · B = AB cos θ

Properties

• The dot product is commutative: A · B = B · A
• If A ‖ B, A · B = AB.

• If A ⊥ B, A · B = 0.

 7.3 The Scalar Product of Two Vectors 181

Conceptualize  Figure 7.5 helps conceptualize the 
situation. Think about an experience in your life in 
which you pulled an object across the floor with a 
rope or cord.

Categorize   We are asked for the work done on 
an object by a force and are given the force on 
the object, the displacement of the object, and 
the angle between the two vectors, so we categorize this example as a substitution problem. We identify the vacuum 
cleaner as the system.

S O L U T I O N

7.3 The Scalar Product of Two Vectors
Because of the way the force and displacement vectors are combined in Equation 
7.1, it is helpful to use a convenient mathematical tool called the scalar product of 
two vectors. We write this scalar product of vectors A

S
 and B

S
 as A

S
? B

S
. (Because of 

the dot symbol, the scalar product is often called the dot product.)
 The scalar product of any two vectors A

S
 and B

S
 is defined as a scalar quantity 

equal to the product of the magnitudes of the two vectors and the cosine of the 
angle u between them:
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; AB cos u (7.2)

As is the case with any multiplication, A
S

 and B
S

 need not have the same units.
 By comparing this definition with Equation 7.1, we can express Equation 7.1 as a 
scalar product:
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? D rS  (7.3)

In other words, F
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? D rS  is a shorthand notation for F Dr cos u.
 Before continuing with our discussion of work, let us investigate some properties 
of the dot product. Figure 7.6 shows two vectors A

S
 and B

S
 and the angle u between 

them used in the definition of the dot product. In Figure 7.6, B cos u is the projec-
tion of B

S
 onto A

S
. Therefore, Equation 7.2 means that A
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? B

S
 is the product of the 

magnitude of A
S

 and the projection of B
S

 onto A
S

.1
 From the right-hand side of Equation 7.2, we also see that the scalar product is 
commutative.2 That is,
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Pitfall Prevention 7.4
Work Is a Scalar Although Equa-
tion 7.3 defines the work in terms 
of two vectors, work is a scalar; 
there is no direction associated 
with it. All types of energy and 
energy transfer are scalars. This 
fact is a major advantage of the 
energy approach because we don’t 
need vector calculations!

1This statement is equivalent to stating that A
S

? B
S

 equals the product of the magnitude of B
S

 and the projection of A
S

  
onto B

S
.

2In Chapter 11, you will see another way of combining vectors that proves useful in physics and is not commutative.
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▸ 7.1 c o n t i n u e d

Use the definition of work (Eq. 7.1): W 5 F Dr cos u 5 150.0 N 2 13.00 m 2 1cos 30.08 2  
5  130 J

Notice in this situation that the normal force nS and the gravitational F
S

g 5 mgS do no work on the vacuum cleaner 
because these forces are perpendicular to the displacements of their points of application. Furthermore, there was 
no mention of whether there was friction between the vacuum cleaner and the floor. The presence or absence of fric-
tion is not important when calculating the work done by the applied force. In addition, this work does not depend on 
whether the vacuum moved at constant velocity or if it accelerated.

30.0!

50.0 N

mgS 

nS

Figure 7.5  (Example 7.1) A 
vacuum cleaner being pulled 
at an angle of 30.08 from the 
horizontal.



Vectors Properties and Operations
Multiplication by a vector:
The Dot Product

Let A = Ax i+ Ay j
B = Bx i+ By j,

A · B = AxBx + AyBy

The output of this operation is a scalar.

Equivalently,

A · B = AB cos θ

Properties

• The dot product is commutative: A · B = B · A
• If A ‖ B, A · B = AB.

• If A ⊥ B, A · B = 0.
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Vectors Properties and Operations

Multiplication by a vector: The Dot Product

Try it! Find A ·B when A is a vector of magnitude 6 N directed at
60◦ above the x-axis and B is a vector of magnitude 2 m pointed
along the x-axis.

A · B = (6 N)(2 m) cos(60◦) = 6 J

(1 J = 1 Nm)

Now find A · B when:

A = 1 i+ 2 j ; B = −1 i− 4 j

A · B = (1)(−1) + (2)(−4) = −9
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Units of Work

Work can be positive or negative!

184 CHAPTER 7 WORK AND KINETIC ENERGY

Next, we present a Conceptual Checkpoint that compares the work required
to move an object along two different paths.

! d

F
! d

F !

d
F

< 90°–90° < ! < 270°90° < != ± 90°!

(a) (b) (c)

FIGURE 7–4 Positive, negative, and
zero work
Work is positive when the force is in the
same general direction as the displace-
ment and is negative if the force is gener-
ally opposite to the displacement. Zero
work is done if the force is at right angles
to the displacement.

▲

CONCEPTUAL CHECKPOINT 7–1 Path Dependence of Work
You want to load a box into the back of a truck. One way is to lift it straight up through a height h, as shown, doing a work W1. Alternatively, you can
slide the box up a loading ramp a distance L, doing a work W2. Assuming the box slides on the ramp without friction, which of the following is
correct: (a) W1 6 W2, (b) W1 = W2, (c) W1 7 W2?

Reasoning and Discussion
You might think that W2 is less than W1, since the force needed to slide the box up the ramp, F2, is less than the force needed to lift it straight up. On
the other hand, the distance up the ramp, L, is greater than the vertical distance, h, so perhaps W2 should be greater than W1. In fact, these two effects
cancel exactly, giving W1 = W2.

To see this, we first calculate W1. The force needed to lift the box with constant speed is F1 = mg, and the height is h, therefore W1 = mgh.

Next, the work to slide the box up the ramp with constant speed is W2 = F2L, where F2 is the force required to push against the tangential component of
gravity. In the figure we see that F2 = mg sin f. The figure also shows that sin f = h/L; thus W2 = (mg sin f)L = (mg)(h/L)L = mgh = W1.

Clearly, the ramp is a useful device—it reduces the force required to move the box upward from F1 = mg to F2 = mg(h/L). Even so, it doesn’t decrease
the amount of work we need to do. As we have seen, the reduced force on the ramp is offset by the increased distance.

Answer:
(b) W1 = W2

L

W1

h

F1

mg

φ

W2

L

F2

mg
φ

φ

mg sinφ

mg cos φ h

Negative Work and Total Work
Work depends on the angle between the force, and the displacement (or direc-
tion of motion), This dependence gives rise to three distinct possibilities, as
shown in Figure 7–4:

(i) Work is positive if the force has a component in the direction of motion

(ii) Work is zero if the force has no component in the direction of motion
(iii) Work is negative if the force has a component opposite to the direction of motion

Thus, whenever we calculate work, we must be careful about its sign and not just
assume it to be positive.

190° 6 u 6 270°2. 1u = ;90°2.1-90° 6 u 6 90°2.
d
!
.

F
!
,
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W = Fd cos θ > 0

positive work

W = Fd cos θ = 0

zero work

W = Fd cos θ < 0

negative work

For work done on a system:

• Positive ⇒ energy is transferred to the system.

• Negative ⇒ energy is transferred from the system.



