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Last time

• work

• the vector dot product

• net work



Overview

• work done by a varying force

• kinetic energy

• the work-kinetic energy theorem

• power



Work Done by a Variable Force

We can understand that the work done by a force is the area under
the force-displacement curve.

Plotting a constant force F as a function of x (∆x = d), F (x):
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3. Substitute numerical values to get the final answer:

Insight
If the sled had started from rest, instead of with an initial speed of 0.500 m/s, would its final speed be 

No. If the initial speed is zero, then Why don’t the speeds add and subtract in a 

straightforward way? The reason is that the work-energy theorem depends on the square of the speeds rather than on and 
directly.

Practice Problem
Suppose the sled starts with a speed of 0.500 m/s and has a final speed of 2.50 m/s after the boy pulls it through a distance
of 3.00 m. What force did the boy exert on the sled? [Answer: ]

Some related homework problems: Problem 22, Problem 48

F = Wtotal/1d cos u2 = ¢K/1d cos u2 = 7.32 N

vfvi

vf = A2Wtotal
m

= A2119.2 J2
6.40 kg

= 2.45 m/s.

2.00 m/s?
2.50 m/s - 0.500 m/s =

 = 2.50 m/s

 vf = A2119.2 J2
6.40 kg

+ 10.500 m/s22

The final speeds in the previous Examples could have been found using
Newton’s laws and the constant-acceleration kinematics of Chapter 2, as indicated
in the Insight following Example 7–5. The work-energy theorem provides an alter-
native method of calculation that is often much easier to apply than Newton’s
laws. We return to this point in Chapter 8.

CONCEPTUAL CHECKPOINT 7–2 Compare the Work
To accelerate a certain car from rest to the speed v requires the work W1. The work needed to ac-
celerate the car from v to 2v is W2. Which of the following is correct: (a) W2 = W1, (b) W2 = 2W1,
(c) W2 = 3W1, (d) W2 = 4W1?

Reasoning and Discussion
A common mistake is to reason that since we increase the speed by the same amount in each case,
the work required is the same. It is not, and the reason is that work depends on the speed squared
rather than on the speed itself.

To see how this works, first calculate W1, the work needed to go from rest to a speed v. From the
work-energy theorem, with vi = 0, and vf = v, we find Similarly, the

work needed to go from rest, vi= 0, to a speed vf= 2v, is simply There-
fore, the work needed to increase the speed from v to 2v is the difference:

Answer:
(c) W2 = 3W1

7–3 Work Done by a Variable Force
Thus far we have calculated work only for constant forces, yet most forces in na-
ture vary with position. For example, the force exerted by a spring depends on
how far the spring is stretched, and the force of gravity between planets depends
on their separation. In this section we show how to calculate the work for a force
that varies with position.

First, let’s review briefly the case of a constant force, and develop a graphical in-
terpretation of work. Figure 7–6 shows a constant force plotted versus position, x.

W2 = 4W1 - W1 = 3W1.

1
2 m12v22 = 4 A12 mv2 B = 4W1.

W1 = 1
2 mvf 

2 - 1
2 mvi 

2 = 1
2 mv2.

▲ FIGURE 7–6 Graphical representation
of the work done by a constant force
A constant force F acting through a dis-
tance d does a work Note that
Fd is also equal to the shaded area be-
tween the force line and the x axis.

W = Fd.

v 2vv = 0

W1 W2

PROBLEM-SOLVING NOTE

Be Careful About Linear
Reasoning

Though some relations are linear—if you
double the mass, you double the kinetic
energy—others are not. For example, if
you double the speed, you quadruple the
kinetic energy. Be careful not to jump to
conclusions based on linear reasoning.
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Area = Fd = W
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Work Done by a Variable Force

We can also apply this idea when F (x) is not constant.

We can approximate the area under the curve by breaking it up
into rectangles and adding the area of each rectangle.

7–3 WORK DONE BY A VARIABLE FORCE 191

1Usually, area has the dimensions of or In this case, however,
the vertical axis is force and the horizontal axis is distance. As a result, the dimensions of
area are which in SI units is N # m = J.1force2 * 1distance2, length2.1length2 * 1length2,

If the force acts in the positive x direction and moves an object a distance d, from
to the work it does is Referring to the figure, we see

that the work is equal to the shaded area1 between the force line and the x axis.
Next, consider a force that has the value from to and a differ-

ent value from to as in Figure 7–7 (a). The work in this case is the
sum of the works done by and Therefore, which,
again, is the area between the force lines and the x axis. Clearly, this type of calcu-
lation can be extended to a force with any number of different values, as indicated
in Figure 7–7 (b).

If a force varies continuously with position, we can approximate it with a series
of constant values that follow the shape of the curve, as shown in Figure 7–8 (a). It
follows that the work done by the continuous force is approximately equal to the
area of the corresponding rectangles, as Figure 7–8 (b) shows. The approximation
can be made better by using more rectangles, as illustrated in Figure 7–8 (c). In the
limit of an infinite number of vanishingly small rectangles, the area of the rectan-
gles becomes identical to the area under the force curve. Hence this area is the work
done by the continuous force. To summarize:

The work done by a force in moving an object from and is equal to the
corresponding area between the force curve and the x axis.

A case of particular interest is that of a spring. Since the force exerted by a
spring is given by (Section 6–2), it follows that the force we must exert
to hold it at the position x is This is illustrated in Figure 7–9, where we also+kx.

Fx = -kx

x2x1

W = F1x1 + F21x2 - x12F2.F1

x = x2,x = x1F2

x = x1x = 0F1

W = Fd = F1x2 - x12.x2,x1
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FIGURE 7–7 Work done by a noncon-
stant force
(a) A force with a value from 0 to 
and a value from to does the
work This is
simply the area of the two shaded rectan-
gles. (b) If a force takes on a number of
different values, the work it does is still
the total area between the force lines and
the x axis, just as in part (a).

W = F1x1 + F21x2 - x12.x2x1F2

x1F1

▲
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x1 x2
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▲ FIGURE 7–8 Work done by a continuously varying force
(a) A continuously varying force can be approximated by a series of constant values that follow the shape of the curve. (b) The
work done by the continuous force is approximately equal to the area of the small rectangles corresponding to the constant values
of force shown in part (a). (c) In the limit of an infinite number of vanishingly small rectangles, we see that the work done by the
force is equal to the area between the force curve and the x axis.
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F = kx

Equilibrium position
of spring

x = 0 x
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▲ FIGURE 7–9 Stretching a spring
The force we must exert on a spring to
stretch it a distance x is Thus,
applied force versus position for a spring
is a straight line of slope k.

+ kx.
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Work Done by a Variable Force
The approximation becomes more accurate when we break it up
into more rectangles.
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1Usually, area has the dimensions of or In this case, however,
the vertical axis is force and the horizontal axis is distance. As a result, the dimensions of
area are which in SI units is N # m = J.1force2 * 1distance2, length2.1length2 * 1length2,

If the force acts in the positive x direction and moves an object a distance d, from
to the work it does is Referring to the figure, we see

that the work is equal to the shaded area1 between the force line and the x axis.
Next, consider a force that has the value from to and a differ-

ent value from to as in Figure 7–7 (a). The work in this case is the
sum of the works done by and Therefore, which,
again, is the area between the force lines and the x axis. Clearly, this type of calcu-
lation can be extended to a force with any number of different values, as indicated
in Figure 7–7 (b).

If a force varies continuously with position, we can approximate it with a series
of constant values that follow the shape of the curve, as shown in Figure 7–8 (a). It
follows that the work done by the continuous force is approximately equal to the
area of the corresponding rectangles, as Figure 7–8 (b) shows. The approximation
can be made better by using more rectangles, as illustrated in Figure 7–8 (c). In the
limit of an infinite number of vanishingly small rectangles, the area of the rectan-
gles becomes identical to the area under the force curve. Hence this area is the work
done by the continuous force. To summarize:

The work done by a force in moving an object from and is equal to the
corresponding area between the force curve and the x axis.

A case of particular interest is that of a spring. Since the force exerted by a
spring is given by (Section 6–2), it follows that the force we must exert
to hold it at the position x is This is illustrated in Figure 7–9, where we also+kx.
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FIGURE 7–7 Work done by a noncon-
stant force
(a) A force with a value from 0 to 
and a value from to does the
work This is
simply the area of the two shaded rectan-
gles. (b) If a force takes on a number of
different values, the work it does is still
the total area between the force lines and
the x axis, just as in part (a).
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▲ FIGURE 7–8 Work done by a continuously varying force
(a) A continuously varying force can be approximated by a series of constant values that follow the shape of the curve. (b) The
work done by the continuous force is approximately equal to the area of the small rectangles corresponding to the constant values
of force shown in part (a). (c) In the limit of an infinite number of vanishingly small rectangles, we see that the work done by the
force is equal to the area between the force curve and the x axis.
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▲ FIGURE 7–9 Stretching a spring
The force we must exert on a spring to
stretch it a distance x is Thus,
applied force versus position for a spring
is a straight line of slope k.
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It we break it up into an infinite number of infinitesimally thin
rectangles, we will be evaluating the integral of the force with
respect to the displacement of the object.



Question

What is the work done by the force indicated in the graph as the
particle moves from x = 0 to x = 6 m?

184 Chapter 7 Energy of a System

If the size of the small displacements is allowed to approach zero, the number of 
terms in the sum increases without limit but the value of the sum approaches a defi-
nite value equal to the area bounded by the Fx curve and the x axis:

lim
Dx S 0

axf

xi

 Fx  Dx 5 3
xf

xi

 Fx dx

Therefore, we can express the work done by Fx on the system of the particle as it 
moves from xi to xf as

 W 5 3
xf

xi

 Fx dx (7.7)

This equation reduces to Equation 7.1 when the component Fx 5 F cos u remains 
constant.
 If more than one force acts on a system and the system can be modeled as a particle, 
the total work done on the system is just the work done by the net force. If we 
express the net force in the x direction as o Fx, the total work, or net work, done as 
the particle moves from xi to xf is

aW 5 Wext 5 3
xf

xi

1 a Fx 2  dx (particle)

For the general case of a net force g  F
S

 whose magnitude and direction may both 
vary, we use the scalar product,

 aW 5 Wext 5 3 1 a F
S 2 ? d rS  (particle) (7.8)

where the integral is calculated over the path that the particle takes through space. 
The subscript “ext” on work reminds us that the net work is done by an external 
agent on the system. We will use this notation in this chapter as a reminder and to 
differentiate this work from an internal work to be described shortly.
 If the system cannot be modeled as a particle (for example, if the system is 
deformable), we cannot use Equation 7.8 because different forces on the system 
may move through different displacements. In this case, we must evaluate the work 
done by each force separately and then add the works algebraically to find the net 
work done on the system:

 aW 5 Wext 5 a
forces

 a3  F
S

? d rSb (deformable system) 

Fx Area  =  Fx  x

Fx

xxfxi

x

Fx

xxfxi

Work

!