Work done by individual forces180 Chapter 7 Energy of a System

have done a considerable amount of work on the chair. According to our defini-
tion, however, you have done no work on it whatsoever. You exert a force to support 
the chair, but you do not move it. A force does no work on an object if the force 
does not move through a displacement. If Dr 5 0, Equation 7.1 gives W 5 0, which is 
the situation depicted in Figure 7.1c.
 Also notice from Equation 7.1 that the work done by a force on a moving object 
is zero when the force applied is perpendicular to the displacement of its point of 
application. That is, if u 5 908, then W 5 0 because cos 908 5 0. For example, in 
Figure 7.3, the work done by the normal force on the object and the work done by 
the gravitational force on the object are both zero because both forces are perpen-
dicular to the displacement and have zero components along an axis in the direc-
tion of D rS.
 The sign of the work also depends on the direction of F

S
 relative to D rS. The work 

done by the applied force on a system is positive when the projection of F
S

 onto D rS 
is in the same direction as the displacement. For example, when an object is lifted, 
the work done by the applied force on the object is positive because the direction 
of that force is upward, in the same direction as the displacement of its point of 
application. When the projection of F

S
 onto D rS is in the direction opposite the dis-

placement, W is negative. For example, as an object is lifted, the work done by the 
gravitational force on the object is negative. The factor cos u in the definition of W 
(Eq. 7.1) automatically takes care of the sign.
 If an applied force F

S
 is in the same direction as the displacement D rS, then u 5 

0 and cos 0 5 1. In this case, Equation 7.1 gives

 W 5 F Dr 

 The units of work are those of force multiplied by those of length. Therefore, 
the SI unit of work is the newton ? meter (N ? m 5 kg ? m2/s2). This combination of 
units is used so frequently that it has been given a name of its own, the joule ( J).
 An important consideration for a system approach to problems is that work is an 
energy transfer. If W is the work done on a system and W is positive, energy is trans-
ferred to the system; if W is negative, energy is transferred from the system. There-
fore, if a system interacts with its environment, this interaction can be described 
as a transfer of energy across the system boundary. The result is a change in the 
energy stored in the system. We will learn about the first type of energy storage in 
Section 7.5, after we investigate more aspects of work.

Q uick Quiz 7.1  The gravitational force exerted by the Sun on the Earth holds the 
Earth in an orbit around the Sun. Let us assume that the orbit is perfectly cir-
cular. The work done by this gravitational force during a short time interval in 
which the Earth moves through a displacement in its orbital path is (a) zero  
(b) positive (c) negative (d) impossible to determine

Q uick Quiz 7.2  Figure 7.4 shows four situations in which a force is applied to an 
object. In all four cases, the force has the same magnitude, and the displace-
ment of the object is to the right and of the same magnitude. Rank the situa-
tions in order of the work done by the force on the object, from most positive to 
most negative.

u

F
S

mgS 

nS

!rS

   is the only force 
that does work on 
the block in this 
situation.

F
S

Figure 7.3  An object is dis-
placed on a frictionless, horizon-
tal surface. The normal force nS 
and the gravitational force mgS do 
no work on the object.

Pitfall Prevention 7.3
Cause of the Displacement We can 
calculate the work done by a force 
on an object, but that force is not 
necessarily the cause of the object’s 
displacement. For example, if you 
lift an object, (negative) work is 
done on the object by the gravi-
tational force, although gravity is 
not the cause of the object moving 
upward!

F
S

F
S

F
S

F
S

ba

dc
!rS

!rS

!rS

!rS

Figure 7.4  (Quick Quiz 7.2)  
A block is pulled by a force in four 
different directions. In each case, 
the displacement of the block 
is to the right and of the same 
magnitude.

Example 7.1   Mr. Clean

A man cleaning a floor pulls a vacuum cleaner with a force of magnitude F 5 50.0 N at an angle of 30.08 with the hori-
zontal (Fig. 7.5). Calculate the work done by the force on the vacuum cleaner as the vacuum cleaner is displaced 3.00 m  
to the right.

If there are several forces acting on a system, each one can have an
associated work.
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Wn = 0 Wmg = 0 WF = Fd cos θ

In other words, we can ask what is the work done on the system by
each force separately.



Net Work

The net work is the sum of all the individual works.

Wnet =
∑
i

Wi

where Wi = Fid cos θ is the work done by the force Fi .

If the system can be modeled as a particle (the only case we
consider in this course):

Wnet = Fnetd cos θ

assuming the net force is constant.



Question

A car speeds up as it coasts down a hill that makes an angle φ to
the horizontal.

7–1 WORK DONE BY A CONSTANT FORCE 185

When more than one force acts on an object, the total work is the sum of the
work done by each force separately. Thus, if force does work force does
work and so on, the total work is

7–4

Equivalently, the total work can be calculated by first performing a vector sum of
all the forces acting on an object to obtain and then using our basic definition
of work:

7–5

where is the angle between and the displacement In the next two Exam-
ples we calculate the total work in each of these ways.

d
!
.F

!
totalu

Wtotal = 1Ftotal cos u2d = Ftotal d cos u

F
!
total

Wtotal = W1 + W2 + W3 + Á = aWi

W2,
F
!
2W1,F

!
1

PROBLEM-SOLVING NOTE

Be Careful About the Angle 

In calculating be sure that
the angle you use in the cosine is the angle
between the force and the displacement
vectors when they are placed tail to tail.
Sometimes may be used to label a differ-
ent angle in a given problem. For exam-
ple, is often used to label the angle of a
slope, in which case it may have nothing
to do with the angle between the force and
the displacement. To summarize: Just be-
cause an angle is labeled doesn’t mean
it’s automatically the correct angle to use
in the work formula.

u

u

u

W = Fd cos u

U

EXAMPLE 7–3 A Coasting Car I
A car of mass m coasts down a hill inclined at an angle below the horizontal. The car is acted on by three forces: (i) the normal
force exerted by the road, (ii) a force due to air resistance, and (iii) the force of gravity, Find the total work done on
the car as it travels a distance d along the road.

Picture the Problem
Because is the angle the slope makes with the horizontal, it is also the angle between and the downward normal direction, as
was shown in Figure 5–15. It follows that the angle between and the displacement is Our sketch also shows that
the angle between and is and the angle between and is 

Strategy
For each force we calculate the work using where is the angle between that particular force and the displace-
ment The total work is the sum of the work done by each of the three forces.

Solution

1. We start with the work done by the normal force, 
From the figure we see that for this force:

2. For the force of air resistance, 

3. For gravity the angle is as indicated in the 
figure. Recall that (see Appendix A):

4. The total work is the sum of the individual works:

Insight
The normal force is perpendicular to the motion of the car, and thus does no work. Air resistance points in a direction that op-
poses the motion, so it does negative work. On the other hand, gravity has a component in the direction of motion; therefore, its
work is positive. The physical significance of positive, negative, and zero work will be discussed in detail in the next section.

Practice Problem
Calculate the total work done on a 1550-kg car as it coasts 20.4 m down a hill with Let the force due to air resistance
be 15.0 N. [Answer: ]

Some related homework problems: Problem 12, Problem 66

Wtotal = WN + Wair + Wmg = 0 - Faird + mgd sin f = 0 - 306 J + 2.70 * 104 J = 2.67 * 104 J
f = 5.00°.

Wtotal = WN + Wair + Wmg = 0 - Faird + mgd sin f

cos190° - f2 = sin f
Wmg = mgd cos190° - f2 = mgd sin fu = 90° - f,u

Wair = Faird cos 180° = Faird1-12 = -Fairdu = 180°:

u = 90°
WN = Nd cos u = Nd cos 90° = Nd102 = 0N

!
.

d
!
.

uW = Fd cos u,

u = 180°.d
!