!

The total work done for the 
displacement from xi to xf is 
approximately equal to the sum 
of the areas of all the rectangles.

The work done by the component 
Fx of the varying force as the par-
ticle moves from xi to xf is exactly 
equal to the area under the curve.

a

b

Figure 7.7  (a) The work done on 
a particle by the force component 
Fx for the small displacement Dx is 
Fx Dx, which equals the area of the 
shaded rectangle. (b) The width Dx 
of each rectangle is shrunk to zero.

Example 7.4   Calculating Total Work Done from a Graph

A force acting on a particle varies with x as shown in Figure 7.8. Calculate the 
work done by the force on the particle as it moves from x 5 0 to x 5 6.0 m.

Conceptualize  Imagine a particle subject to the force in Figure 7.8. The force 
remains constant as the particle moves through the first 4.0 m and then decreases 
linearly to zero at 6.0 m. In terms of earlier discussions of motion, the particle could 
be modeled as a particle under constant acceleration for the first 4.0 m because 
the force is constant. Between 4.0 m and 6.0 m, however, the motion does not fit 
into one of our earlier analysis models because the acceleration of the particle is 
changing. If the particle starts from rest, its speed increases throughout the motion, 
and the particle is always moving in the positive x direction. These details about its 
speed and direction are not necessary for the calculation of the work done, however.

Categorize  Because the force varies during the motion of the particle, we must 
use the techniques for work done by varying forces. In this case, the graphical representation in Figure 7.8 can be used 
to evaluate the work done.

S O L U T I O N

1 2 3 4 5 6
x (m)0

5

Fx (N)

!

" #

The net work done by this force 
is the area under the curve.

Figure 7.8  (Example 7.4) The 
force acting on a particle is constant 
for the first 4.0 m of motion and then 
decreases linearly with x from x# 5 
4.0 m to x! 5 6.0 m.

W = 25 J.
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Work Done stretching a Spring
One important example of a force that varies with an object’s
displacement is the spring force.

7–3 WORK DONE BY A VARIABLE FORCE 191

1Usually, area has the dimensions of or In this case, however,
the vertical axis is force and the horizontal axis is distance. As a result, the dimensions of
area are which in SI units is N # m = J.1force2 * 1distance2, length2.1length2 * 1length2,

If the force acts in the positive x direction and moves an object a distance d, from
to the work it does is Referring to the figure, we see

that the work is equal to the shaded area1 between the force line and the x axis.
Next, consider a force that has the value from to and a differ-

ent value from to as in Figure 7–7 (a). The work in this case is the
sum of the works done by and Therefore, which,
again, is the area between the force lines and the x axis. Clearly, this type of calcu-
lation can be extended to a force with any number of different values, as indicated
in Figure 7–7 (b).

If a force varies continuously with position, we can approximate it with a series
of constant values that follow the shape of the curve, as shown in Figure 7–8 (a). It
follows that the work done by the continuous force is approximately equal to the
area of the corresponding rectangles, as Figure 7–8 (b) shows. The approximation
can be made better by using more rectangles, as illustrated in Figure 7–8 (c). In the
limit of an infinite number of vanishingly small rectangles, the area of the rectan-
gles becomes identical to the area under the force curve. Hence this area is the work
done by the continuous force. To summarize:

The work done by a force in moving an object from and is equal to the
corresponding area between the force curve and the x axis.

A case of particular interest is that of a spring. Since the force exerted by a
spring is given by (Section 6–2), it follows that the force we must exert
to hold it at the position x is This is illustrated in Figure 7–9, where we also+kx.

Fx = -kx
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FIGURE 7–7 Work done by a noncon-
stant force
(a) A force with a value from 0 to 
and a value from to does the
work This is
simply the area of the two shaded rectan-
gles. (b) If a force takes on a number of
different values, the work it does is still
the total area between the force lines and
the x axis, just as in part (a).

W = F1x1 + F21x2 - x12.x2x1F2
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▲ FIGURE 7–8 Work done by a continuously varying force
(a) A continuously varying force can be approximated by a series of constant values that follow the shape of the curve. (b) The
work done by the continuous force is approximately equal to the area of the small rectangles corresponding to the constant values
of force shown in part (a). (c) In the limit of an infinite number of vanishingly small rectangles, we see that the work done by the
force is equal to the area between the force curve and the x axis.
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▲ FIGURE 7–9 Stretching a spring
The force we must exert on a spring to
stretch it a distance x is Thus,
applied force versus position for a spring
is a straight line of slope k.

+ kx.
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Work Done stretching a Spring

Fapp = kx192 CHAPTER 7 WORK AND KINETIC ENERGY

show that the corresponding force curve is a straight line extending from the ori-
gin. Therefore, the work we do in stretching a spring from (equilibrium) to
the general position x is the shaded, triangular area shown in Figure 7–10. This
area is equal to where in this case the base is x and the height is
kx. As a result, the work is Similar reasoning shows that the work
needed to compress a spring a distance x is also Therefore,

Work to Stretch or Compress a Spring a Distance x from Equilibrium

7–8

SI unit: joule, J

We can get a feeling for the amount of work required to compress a typical
spring in the following Exercise.

EXERCISE 7–4
The spring in a pinball launcher has a force constant of 405 N/m. How much work is
required to compress the spring a distance of 3.00 cm?

Solution

Note that the work done in compressing or expanding a spring varies with the
second power of x, the displacement from equilibrium. The consequences of this
dependence are explored throughout the rest of this section.

Before we consider a specific example, however, recall that the results for a
spring apply to more than just the classic case of a helical coil of wire. In fact, any
flexible structure satisfies the relations and given the appro-
priate value of the force constant, k, and small enough displacements, x. Several
examples were mentioned in Section 6-2.

Here we consider an example from the field of nanotechnology; namely, the
cantilevers used in atomic-force microscopy (AFM). As we show in Example 7–7,
a typical atomic-force cantilever is basically a thin silicon bar about 250 !m in
length, supported at one end like a diving board, with a sharp, hanging point at
the other end. When the point is pulled across the surface of a material—like an
old-fashioned phonograph needle in the groove of a record—individual atoms on
the surface cause the point to move up and down, deflecting the cantilever. These
deflections, which can be measured by reflecting a laser beam from the top of the
cantilever, are then converted into an atomic-level picture of the surface, as shown
in the accompanying photograph.

A typical force constant for an AFM cantilever is on the order of 1 N/m, much
smaller than the 100–500 N/m force constant of a common lab spring. The impli-
cations of this are discussed in the following Example.

W = 1
2 kx2,Fx = -kx

W = 1
2 kx2 = 1

2 1405 N/m210.0300 m22 = 0.182 J

W = 1
2 kx2

1
2 kx2.

1
21x21kx2 = 1

2 kx2.

1
21base21height2, x = 0

Fo
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Area = W

kx

O x

▲ FIGURE 7–10 Work needed to stretch
a spring a distance x
The work done is equal to the shaded
area, which is a right triangle. The area
of the triangle is 1

21x21kx2 = 1
2 kx2.

EXAMPLE 7–7 Flexing an AFM Cantilever
The work required to deflect a typical AFM cantilever by 0.10 nm is (a) What is the force constant of the cantilever,
treating it as an ideal spring? (b) How much work is required to increase the deflection of the cantilever from 0.10 nm to 0.20 nm?

Picture the Problem
The sketch on the left (on the next page) shows the cantilever and its sharp point being dragged across the surface of a material.
In the sketch to the right, we show an exaggerated view of the cantilever’s deflection, and indicate that it is equivalent to the
stretch of an “effective” ideal spring with a force constant k.

Strategy

a. Given that for a deflection of we can find the effective force constant k using 
b. To find the work required to deflect from to we calculate the work to deflect from to

and then subtract the work needed to deflect from to (Note that we can not
simply assume the work to go from to is the same as the work to go from to ).x = 0.10 nmx = 0x = 0.20 nmx = 0.10 nm

x = 0.10 nm, W0:1.x = 0x = 0.20 nm, W0:2,
x = 0x = 0.20 nm, W1:2,x = 0.10 nm

W = 1
2 kx2.x = 0.10 nm,W = 1.2 * 10-20 J

1.2 * 10-20 J.

▲ Human chromosomes, as imaged by
an atomic force microscope.
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What is the work done by the applied force in stretching the spring
a distance x?

Wapp =
1

2
kx2
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show that the corresponding force curve is a straight line extending from the ori-
gin. Therefore, the work we do in stretching a spring from (equilibrium) to
the general position x is the shaded, triangular area shown in Figure 7–10. This
area is equal to where in this case the base is x and the height is
kx. As a result, the work is Similar reasoning shows that the work
needed to compress a spring a distance x is also Therefore,

Work to Stretch or Compress a Spring a Distance x from Equilibrium

7–8

SI unit: joule, J

We can get a feeling for the amount of work required to compress a typical
spring in the following Exercise.

EXERCISE 7–4
The spring in a pinball launcher has a force constant of 405 N/m. How much work is
required to compress the spring a distance of 3.00 cm?

Solution

Note that the work done in compressing or expanding a spring varies with the
second power of x, the displacement from equilibrium. The consequences of this
dependence are explored throughout the rest of this section.

Before we consider a specific example, however, recall that the results for a
spring apply to more than just the classic case of a helical coil of wire. In fact, any
flexible structure satisfies the relations and given the appro-
priate value of the force constant, k, and small enough displacements, x. Several
examples were mentioned in Section 6-2.

Here we consider an example from the field of nanotechnology; namely, the
cantilevers used in atomic-force microscopy (AFM). As we show in Example 7–7,
a typical atomic-force cantilever is basically a thin silicon bar about 250 !m in
length, supported at one end like a diving board, with a sharp, hanging point at
the other end. When the point is pulled across the surface of a material—like an
old-fashioned phonograph needle in the groove of a record—individual atoms on
the surface cause the point to move up and down, deflecting the cantilever. These
deflections, which can be measured by reflecting a laser beam from the top of the
cantilever, are then converted into an atomic-level picture of the surface, as shown
in the accompanying photograph.

A typical force constant for an AFM cantilever is on the order of 1 N/m, much
smaller than the 100–500 N/m force constant of a common lab spring. The impli-
cations of this are discussed in the following Example.

W = 1
2 kx2,Fx = -kx

W = 1
2 kx2 = 1

2 1405 N/m210.0300 m22 = 0.182 J

W = 1
2 kx2

1
2 kx2.