F
!
airu = 90°,d

!
N

! u = 90° - f.d
!

mg
! mg

!
f

mg
!
.F

!
air,N

! f

!

!

!

N

Fair d

mg

N

d

Fair d

!

d

mg

 = 90°"

 = 180°"

! = 90° –  "
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The work done by the weight (mg force) is

(A) positive

(B) negative

(C) zero

(D) cannot be determined
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to do with the angle between the force and
the displacement. To summarize: Just be-
cause an angle is labeled doesn’t mean
it’s automatically the correct angle to use
in the work formula.

u

u

u

W = Fd cos u

U

EXAMPLE 7–3 A Coasting Car I
A car of mass m coasts down a hill inclined at an angle below the horizontal. The car is acted on by three forces: (i) the normal
force exerted by the road, (ii) a force due to air resistance, and (iii) the force of gravity, Find the total work done on
the car as it travels a distance d along the road.

Picture the Problem
Because is the angle the slope makes with the horizontal, it is also the angle between and the downward normal direction, as
was shown in Figure 5–15. It follows that the angle between and the displacement is Our sketch also shows that
the angle between and is and the angle between and is 

Strategy
For each force we calculate the work using where is the angle between that particular force and the displace-
ment The total work is the sum of the work done by each of the three forces.

Solution

1. We start with the work done by the normal force, 
From the figure we see that for this force:

2. For the force of air resistance, 

3. For gravity the angle is as indicated in the 
figure. Recall that (see Appendix A):

4. The total work is the sum of the individual works:

Insight
The normal force is perpendicular to the motion of the car, and thus does no work. Air resistance points in a direction that op-
poses the motion, so it does negative work. On the other hand, gravity has a component in the direction of motion; therefore, its
work is positive. The physical significance of positive, negative, and zero work will be discussed in detail in the next section.

Practice Problem
Calculate the total work done on a 1550-kg car as it coasts 20.4 m down a hill with Let the force due to air resistance
be 15.0 N. [Answer: ]

Some related homework problems: Problem 12, Problem 66

Wtotal = WN + Wair + Wmg = 0 - Faird + mgd sin f = 0 - 306 J + 2.70 * 104 J = 2.67 * 104 J
f = 5.00°.

Wtotal = WN + Wair + Wmg = 0 - Faird + mgd sin f

cos190° - f2 = sin f
Wmg = mgd cos190° - f2 = mgd sin fu = 90° - f,u

Wair = Faird cos 180° = Faird1-12 = -Fairdu = 180°:

u = 90°
WN = Nd cos u = Nd cos 90° = Nd102 = 0N
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The work done by the weight (mg force) is

(A) positive ←
(B) negative

(C) zero

(D) cannot be determined



Question

A car speeds up as it coasts down a hill that makes an angle φ to
the horizontal.

7–1 WORK DONE BY A CONSTANT FORCE 185

When more than one force acts on an object, the total work is the sum of the
work done by each force separately. Thus, if force does work force does
work and so on, the total work is

7–4

Equivalently, the total work can be calculated by first performing a vector sum of
all the forces acting on an object to obtain and then using our basic definition
of work:

7–5

where is the angle between and the displacement In the next two Exam-
ples we calculate the total work in each of these ways.

d
!
.F

!
totalu

Wtotal = 1Ftotal cos u2d = Ftotal d cos u

F
!
total

Wtotal = W1 + W2 + W3 + Á = aWi

W2,
F
!
2W1,F

!
1

PROBLEM-SOLVING NOTE

Be Careful About the Angle 

In calculating be sure that
the angle you use in the cosine is the angle
between the force and the displacement
vectors when they are placed tail to tail.
Sometimes may be used to label a differ-
ent angle in a given problem. For exam-
ple, is often used to label the angle of a
slope, in which case it may have nothing
to do with the angle between the force and
the displacement. To summarize: Just be-
cause an angle is labeled doesn’t mean
it’s automatically the correct angle to use
in the work formula.

u

u

u

W = Fd cos u

U

EXAMPLE 7–3 A Coasting Car I
A car of mass m coasts down a hill inclined at an angle below the horizontal. The car is acted on by three forces: (i) the normal
force exerted by the road, (ii) a force due to air resistance, and (iii) the force of gravity, Find the total work done on
the car as it travels a distance d along the road.

Picture the Problem
Because is the angle the slope makes with the horizontal, it is also the angle between and the downward normal direction, as
was shown in Figure 5–15. It follows that the angle between and the displacement is Our sketch also shows that
the angle between and is and the angle between and is 

Strategy
For each force we calculate the work using where is the angle between that particular force and the displace-
ment The total work is the sum of the work done by each of the three forces.

Solution

1. We start with the work done by the normal force, 
From the figure we see that for this force:

2. For the force of air resistance, 

3. For gravity the angle is as indicated in the 
figure. Recall that (see Appendix A):

4. The total work is the sum of the individual works:

Insight
The normal force is perpendicular to the motion of the car, and thus does no work. Air resistance points in a direction that op-
poses the motion, so it does negative work. On the other hand, gravity has a component in the direction of motion; therefore, its
work is positive. The physical significance of positive, negative, and zero work will be discussed in detail in the next section.

Practice Problem
Calculate the total work done on a 1550-kg car as it coasts 20.4 m down a hill with Let the force due to air resistance
be 15.0 N. [Answer: ]

Some related homework problems: Problem 12, Problem 66

Wtotal = WN + Wair + Wmg = 0 - Faird + mgd sin f = 0 - 306 J + 2.70 * 104 J = 2.67 * 104 J
f = 5.00°.

Wtotal = WN + Wair + Wmg = 0 - Faird + mgd sin f

cos190° - f2 = sin f
Wmg = mgd cos190° - f2 = mgd sin fu = 90° - f,u

Wair = Faird cos 180° = Faird1-12 = -Fairdu = 180°:

u = 90°
WN = Nd cos u = Nd cos 90° = Nd102 = 0N
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The work done by the normal force, N, is

(A) positive

(B) negative

(C) zero

(D) cannot be determined



Question

A car speeds up as it coasts down a hill that makes an angle φ to
the horizontal.

7–1 WORK DONE BY A CONSTANT FORCE 185

When more than one force acts on an object, the total work is the sum of the
work done by each force separately. Thus, if force does work force does
work and so on, the total work is

7–4

Equivalently, the total work can be calculated by first performing a vector sum of
all the forces acting on an object to obtain and then using our basic definition
of work:

7–5

where is the angle between and the displacement In the next two Exam-
ples we calculate the total work in each of these ways.

d
!
.F

!
totalu

Wtotal = 1Ftotal cos u2d = Ftotal d cos u

F
!
total

Wtotal = W1 + W2 + W3 + Á = aWi

W2,
F
!
2W1,F

!
1

PROBLEM-SOLVING NOTE

Be Careful About the Angle 

In calculating be sure that
the angle you use in the cosine is the angle
between the force and the displacement
vectors when they are placed tail to tail.
Sometimes may be used to label a differ-
ent angle in a given problem. For exam-
ple, is often used to label the angle of a
slope, in which case it may have nothing
to do with the angle between the force and
the displacement. To summarize: Just be-
cause an angle is labeled doesn’t mean
it’s automatically the correct angle to use
in the work formula.

u

u

u

W = Fd cos u

U

EXAMPLE 7–3 A Coasting Car I
A car of mass m coasts down a hill inclined at an angle below the horizontal. The car is acted on by three forces: (i) the normal
force exerted by the road, (ii) a force due to air resistance, and (iii) the force of gravity, Find the total work done on
the car as it travels a distance d along the road.