1
21x21kx2 = 1

2 kx2.

1
21base21height2, x = 0

Fo
rc

e

Position

Area = W

kx

O x

▲ FIGURE 7–10 Work needed to stretch
a spring a distance x
The work done is equal to the shaded
area, which is a right triangle. The area
of the triangle is 1

21x21kx2 = 1
2 kx2.

EXAMPLE 7–7 Flexing an AFM Cantilever
The work required to deflect a typical AFM cantilever by 0.10 nm is (a) What is the force constant of the cantilever,
treating it as an ideal spring? (b) How much work is required to increase the deflection of the cantilever from 0.10 nm to 0.20 nm?

Picture the Problem
The sketch on the left (on the next page) shows the cantilever and its sharp point being dragged across the surface of a material.
In the sketch to the right, we show an exaggerated view of the cantilever’s deflection, and indicate that it is equivalent to the
stretch of an “effective” ideal spring with a force constant k.
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b. To find the work required to deflect from to we calculate the work to deflect from to

and then subtract the work needed to deflect from to (Note that we can not
simply assume the work to go from to is the same as the work to go from to ).x = 0.10 nmx = 0x = 0.20 nmx = 0.10 nm
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What is the work done by the applied force in stretching the spring
a distance x?
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Kinetic Energy

Objects in motion have energy. We call this energy kinetic energy.

Kinetic energy, K

the energy that a system has as a result of its motion, or the
motion of its constituent parts.

K =
1

2
mv2



Work and Kinetic Energy
The net work done on a (particle) system is the total energy that
is transferred to the system from the environment. Let the
system’s mass be m.

How much work does the environment do in accelerating the
system from from speed vi to speed vf ?

Wnet = Fnet d

= (ma)d

We can express the acceleration of a particle in terms of the initial
and final speeds of the particle and the particle’s displacement:

v2f = v2i + 2ad

So,

a =
v2f − v2i

2d
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Work and Kinetic Energy

a =
v2f − v2i

2d

Using this in our expression for the net work done:

Wnet = Fnet d

= (ma)d

= m

(
v2f − v2i

2d

)
d

=
1

2
mv2f −

1

2
mv2i

= Kf − Ki

= ∆K
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Work-Kinetic Energy Theorem

For accelerating from vi to vf

Wnet =
1

2
mv2f −

1

2
mv2i

= Kf − Ki

So,

Wnet = ∆K

This is the Work-Kinetic Energy Theorem, which could also be
stated as:

“When the environment does work on a system and the only
change in a system is in its speed, the net work done on the
system equals the change in kinetic energy of the system.”



Work-Kinetic Energy Theorem

Wnet = ∆K

“When the environment does work on a system and the only
change in a system is in its speed, the net work done on the
system equals the change in kinetic energy of the system.”

We are treating the system as a particle. (There is now way to
define a potential energy in that case.)



Work-Kinetic Energy Theorem Example

A boy exerts a force of 11.0 N at 29.0◦ above the horizontal on a
6.40-kg sled. Find the work done by the boy and the final speed of
the sled after it moves 2.00 m, assuming the sled starts with an
initial speed of 0.500 m/s and slides horizontally without friction.

7–2 KINETIC ENERGY AND THE WORK-ENERGY THEOREM 189

Solution
Part (a)
1. First we find the work done by the applied force. In this 

case, and the distance is 

Part (b)
2. Next, we calculate the work done by gravity. The distance 

is as before, but now 

Part (c)
3. The total work done on the box, is the sum 

of and 

4. To find the final speed, we apply the work-energy theorem. 
Recall that the box started at rest, thus 

Insight
As a check on our result, we can find in a completely different way. First, calculate the acceleration of the box with the
result Next, use this result in the kinematic equation With and

we find in agreement with the results using the work-energy theorem.

Practice Problem
If the box is lifted only a quarter of the distance, is the final speed 1/8, 1/4, or 1/2 of the value found in step 4? Calculate in this case
as a check on your answer. [Answer: Since work depends linearly on and depends on the square root of the work, it follows
that the final speed is the value in step 4. Letting we find ]

Some related homework problems: Problem 15, Problem 18, Problem 19

1.56 m/s.vf = 1
213.12 m/s2 =¢y = 11.60 m2/4 = 0.400 m21/4 = 1

2

vf¢y,
vf

v = 3.12 m/s,¢y = 1.60 m
v0 = 0v2 = v0  

2 + 2a¢y.a = 1Fapp - mg2/m = 3.04 m/s2.
vf

vf = A2Wtotal

m
= A2119.9 J2

4.10 kg
= 3.12 m/s

vi = 0:
Wtotal = 1

2 mvf 

2 - 1
2 mvi  

2 = 1
2 mvf 

2vf,

Wg:Wapp

Wtotal = Wapp + Wg = 84.3 J - 64.4 J = 19.9 JWtotal,

= 14.10 kg219.81 m/s221-1211.60 m2 = -64.4 Ju = 180°:¢y = 1.60 m,
Wg = mg cos 180° ¢y

¢y = 1.60 m:u = 0°
Wapp = Fapp cos 0° ¢y = 152.7 N211211.60 m2 = 84.3 J

In the previous Example the initial speed was zero. This is not always the case,
of course. The next Example illustrates how to use the work-energy theorem
when the initial velocity is nonzero.

EXAMPLE 7–6 Pulling a Sled
A boy exerts a force of 11.0 N at 29.0° above the horizontal on a 6.40-kg sled. Find the work done by the boy and the final speed of
the sled after it moves 2.00 m, assuming the sled starts with an initial speed of 0.500 m/s and slides horizontally without friction.

Picture the Problem
Our sketch shows the direction of motion and the directions of
each of the forces. Note that the normal force and the force due
to gravity are vertical, whereas the displacement is horizontal.
The force exerted by the boy has both a vertical component,

and a horizontal component, 
Strategy
The forces and do no work because they are at right an-
gles to the horizontal displacement. The force exerted by the
boy, however, has a horizontal component that does positive
work on the sled. Therefore, the total work is simply the work
done by the boy. After calculating this work, we find by
applying the work-energy theorem with 

Solution

1. The work done by the boy is where 
This is also the total work done on the sled:

2. Use the work-energy theorem to solve for the final speed:

continued on next page

 vf = A2Wtotal

m
+ vi  

2

 12 mvf  

2 = Wtotal + 1
2 mvi  

2

 Wtotal = ¢K = 1
2 mvf  

2 - 1
2 mvi  

2

 = 111.0 N21cos 29.0°2(2.00 m2 = 19.2 J = Wtotal

 Wboy = 1F cos u2du = 29.0°.1F cos u2d,
vi = 0.500 m/s.

vf

mg
!

N
!

F cos u.F sin u, F = 11.0 N

N
mg

d = 2.00 m
29.0°
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Wboy = Fd cos(29.0◦) = (11.0 N)(2.00 m) cos(29.0◦) = 19.2 J
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Work-Kinetic Energy Theorem Example
Find the final speed of the sled, assuming the sled starts with an
initial speed of 0.500 m/s and slides horizontally without friction.

Strategy: Work-kinetic energy theorem.

Wnet =��
�*0

WN +��
�*0

Wmg +Wboy = 19.2 J

Wnet = ∆K

=
1

2
m(v2f − v2i )

v2f =
2Wnet

m
+ v2i

vf =

√
2(19.2 J)

(6.40 kg)
+ (0.500 m/s)2

= 2.50 m/s
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Power

Power

the rate of energy transfer to a system or the rate of work done on
a system.

The average power is defined as

P =
W

∆t

Unit: the Watt. 1 J/s = 1 W
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Power Example

Ch 7, # 44.

sec. 7-9 Power
•43 A force of 5.0 N acts on a 15 kg body initially at rest.
Compute the work done by the force in (a) the first, (b) the second,
and (c) the third seconds and (d) the instantaneous power due to
the force at the end of the third second.

•44 A skier is pulled by a towrope up a frictionless ski slope that
makes an angle of 12° with the horizontal. The rope moves parallel
to the slope with a constant speed of 1.0 m/s. The force of the rope
does 900 J of work on the skier as the skier moves a distance of 8.0
m up the incline. (a) If the rope moved with a constant speed of 2.0
m/s, how much work would the force of the rope do on the skier as
the skier moved a distance of 8.0 m up the incline? At what rate is
the force of the rope doing work on the skier when the rope moves
with a speed of (b) 1.0 m/s and (c) 2.0 m/s?

•45 A 100 kg block is pulled at a constant speed of 5.0
m/s across a horizontal floor by an applied force of 122 N directed
37° above the horizontal. What is the rate at which the force does
work on the block?

•46 The loaded cab of an elevator has a mass of 3.0 ! 103 kg and
moves 210 m up the shaft in 23 s at constant speed. At what aver-
age rate does the force from the cable do work on the cab?

••47 A machine carries a 4.0 kg package from an initial position
of at t " 0 to a final posi-
tion of at t 12 s. The
constant force applied by the machine on the package is

. For that displacement,
find (a) the work done on the package by the machine’s force and
(b) the average power of the machine’s force on the package.

••48 A 0.30 kg ladle sliding on a horizontal frictionless surface is
attached to one end of a horizontal spring (k " 500 N/m) whose
other end is fixed.The ladle has a kinetic energy of 10 J as it passes
through its equilibrium position (the point at which the spring
force is zero). (a) At what rate is the spring doing work on the la-
dle as the ladle passes through its equilibrium position? (b) At
what rate is the spring doing work on the ladle when the spring is
compressed 0.10 m and the ladle is moving away from the equilib-
rium position?

••49 A fully loaded, slow-moving freight elevator has a cab
with a total mass of 1200 kg, which is required to travel upward 54
m in 3.0 min, starting and ending at rest. The elevator’s counter-
weight has a mass of only 950 kg, and so the elevator motor must
help. What average power is required of the force the motor exerts
on the cab via the cable?

••50 (a) At a certain instant, a particle-like object is acted on by a
force while the object’s veloc-
ity is . What is the instantaneous rate
at which the force does work on the object? (b) At some other
time, the velocity consists of only a y component. If the force is un-
changed and the instantaneous power is #12 W, what is the veloc-
ity of the object?