Picture the Problem
Because is the angle the slope makes with the horizontal, it is also the angle between and the downward normal direction, as
was shown in Figure 5–15. It follows that the angle between and the displacement is Our sketch also shows that
the angle between and is and the angle between and is 

Strategy
For each force we calculate the work using where is the angle between that particular force and the displace-
ment The total work is the sum of the work done by each of the three forces.

Solution

1. We start with the work done by the normal force, 
From the figure we see that for this force:

2. For the force of air resistance, 

3. For gravity the angle is as indicated in the 
figure. Recall that (see Appendix A):

4. The total work is the sum of the individual works:

Insight
The normal force is perpendicular to the motion of the car, and thus does no work. Air resistance points in a direction that op-
poses the motion, so it does negative work. On the other hand, gravity has a component in the direction of motion; therefore, its
work is positive. The physical significance of positive, negative, and zero work will be discussed in detail in the next section.

Practice Problem
Calculate the total work done on a 1550-kg car as it coasts 20.4 m down a hill with Let the force due to air resistance
be 15.0 N. [Answer: ]

Some related homework problems: Problem 12, Problem 66

Wtotal = WN + Wair + Wmg = 0 - Faird + mgd sin f = 0 - 306 J + 2.70 * 104 J = 2.67 * 104 J
f = 5.00°.

Wtotal = WN + Wair + Wmg = 0 - Faird + mgd sin f

cos190° - f2 = sin f
Wmg = mgd cos190° - f2 = mgd sin fu = 90° - f,u

Wair = Faird cos 180° = Faird1-12 = -Fairdu = 180°:

u = 90°
WN = Nd cos u = Nd cos 90° = Nd102 = 0N
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u = 180°.d
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The work done by the normal force, N, is

(A) positive

(B) negative

(C) zero ←
(D) cannot be determined



Question

A car speeds up as it coasts down a hill that makes an angle φ to
the horizontal.

7–1 WORK DONE BY A CONSTANT FORCE 185

When more than one force acts on an object, the total work is the sum of the
work done by each force separately. Thus, if force does work force does
work and so on, the total work is

7–4

Equivalently, the total work can be calculated by first performing a vector sum of
all the forces acting on an object to obtain and then using our basic definition
of work:

7–5

where is the angle between and the displacement In the next two Exam-
ples we calculate the total work in each of these ways.

d
!
.F

!
totalu

Wtotal = 1Ftotal cos u2d = Ftotal d cos u

F
!
total

Wtotal = W1 + W2 + W3 + Á = aWi

W2,
F
!
2W1,F

!
1

PROBLEM-SOLVING NOTE

Be Careful About the Angle 

In calculating be sure that
the angle you use in the cosine is the angle
between the force and the displacement
vectors when they are placed tail to tail.
Sometimes may be used to label a differ-
ent angle in a given problem. For exam-
ple, is often used to label the angle of a
slope, in which case it may have nothing
to do with the angle between the force and
the displacement. To summarize: Just be-
cause an angle is labeled doesn’t mean
it’s automatically the correct angle to use
in the work formula.

u

u

u

W = Fd cos u

U

EXAMPLE 7–3 A Coasting Car I
A car of mass m coasts down a hill inclined at an angle below the horizontal. The car is acted on by three forces: (i) the normal
force exerted by the road, (ii) a force due to air resistance, and (iii) the force of gravity, Find the total work done on
the car as it travels a distance d along the road.

Picture the Problem
Because is the angle the slope makes with the horizontal, it is also the angle between and the downward normal direction, as
was shown in Figure 5–15. It follows that the angle between and the displacement is Our sketch also shows that
the angle between and is and the angle between and is 

Strategy
For each force we calculate the work using where is the angle between that particular force and the displace-
ment The total work is the sum of the work done by each of the three forces.

Solution

1. We start with the work done by the normal force, 
From the figure we see that for this force:

2. For the force of air resistance, 

3. For gravity the angle is as indicated in the 
figure. Recall that (see Appendix A):

4. The total work is the sum of the individual works:

Insight
The normal force is perpendicular to the motion of the car, and thus does no work. Air resistance points in a direction that op-
poses the motion, so it does negative work. On the other hand, gravity has a component in the direction of motion; therefore, its
work is positive. The physical significance of positive, negative, and zero work will be discussed in detail in the next section.

Practice Problem
Calculate the total work done on a 1550-kg car as it coasts 20.4 m down a hill with Let the force due to air resistance
be 15.0 N. [Answer: ]

Some related homework problems: Problem 12, Problem 66

Wtotal = WN + Wair + Wmg = 0 - Faird + mgd sin f = 0 - 306 J + 2.70 * 104 J = 2.67 * 104 J
f = 5.00°.

Wtotal = WN + Wair + Wmg = 0 - Faird + mgd sin f

cos190° - f2 = sin f
Wmg = mgd cos190° - f2 = mgd sin fu = 90° - f,u

Wair = Faird cos 180° = Faird1-12 = -Fairdu = 180°:

u = 90°
WN = Nd cos u = Nd cos 90° = Nd102 = 0N
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The work done by the air resistance (Fair force) is

(A) positive

(B) negative

(C) zero

(D) cannot be determined



Question

A car speeds up as it coasts down a hill that makes an angle φ to
the horizontal.

7–1 WORK DONE BY A CONSTANT FORCE 185

When more than one force acts on an object, the total work is the sum of the
work done by each force separately. Thus, if force does work force does
work and so on, the total work is

7–4

Equivalently, the total work can be calculated by first performing a vector sum of
all the forces acting on an object to obtain and then using our basic definition
of work:

7–5

where is the angle between and the displacement In the next two Exam-
ples we calculate the total work in each of these ways.

d
!
.F

!
totalu

Wtotal = 1Ftotal cos u2d = Ftotal d cos u

F
!
total

Wtotal = W1 + W2 + W3 + Á = aWi

W2,
F
!
2W1,F

!
1

PROBLEM-SOLVING NOTE

Be Careful About the Angle 

In calculating be sure that
the angle you use in the cosine is the angle
between the force and the displacement
vectors when they are placed tail to tail.
Sometimes may be used to label a differ-
ent angle in a given problem. For exam-
ple, is often used to label the angle of a
slope, in which case it may have nothing
to do with the angle between the force and
the displacement. To summarize: Just be-
cause an angle is labeled doesn’t mean
it’s automatically the correct angle to use
in the work formula.

u

u

u

W = Fd cos u

U

EXAMPLE 7–3 A Coasting Car I
A car of mass m coasts down a hill inclined at an angle below the horizontal. The car is acted on by three forces: (i) the normal
force exerted by the road, (ii) a force due to air resistance, and (iii) the force of gravity, Find the total work done on
the car as it travels a distance d along the road.

Picture the Problem
Because is the angle the slope makes with the horizontal, it is also the angle between and the downward normal direction, as
was shown in Figure 5–15. It follows that the angle between and the displacement is Our sketch also shows that
the angle between and is and the angle between and is 

Strategy
For each force we calculate the work using where is the angle between that particular force and the displace-
ment The total work is the sum of the work done by each of the three forces.

Solution

1. We start with the work done by the normal force, 
From the figure we see that for this force:

2. For the force of air resistance, 

3. For gravity the angle is as indicated in the 
figure. Recall that (see Appendix A):

4. The total work is the sum of the individual works:

Insight
The normal force is perpendicular to the motion of the car, and thus does no work. Air resistance points in a direction that op-
poses the motion, so it does negative work. On the other hand, gravity has a component in the direction of motion; therefore, its
work is positive. The physical significance of positive, negative, and zero work will be discussed in detail in the next section.

Practice Problem
Calculate the total work done on a 1550-kg car as it coasts 20.4 m down a hill with Let the force due to air resistance
be 15.0 N. [Answer: ]

Some related homework problems: Problem 12, Problem 66

Wtotal = WN + Wair + Wmg = 0 - Faird + mgd sin f = 0 - 306 J + 2.70 * 104 J = 2.67 * 104 J
f = 5.00°.

Wtotal = WN + Wair + Wmg = 0 - Faird + mgd sin f

cos190° - f2 = sin f
Wmg = mgd cos190° - f2 = mgd sin fu = 90° - f,u

Wair = Faird cos 180° = Faird1-12 = -Fairdu = 180°:

u = 90°
WN = Nd cos u = Nd cos 90° = Nd102 = 0N
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The work done by the air resistance (Fair force) is

(A) positive

(B) negative ←
(C) zero

(D) cannot be determined



Question

A car speeds up as it coasts down a hill that makes an angle φ to
the horizontal.

7–1 WORK DONE BY A CONSTANT FORCE 185

When more than one force acts on an object, the total work is the sum of the
work done by each force separately. Thus, if force does work force does
work and so on, the total work is

7–4

Equivalently, the total work can be calculated by first performing a vector sum of
all the forces acting on an object to obtain and then using our basic definition
of work:

7–5

where is the angle between and the displacement In the next two Exam-
ples we calculate the total work in each of these ways.

d
!
.F

!
totalu

Wtotal = 1Ftotal cos u2d = Ftotal d cos u

F
!
total

Wtotal = W1 + W2 + W3 + Á = aWi

W2,
F
!
2W1,F

!
1

PROBLEM-SOLVING NOTE

Be Careful About the Angle 

In calculating be sure that
the angle you use in the cosine is the angle
between the force and the displacement
vectors when they are placed tail to tail.
Sometimes may be used to label a differ-
ent angle in a given problem. For exam-
ple, is often used to label the angle of a
slope, in which case it may have nothing
to do with the angle between the force and
the displacement. To summarize: Just be-
cause an angle is labeled doesn’t mean
it’s automatically the correct angle to use
in the work formula.

u

u

u

W = Fd cos u

U

EXAMPLE 7–3 A Coasting Car I
A car of mass m coasts down a hill inclined at an angle below the horizontal. The car is acted on by three forces: (i) the normal
force exerted by the road, (ii) a force due to air resistance, and (iii) the force of gravity, Find the total work done on
the car as it travels a distance d along the road.

Picture the Problem
Because is the angle the slope makes with the horizontal, it is also the angle between and the downward normal direction, as
was shown in Figure 5–15. It follows that the angle between and the displacement is Our sketch also shows that
the angle between and is and the angle between and is 

Strategy
For each force we calculate the work using where is the angle between that particular force and the displace-
ment The total work is the sum of the work done by each of the three forces.

Solution

1. We start with the work done by the normal force, 
From the figure we see that for this force:

2. For the force of air resistance, 

3. For gravity the angle is as indicated in the 
figure. Recall that (see Appendix A):

4. The total work is the sum of the individual works:

Insight
The normal force is perpendicular to the motion of the car, and thus does no work. Air resistance points in a direction that op-
poses the motion, so it does negative work. On the other hand, gravity has a component in the direction of motion; therefore, its
work is positive. The physical significance of positive, negative, and zero work will be discussed in detail in the next section.

Practice Problem
Calculate the total work done on a 1550-kg car as it coasts 20.4 m down a hill with Let the force due to air resistance
be 15.0 N. [Answer: ]

Some related homework problems: Problem 12, Problem 66

Wtotal = WN + Wair + Wmg = 0 - Faird + mgd sin f = 0 - 306 J + 2.70 * 104 J = 2.67 * 104 J
f = 5.00°.

Wtotal = WN + Wair + Wmg = 0 - Faird + mgd sin f

cos190° - f2 = sin f
Wmg = mgd cos190° - f2 = mgd sin fu = 90° - f,u

Wair = Faird cos 180° = Faird1-12 = -Fairdu = 180°:

u = 90°
WN = Nd cos u = Nd cos 90° = Nd102 = 0N
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The net (or total) work done by all forces on the car is

(A) positive

(B) negative

(C) zero

(D) cannot be determined



Question

A car speeds up as it coasts down a hill that makes an angle φ to
the horizontal.

7–1 WORK DONE BY A CONSTANT FORCE 185

When more than one force acts on an object, the total work is the sum of the
work done by each force separately. Thus, if force does work force does
work and so on, the total work is

7–4

Equivalently, the total work can be calculated by first performing a vector sum of
all the forces acting on an object to obtain and then using our basic definition
of work:

7–5

where is the angle between and the displacement In the next two Exam-
ples we calculate the total work in each of these ways.

d
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.F

!
totalu

Wtotal = 1Ftotal cos u2d = Ftotal d cos u

F
!
total

Wtotal = W1 + W2 + W3 + Á = aWi

W2,
F
!
2W1,F

!
1

PROBLEM-SOLVING NOTE

Be Careful About the Angle 

In calculating be sure that
the angle you use in the cosine is the angle
between the force and the displacement
vectors when they are placed tail to tail.
Sometimes may be used to label a differ-
ent angle in a given problem. For exam-
ple, is often used to label the angle of a
slope, in which case it may have nothing
to do with the angle between the force and
the displacement. To summarize: Just be-
cause an angle is labeled doesn’t mean
it’s automatically the correct angle to use
in the work formula.

u

u

u

W = Fd cos u

U

EXAMPLE 7–3 A Coasting Car I
A car of mass m coasts down a hill inclined at an angle below the horizontal. The car is acted on by three forces: (i) the normal
force exerted by the road, (ii) a force due to air resistance, and (iii) the force of gravity, Find the total work done on
the car as it travels a distance d along the road.

Picture the Problem
Because is the angle the slope makes with the horizontal, it is also the angle between and the downward normal direction, as
was shown in Figure 5–15. It follows that the angle between and the displacement is Our sketch also shows that
the angle between and is and the angle between and is 

Strategy
For each force we calculate the work using where is the angle between that particular force and the displace-
ment The total work is the sum of the work done by each of the three forces.

Solution

1. We start with the work done by the normal force, 
From the figure we see that for this force:

2. For the force of air resistance, 

3. For gravity the angle is as indicated in the 
figure. Recall that (see Appendix A):

4. The total work is the sum of the individual works:

Insight
The normal force is perpendicular to the motion of the car, and thus does no work. Air resistance points in a direction that op-
poses the motion, so it does negative work. On the other hand, gravity has a component in the direction of motion; therefore, its
work is positive. The physical significance of positive, negative, and zero work will be discussed in detail in the next section.

Practice Problem
Calculate the total work done on a 1550-kg car as it coasts 20.4 m down a hill with Let the force due to air resistance
be 15.0 N. [Answer: ]

Some related homework problems: Problem 12, Problem 66

Wtotal = WN + Wair + Wmg = 0 - Faird + mgd sin f = 0 - 306 J + 2.70 * 104 J = 2.67 * 104 J
f = 5.00°.