••51 A force acts on a
2.00 kg mobile object that moves from an initial position of

to a final position of
in 4.00 s. Find (a) the

work done on the object by the force in the 4.00 s interval, (b) the
average power due to the force during that interval, and (c) the an-
gle between vectors and .d

:
fd

:
i

d
:

f " #(5.00 m)î $ (4.00 m)ĵ $ (7.00 m)k̂
di
:

" (3.00 m)î # (2.00 m)ĵ $ (5.00 m)k̂

F
:

" (3.00 N)î $ (7.00 N)ĵ $ (7.00 N)k̂

v: " #(2.0 m/s)î $ (4.0 m/s)k̂
F
:

" (4.0 N)î # (2.0 N)ĵ $ (9.0 N)k̂

SSM

F
:

" (2.00 N)î $ (4.00 N)ĵ $ (6.00 N)k̂

"d
:

f " (7.50 m)î $ (12.0 m)ĵ $ (7.20 m)k̂
d
:

i " (0.50 m)î $ (0.75 m)ĵ $ (0.20 m)k̂

ILWSSM

SSM

•••52 A funny car accelerates from rest through a measured track
distance in time T with the engine operating at a constant power P.
If the track crew can increase the engine power by a differential
amount dP, what is the change in the time required for the run?

Additional Problems
53 Figure 7-41 shows a cold package of hot dogs sliding right-
ward across a frictionless floor through a distance d " 20.0 cm
while three forces act on the package. Two of them are horizontal
and have the magnitudes F1 " 5.00 N and F2 " 1.00 N; the third is
angled down by u " 60.0° and has the magnitude F3 " 4.00 N. (a)
For the 20.0 cm displacement, what is the net work done on the
package by the three applied forces, the gravitational force on the
package, and the normal force on the package? (b) If the package
has a mass of 2.0 kg and an initial kinetic energy of 0, what is its
speed at the end of the displacement?

163PROB LE M S
PART 1

Fig. 7-41 Problem 53.

F2 F1

d

F3

θ

54 The only force acting on a 2.0
kg body as the body moves along an
x axis varies as shown in Fig. 7-42.
The scale of the figure’s vertical axis
is set by Fs " 4.0 N.The velocity of the
body at x " 0 is 4.0 m/s. (a) What is
the kinetic energy of the body at x "
3.0 m? (b) At what value of x will the
body have a kinetic energy of 8.0 J?
(c) What is the maximum kinetic energy of the body between x " 0
and x " 5.0 m?

55 A horse pulls a cart with a force of 40 lb at an angle of 30°
above the horizontal and moves along at a speed of 6.0 mi/h. (a) How
much work does the force do in 10 min? (b) What is the average
power (in horsepower) of the force?

56 An initially stationary 2.0 kg object accelerates horizontally
and uniformly to a speed of 10 m/s in 3.0 s. (a) In that 3.0 s interval,
how much work is done on the object by the force accelerating it?
What is the instantaneous power due to that force (b) at the end of
the interval and (c) at the end of the first half of the interval?

57 A 230 kg crate hangs from the end of a rope of length L " 12.0 m.
You push horizontally on the crate with a
varying force to move it distance d "
4.00 m to the side (Fig. 7-43). (a) What is
the magnitude of when the crate is
in this final position? During the crate’s
displacement, what are (b) the total
work done on it, (c) the work done
by the gravitational force on the crate,
and (d) the work done by the pull on
the crate from the rope? (e) Knowing
that the crate is motionless before and
after its displacement, use the answers to
(b), (c), and (d) to find the work your

F
:

F
:

SSM

Fx  (N)

0

–Fs

x  (m)
4321

Fs

5

Fig. 7-42 Problem 54.

L

d

F

Fig. 7-43 Problem 57.
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Power Example

(a) constant velocity ⇒ Fnet = 0
Whether the skier moves up a 1 m/s or 2 m/s, the force is the
same, the displacement is the same, so the work is the same:

W = 900 J

(b) Rate of work done is power. vavg =
∆x
t , t = 8 m

1 m/s = 8 s

Pavg =
W

t
=

900 J

8 s
= 1.1× 102 W

(c) t = 8 m
2 m/s = 4 s

Pavg =
W

t
=

900 J

4 s
= 2.3× 102 W
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Power

P =
W

t

From the definition of work for a constant force in the direction of
the displacement: W = Fd :

P =
Fd

t

= F

(
d

t

)

This gives another expression for power, since speed v = d
t

P = F · v



Power Example

Ch 7, # 44.

sec. 7-9 Power
•43 A force of 5.0 N acts on a 15 kg body initially at rest.
Compute the work done by the force in (a) the first, (b) the second,
and (c) the third seconds and (d) the instantaneous power due to
the force at the end of the third second.

•44 A skier is pulled by a towrope up a frictionless ski slope that
makes an angle of 12° with the horizontal. The rope moves parallel
to the slope with a constant speed of 1.0 m/s. The force of the rope
does 900 J of work on the skier as the skier moves a distance of 8.0
m up the incline. (a) If the rope moved with a constant speed of 2.0
m/s, how much work would the force of the rope do on the skier as
the skier moved a distance of 8.0 m up the incline? At what rate is
the force of the rope doing work on the skier when the rope moves
with a speed of (b) 1.0 m/s and (c) 2.0 m/s?

•45 A 100 kg block is pulled at a constant speed of 5.0
m/s across a horizontal floor by an applied force of 122 N directed
37° above the horizontal. What is the rate at which the force does
work on the block?

•46 The loaded cab of an elevator has a mass of 3.0 ! 103 kg and
moves 210 m up the shaft in 23 s at constant speed. At what aver-
age rate does the force from the cable do work on the cab?

••47 A machine carries a 4.0 kg package from an initial position
of at t " 0 to a final posi-
tion of at t 12 s. The
constant force applied by the machine on the package is

. For that displacement,
find (a) the work done on the package by the machine’s force and
(b) the average power of the machine’s force on the package.