Wtotal = WN + Wair + Wmg = 0 - Faird + mgd sin f

cos190° - f2 = sin f
Wmg = mgd cos190° - f2 = mgd sin fu = 90° - f,u

Wair = Faird cos 180° = Faird1-12 = -Fairdu = 180°:
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The net (or total) work done by all forces on the car is

(A) positive ←
(B) negative

(C) zero

(D) cannot be determined



Work Done by a Variable Force

We can understand that the work done by a force is the area under
the force-displacement curve.

Plotting a constant force F as a function of x (∆x = d), F (x):

190 CHAPTER 7 WORK AND KINETIC ENERGY

3. Substitute numerical values to get the final answer:

Insight
If the sled had started from rest, instead of with an initial speed of 0.500 m/s, would its final speed be 

No. If the initial speed is zero, then Why don’t the speeds add and subtract in a 

straightforward way? The reason is that the work-energy theorem depends on the square of the speeds rather than on and 
directly.

Practice Problem
Suppose the sled starts with a speed of 0.500 m/s and has a final speed of 2.50 m/s after the boy pulls it through a distance
of 3.00 m. What force did the boy exert on the sled? [Answer: ]

Some related homework problems: Problem 22, Problem 48

F = Wtotal/1d cos u2 = ¢K/1d cos u2 = 7.32 N

vfvi

vf = A2Wtotal
m

= A2119.2 J2
6.40 kg

= 2.45 m/s.

2.00 m/s?
2.50 m/s - 0.500 m/s =

 = 2.50 m/s

 vf = A2119.2 J2
6.40 kg

+ 10.500 m/s22

The final speeds in the previous Examples could have been found using
Newton’s laws and the constant-acceleration kinematics of Chapter 2, as indicated
in the Insight following Example 7–5. The work-energy theorem provides an alter-
native method of calculation that is often much easier to apply than Newton’s
laws. We return to this point in Chapter 8.

CONCEPTUAL CHECKPOINT 7–2 Compare the Work
To accelerate a certain car from rest to the speed v requires the work W1. The work needed to ac-
celerate the car from v to 2v is W2. Which of the following is correct: (a) W2 = W1, (b) W2 = 2W1,
(c) W2 = 3W1, (d) W2 = 4W1?

Reasoning and Discussion
A common mistake is to reason that since we increase the speed by the same amount in each case,
the work required is the same. It is not, and the reason is that work depends on the speed squared
rather than on the speed itself.

To see how this works, first calculate W1, the work needed to go from rest to a speed v. From the
work-energy theorem, with vi = 0, and vf = v, we find Similarly, the

work needed to go from rest, vi= 0, to a speed vf= 2v, is simply There-
fore, the work needed to increase the speed from v to 2v is the difference:

Answer:
(c) W2 = 3W1

7–3 Work Done by a Variable Force
Thus far we have calculated work only for constant forces, yet most forces in na-
ture vary with position. For example, the force exerted by a spring depends on
how far the spring is stretched, and the force of gravity between planets depends
on their separation. In this section we show how to calculate the work for a force
that varies with position.

First, let’s review briefly the case of a constant force, and develop a graphical in-
terpretation of work. Figure 7–6 shows a constant force plotted versus position, x.

W2 = 4W1 - W1 = 3W1.

1
2 m12v22 = 4 A12 mv2 B = 4W1.

W1 = 1
2 mvf 

2 - 1
2 mvi 

2 = 1
2 mv2.

▲ FIGURE 7–6 Graphical representation
of the work done by a constant force
A constant force F acting through a dis-
tance d does a work Note that
Fd is also equal to the shaded area be-
tween the force line and the x axis.

W = Fd.

v 2vv = 0

W1 W2

PROBLEM-SOLVING NOTE

Be Careful About Linear
Reasoning

Though some relations are linear—if you
double the mass, you double the kinetic
energy—others are not. For example, if
you double the speed, you quadruple the
kinetic energy. Be careful not to jump to
conclusions based on linear reasoning.

Fo
rc

e

Position

F
d

x1 x2O

Area = Fd = W
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We can also apply this idea when F (x) is not constant.

We can approximate the area under the curve by breaking it up
into rectangles and adding the area of each rectangle.

7–3 WORK DONE BY A VARIABLE FORCE 191

1Usually, area has the dimensions of or In this case, however,
the vertical axis is force and the horizontal axis is distance. As a result, the dimensions of
area are which in SI units is N # m = J.1force2 * 1distance2, length2.1length2 * 1length2,

If the force acts in the positive x direction and moves an object a distance d, from
to the work it does is Referring to the figure, we see

that the work is equal to the shaded area1 between the force line and the x axis.
Next, consider a force that has the value from to and a differ-

ent value from to as in Figure 7–7 (a). The work in this case is the
sum of the works done by and Therefore, which,
again, is the area between the force lines and the x axis. Clearly, this type of calcu-
lation can be extended to a force with any number of different values, as indicated
in Figure 7–7 (b).

If a force varies continuously with position, we can approximate it with a series
of constant values that follow the shape of the curve, as shown in Figure 7–8 (a). It
follows that the work done by the continuous force is approximately equal to the
area of the corresponding rectangles, as Figure 7–8 (b) shows. The approximation
can be made better by using more rectangles, as illustrated in Figure 7–8 (c). In the
limit of an infinite number of vanishingly small rectangles, the area of the rectan-
gles becomes identical to the area under the force curve. Hence this area is the work
done by the continuous force. To summarize:

The work done by a force in moving an object from and is equal to the
corresponding area between the force curve and the x axis.

A case of particular interest is that of a spring. Since the force exerted by a
spring is given by (Section 6–2), it follows that the force we must exert
to hold it at the position x is This is illustrated in Figure 7–9, where we also+kx.

Fx = -kx

x2x1

W = F1x1 + F21x2 - x12F2.F1

x = x2,x = x1F2

x = x1x = 0F1

W = Fd = F1x2 - x12.x2,x1

Fo
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F2
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x1 x2

F2 (x2 – x1)

F1 x1

(a)

O
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rc

e

Position

(b)

O

FIGURE 7–7 Work done by a noncon-
stant force
(a) A force with a value from 0 to 
and a value from to does the
work This is
simply the area of the two shaded rectan-
gles. (b) If a force takes on a number of
different values, the work it does is still
the total area between the force lines and
the x axis, just as in part (a).

W = F1x1 + F21x2 - x12.x2x1F2

x1F1

▲

Position

x1 x2

(c)

Fo
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e
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e
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x1 x2

(b)
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Position

x1 x2

(a)
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▲ FIGURE 7–8 Work done by a continuously varying force
(a) A continuously varying force can be approximated by a series of constant values that follow the shape of the curve. (b) The
work done by the continuous force is approximately equal to the area of the small rectangles corresponding to the constant values
of force shown in part (a). (c) In the limit of an infinite number of vanishingly small rectangles, we see that the work done by the
force is equal to the area between the force curve and the x axis.

O

x

Force 
of spring

Applied
force–kx +kx

F = kx

Equilibrium position
of spring

x = 0 x

A
pp

lie
d 

fo
rc

e

Position
▲ FIGURE 7–9 Stretching a spring
The force we must exert on a spring to
stretch it a distance x is Thus,
applied force versus position for a spring
is a straight line of slope k.

+ kx.
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Work Done by a Variable Force
The approximation becomes more accurate when we break it up
into more rectangles.
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the vertical axis is force and the horizontal axis is distance. As a result, the dimensions of
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follows that the work done by the continuous force is approximately equal to the
area of the corresponding rectangles, as Figure 7–8 (b) shows. The approximation
can be made better by using more rectangles, as illustrated in Figure 7–8 (c). In the
limit of an infinite number of vanishingly small rectangles, the area of the rectan-
gles becomes identical to the area under the force curve. Hence this area is the work
done by the continuous force. To summarize:

The work done by a force in moving an object from and is equal to the
corresponding area between the force curve and the x axis.

A case of particular interest is that of a spring. Since the force exerted by a
spring is given by (Section 6–2), it follows that the force we must exert
to hold it at the position x is This is illustrated in Figure 7–9, where we also+kx.
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stant force
(a) A force with a value from 0 to 
and a value from to does the
work This is
simply the area of the two shaded rectan-
gles. (b) If a force takes on a number of
different values, the work it does is still
the total area between the force lines and
the x axis, just as in part (a).
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▲ FIGURE 7–8 Work done by a continuously varying force
(a) A continuously varying force can be approximated by a series of constant values that follow the shape of the curve. (b) The
work done by the continuous force is approximately equal to the area of the small rectangles corresponding to the constant values
of force shown in part (a). (c) In the limit of an infinite number of vanishingly small rectangles, we see that the work done by the
force is equal to the area between the force curve and the x axis.
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The force we must exert on a spring to
stretch it a distance x is Thus,
applied force versus position for a spring
is a straight line of slope k.
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It we break it up into an infinite number of infinitesimally thin
rectangles, we will be evaluating the integral of the force with
respect to the displacement of the object.



Question

What is the work done by the force indicated in the graph as the
particle moves from x = 0 to x = 6 m?

184 Chapter 7 Energy of a System

If the size of the small displacements is allowed to approach zero, the number of 
terms in the sum increases without limit but the value of the sum approaches a defi-
nite value equal to the area bounded by the Fx curve and the x axis:

lim
Dx S 0

axf

xi

 Fx  Dx 5 3
xf

xi

 Fx dx

Therefore, we can express the work done by Fx on the system of the particle as it 
moves from xi to xf as

 W 5 3
xf

xi

 Fx dx (7.7)

This equation reduces to Equation 7.1 when the component Fx 5 F cos u remains 
constant.
 If more than one force acts on a system and the system can be modeled as a particle, 
the total work done on the system is just the work done by the net force. If we 
express the net force in the x direction as o Fx, the total work, or net work, done as 
the particle moves from xi to xf is

aW 5 Wext 5 3
xf

xi

1 a Fx 2  dx (particle)

For the general case of a net force g  F
S

 whose magnitude and direction may both 
vary, we use the scalar product,

 aW 5 Wext 5 3 1 a F
S 2 ? d rS  (particle) (7.8)

where the integral is calculated over the path that the particle takes through space. 
The subscript “ext” on work reminds us that the net work is done by an external 
agent on the system. We will use this notation in this chapter as a reminder and to 
differentiate this work from an internal work to be described shortly.
 If the system cannot be modeled as a particle (for example, if the system is 
deformable), we cannot use Equation 7.8 because different forces on the system 
may move through different displacements. In this case, we must evaluate the work 
done by each force separately and then add the works algebraically to find the net 
work done on the system:

 aW 5 Wext 5 a
forces

 a3  F
S

? d rSb (deformable system) 

Fx Area  =  Fx  x

Fx

xxfxi

x

Fx

xxfxi

Work

!

!

The total work done for the 
displacement from xi to xf is 
approximately equal to the sum 
of the areas of all the rectangles.

The work done by the component 
Fx of the varying force as the par-
ticle moves from xi to xf is exactly 
equal to the area under the curve.

a

b

Figure 7.7  (a) The work done on 
a particle by the force component 
Fx for the small displacement Dx is 
Fx Dx, which equals the area of the 
shaded rectangle. (b) The width Dx 
of each rectangle is shrunk to zero.

Example 7.4   Calculating Total Work Done from a Graph

A force acting on a particle varies with x as shown in Figure 7.8. Calculate the 
work done by the force on the particle as it moves from x 5 0 to x 5 6.0 m.

Conceptualize  Imagine a particle subject to the force in Figure 7.8. The force 
remains constant as the particle moves through the first 4.0 m and then decreases 
linearly to zero at 6.0 m. In terms of earlier discussions of motion, the particle could 
be modeled as a particle under constant acceleration for the first 4.0 m because 
the force is constant. Between 4.0 m and 6.0 m, however, the motion does not fit 
into one of our earlier analysis models because the acceleration of the particle is 
changing. If the particle starts from rest, its speed increases throughout the motion, 
and the particle is always moving in the positive x direction. These details about its 
speed and direction are not necessary for the calculation of the work done, however.

Categorize  Because the force varies during the motion of the particle, we must 
use the techniques for work done by varying forces. In this case, the graphical representation in Figure 7.8 can be used 
to evaluate the work done.

S O L U T I O N

1 2 3 4 5 6
x (m)0

5

Fx (N)

!

" #

The net work done by this force 
is the area under the curve.

Figure 7.8  (Example 7.4) The 
force acting on a particle is constant 
for the first 4.0 m of motion and then 
decreases linearly with x from x# 5 
4.0 m to x! 5 6.0 m.

W = 25 J.
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Work Done stretching a Spring
One important example of a force that varies with an object’s
displacement is the spring force.

7–3 WORK DONE BY A VARIABLE FORCE 191

1Usually, area has the dimensions of or In this case, however,
the vertical axis is force and the horizontal axis is distance. As a result, the dimensions of
area are which in SI units is N # m = J.1force2 * 1distance2, length2.1length2 * 1length2,

If the force acts in the positive x direction and moves an object a distance d, from
to the work it does is Referring to the figure, we see

that the work is equal to the shaded area1 between the force line and the x axis.
Next, consider a force that has the value from to and a differ-

ent value from to as in Figure 7–7 (a). The work in this case is the
sum of the works done by and Therefore, which,
again, is the area between the force lines and the x axis. Clearly, this type of calcu-
lation can be extended to a force with any number of different values, as indicated
in Figure 7–7 (b).

If a force varies continuously with position, we can approximate it with a series
of constant values that follow the shape of the curve, as shown in Figure 7–8 (a). It
follows that the work done by the continuous force is approximately equal to the
area of the corresponding rectangles, as Figure 7–8 (b) shows. The approximation
can be made better by using more rectangles, as illustrated in Figure 7–8 (c). In the
limit of an infinite number of vanishingly small rectangles, the area of the rectan-
gles becomes identical to the area under the force curve. Hence this area is the work
done by the continuous force. To summarize:

The work done by a force in moving an object from and is equal to the
corresponding area between the force curve and the x axis.

A case of particular interest is that of a spring. Since the force exerted by a
spring is given by (Section 6–2), it follows that the force we must exert
to hold it at the position x is This is illustrated in Figure 7–9, where we also+kx.