••48 A 0.30 kg ladle sliding on a horizontal frictionless surface is
attached to one end of a horizontal spring (k " 500 N/m) whose
other end is fixed.The ladle has a kinetic energy of 10 J as it passes
through its equilibrium position (the point at which the spring
force is zero). (a) At what rate is the spring doing work on the la-
dle as the ladle passes through its equilibrium position? (b) At
what rate is the spring doing work on the ladle when the spring is
compressed 0.10 m and the ladle is moving away from the equilib-
rium position?

••49 A fully loaded, slow-moving freight elevator has a cab
with a total mass of 1200 kg, which is required to travel upward 54
m in 3.0 min, starting and ending at rest. The elevator’s counter-
weight has a mass of only 950 kg, and so the elevator motor must
help. What average power is required of the force the motor exerts
on the cab via the cable?

••50 (a) At a certain instant, a particle-like object is acted on by a
force while the object’s veloc-
ity is . What is the instantaneous rate
at which the force does work on the object? (b) At some other
time, the velocity consists of only a y component. If the force is un-
changed and the instantaneous power is #12 W, what is the veloc-
ity of the object?

••51 A force acts on a
2.00 kg mobile object that moves from an initial position of

to a final position of
in 4.00 s. Find (a) the

work done on the object by the force in the 4.00 s interval, (b) the
average power due to the force during that interval, and (c) the an-
gle between vectors and .d

:
fd

:
i

d
:

f " #(5.00 m)î $ (4.00 m)ĵ $ (7.00 m)k̂
di
:

" (3.00 m)î # (2.00 m)ĵ $ (5.00 m)k̂

F
:

" (3.00 N)î $ (7.00 N)ĵ $ (7.00 N)k̂

v: " #(2.0 m/s)î $ (4.0 m/s)k̂
F
:

" (4.0 N)î # (2.0 N)ĵ $ (9.0 N)k̂

SSM

F
:

" (2.00 N)î $ (4.00 N)ĵ $ (6.00 N)k̂

"d
:

f " (7.50 m)î $ (12.0 m)ĵ $ (7.20 m)k̂
d
:

i " (0.50 m)î $ (0.75 m)ĵ $ (0.20 m)k̂

ILWSSM

SSM

•••52 A funny car accelerates from rest through a measured track
distance in time T with the engine operating at a constant power P.
If the track crew can increase the engine power by a differential
amount dP, what is the change in the time required for the run?

Additional Problems
53 Figure 7-41 shows a cold package of hot dogs sliding right-
ward across a frictionless floor through a distance d " 20.0 cm
while three forces act on the package. Two of them are horizontal
and have the magnitudes F1 " 5.00 N and F2 " 1.00 N; the third is
angled down by u " 60.0° and has the magnitude F3 " 4.00 N. (a)
For the 20.0 cm displacement, what is the net work done on the
package by the three applied forces, the gravitational force on the
package, and the normal force on the package? (b) If the package
has a mass of 2.0 kg and an initial kinetic energy of 0, what is its
speed at the end of the displacement?

163PROB LE M S
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Fig. 7-41 Problem 53.

F2 F1

d

F3

θ

54 The only force acting on a 2.0
kg body as the body moves along an
x axis varies as shown in Fig. 7-42.
The scale of the figure’s vertical axis
is set by Fs " 4.0 N.The velocity of the
body at x " 0 is 4.0 m/s. (a) What is
the kinetic energy of the body at x "
3.0 m? (b) At what value of x will the
body have a kinetic energy of 8.0 J?
(c) What is the maximum kinetic energy of the body between x " 0
and x " 5.0 m?

55 A horse pulls a cart with a force of 40 lb at an angle of 30°
above the horizontal and moves along at a speed of 6.0 mi/h. (a) How
much work does the force do in 10 min? (b) What is the average
power (in horsepower) of the force?

56 An initially stationary 2.0 kg object accelerates horizontally
and uniformly to a speed of 10 m/s in 3.0 s. (a) In that 3.0 s interval,
how much work is done on the object by the force accelerating it?
What is the instantaneous power due to that force (b) at the end of
the interval and (c) at the end of the first half of the interval?

57 A 230 kg crate hangs from the end of a rope of length L " 12.0 m.
You push horizontally on the crate with a
varying force to move it distance d "
4.00 m to the side (Fig. 7-43). (a) What is
the magnitude of when the crate is
in this final position? During the crate’s
displacement, what are (b) the total
work done on it, (c) the work done
by the gravitational force on the crate,
and (d) the work done by the pull on
the crate from the rope? (e) Knowing
that the crate is motionless before and
after its displacement, use the answers to
(b), (c), and (d) to find the work your

F
:

F
:

SSM

Fx  (N)

0

–Fs

x  (m)
4321

Fs

5

Fig. 7-42 Problem 54.

L

d

F

Fig. 7-43 Problem 57.
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Could we use the formula P = F · v to solve parts (b) and (c)?



Summary

• work done by a varying force

• kinetic energy

• the work-kinetic energy theorem

• power

Next Test Thurs Nov 15, TBC.

Quiz given Thursday.

Homework
• Ch 7 Ques: 5

• read Ch 7, sections 1–7 and section 9

• Ch 7 Ques: 1; Probs: 1, 5, 9, 15, 19, 27, 29, 43, 45