Fx = -kx
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FIGURE 7–7 Work done by a noncon-
stant force
(a) A force with a value from 0 to 
and a value from to does the
work This is
simply the area of the two shaded rectan-
gles. (b) If a force takes on a number of
different values, the work it does is still
the total area between the force lines and
the x axis, just as in part (a).
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▲ FIGURE 7–8 Work done by a continuously varying force
(a) A continuously varying force can be approximated by a series of constant values that follow the shape of the curve. (b) The
work done by the continuous force is approximately equal to the area of the small rectangles corresponding to the constant values
of force shown in part (a). (c) In the limit of an infinite number of vanishingly small rectangles, we see that the work done by the
force is equal to the area between the force curve and the x axis.
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▲ FIGURE 7–9 Stretching a spring
The force we must exert on a spring to
stretch it a distance x is Thus,
applied force versus position for a spring
is a straight line of slope k.

+ kx.
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Fapp = kx192 CHAPTER 7 WORK AND KINETIC ENERGY

show that the corresponding force curve is a straight line extending from the ori-
gin. Therefore, the work we do in stretching a spring from (equilibrium) to
the general position x is the shaded, triangular area shown in Figure 7–10. This
area is equal to where in this case the base is x and the height is
kx. As a result, the work is Similar reasoning shows that the work
needed to compress a spring a distance x is also Therefore,

Work to Stretch or Compress a Spring a Distance x from Equilibrium

7–8

SI unit: joule, J

We can get a feeling for the amount of work required to compress a typical
spring in the following Exercise.

EXERCISE 7–4
The spring in a pinball launcher has a force constant of 405 N/m. How much work is
required to compress the spring a distance of 3.00 cm?

Solution

Note that the work done in compressing or expanding a spring varies with the
second power of x, the displacement from equilibrium. The consequences of this
dependence are explored throughout the rest of this section.

Before we consider a specific example, however, recall that the results for a
spring apply to more than just the classic case of a helical coil of wire. In fact, any
flexible structure satisfies the relations and given the appro-
priate value of the force constant, k, and small enough displacements, x. Several
examples were mentioned in Section 6-2.

Here we consider an example from the field of nanotechnology; namely, the
cantilevers used in atomic-force microscopy (AFM). As we show in Example 7–7,
a typical atomic-force cantilever is basically a thin silicon bar about 250 !m in
length, supported at one end like a diving board, with a sharp, hanging point at
the other end. When the point is pulled across the surface of a material—like an
old-fashioned phonograph needle in the groove of a record—individual atoms on
the surface cause the point to move up and down, deflecting the cantilever. These
deflections, which can be measured by reflecting a laser beam from the top of the
cantilever, are then converted into an atomic-level picture of the surface, as shown
in the accompanying photograph.

A typical force constant for an AFM cantilever is on the order of 1 N/m, much
smaller than the 100–500 N/m force constant of a common lab spring. The impli-
cations of this are discussed in the following Example.

W = 1
2 kx2,Fx = -kx

W = 1
2 kx2 = 1

2 1405 N/m210.0300 m22 = 0.182 J

W = 1
2 kx2

1
2 kx2.
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2 kx2.
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▲ FIGURE 7–10 Work needed to stretch
a spring a distance x
The work done is equal to the shaded
area, which is a right triangle. The area
of the triangle is 1

21x21kx2 = 1
2 kx2.

EXAMPLE 7–7 Flexing an AFM Cantilever
The work required to deflect a typical AFM cantilever by 0.10 nm is (a) What is the force constant of the cantilever,
treating it as an ideal spring? (b) How much work is required to increase the deflection of the cantilever from 0.10 nm to 0.20 nm?

Picture the Problem
The sketch on the left (on the next page) shows the cantilever and its sharp point being dragged across the surface of a material.
In the sketch to the right, we show an exaggerated view of the cantilever’s deflection, and indicate that it is equivalent to the
stretch of an “effective” ideal spring with a force constant k.

Strategy

a. Given that for a deflection of we can find the effective force constant k using 
b. To find the work required to deflect from to we calculate the work to deflect from to

and then subtract the work needed to deflect from to (Note that we can not
simply assume the work to go from to is the same as the work to go from to ).x = 0.10 nmx = 0x = 0.20 nmx = 0.10 nm

x = 0.10 nm, W0:1.x = 0x = 0.20 nm, W0:2,
x = 0x = 0.20 nm, W1:2,x = 0.10 nm

W = 1
2 kx2.x = 0.10 nm,W = 1.2 * 10-20 J

1.2 * 10-20 J.

▲ Human chromosomes, as imaged by
an atomic force microscope.
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What is the work done by the applied force in stretching the spring
a distance x?
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show that the corresponding force curve is a straight line extending from the ori-
gin. Therefore, the work we do in stretching a spring from (equilibrium) to
the general position x is the shaded, triangular area shown in Figure 7–10. This
area is equal to where in this case the base is x and the height is
kx. As a result, the work is Similar reasoning shows that the work
needed to compress a spring a distance x is also Therefore,

Work to Stretch or Compress a Spring a Distance x from Equilibrium

7–8

SI unit: joule, J

We can get a feeling for the amount of work required to compress a typical
spring in the following Exercise.

EXERCISE 7–4
The spring in a pinball launcher has a force constant of 405 N/m. How much work is
required to compress the spring a distance of 3.00 cm?

Solution

Note that the work done in compressing or expanding a spring varies with the
second power of x, the displacement from equilibrium. The consequences of this
dependence are explored throughout the rest of this section.

Before we consider a specific example, however, recall that the results for a
spring apply to more than just the classic case of a helical coil of wire. In fact, any
flexible structure satisfies the relations and given the appro-
priate value of the force constant, k, and small enough displacements, x. Several
examples were mentioned in Section 6-2.

Here we consider an example from the field of nanotechnology; namely, the
cantilevers used in atomic-force microscopy (AFM). As we show in Example 7–7,
a typical atomic-force cantilever is basically a thin silicon bar about 250 !m in
length, supported at one end like a diving board, with a sharp, hanging point at
the other end. When the point is pulled across the surface of a material—like an
old-fashioned phonograph needle in the groove of a record—individual atoms on
the surface cause the point to move up and down, deflecting the cantilever. These
deflections, which can be measured by reflecting a laser beam from the top of the
cantilever, are then converted into an atomic-level picture of the surface, as shown
in the accompanying photograph.

A typical force constant for an AFM cantilever is on the order of 1 N/m, much
smaller than the 100–500 N/m force constant of a common lab spring. The impli-
cations of this are discussed in the following Example.

W = 1
2 kx2,Fx = -kx

W = 1
2 kx2 = 1

2 1405 N/m210.0300 m22 = 0.182 J

W = 1
2 kx2

1
2 kx2.

1
21x21kx2 = 1

2 kx2.

1
21base21height2, x = 0

Fo
rc

e

Position

Area = W

kx

O x

▲ FIGURE 7–10 Work needed to stretch
a spring a distance x
The work done is equal to the shaded
area, which is a right triangle. The area
of the triangle is 1

21x21kx2 = 1
2 kx2.

EXAMPLE 7–7 Flexing an AFM Cantilever
The work required to deflect a typical AFM cantilever by 0.10 nm is (a) What is the force constant of the cantilever,
treating it as an ideal spring? (b) How much work is required to increase the deflection of the cantilever from 0.10 nm to 0.20 nm?

Picture the Problem
The sketch on the left (on the next page) shows the cantilever and its sharp point being dragged across the surface of a material.
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Summary

• work

• the vector dot product

• net work

• work done by a varying force

Homework
• Ch 7 Ques: 3, 5; Prob: 8, 14, 18, 23

1Answers: 8. 5.0× 103 J, 14. 15.3 J, 18. a) 36 kJ, b) 2.0× 102 J


