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Last time

• work done by a varying force

• kinetic energy

• the work-kinetic energy theorem

• power



Overview

• concept of potential energy

• conservative and nonconservative forces

• potential energy definition

• some kinds of potential energy

• potential energy diagrams



Work Done Lifting a Box

Work done by person (applied force) W = Fd cos(0◦) = mgh.
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Work done by person = mgh Work done by gravity = mgh FIGURE 8–1 Work against gravity
Lifting a box against gravity with con-
stant speed takes a work mgh. When the
box is released, gravity does the same
work on the box as it falls. Gravity is a
conservative force.
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FIGURE 8–2 Work against friction
Pushing a box with constant speed
against friction takes a work 
When the box is released, it quickly
comes to rest and friction does no further
work. Friction is a nonconservative force.

mkmgd.

▲

8–1 Conservative and Nonconservative Forces
In physics, we classify forces according to whether they are conservative or
nonconservative. The key distinction is that when a conservative force acts, the
work it does is stored in the form of energy that can be released at a later time. In
this section, we sharpen this distinction and explore some examples of conserva-
tive and nonconservative forces.

Perhaps the simplest case of a conservative force is gravity. Imagine lifting a
box of mass m from the floor to a height h, as in Figure 8–1. To lift the box with
constant speed, the force you must exert against gravity is mg. Since the upward
distance is h, the work you do on the box is If you now release the box
and allow it to drop back to the floor, gravity does the same work, and
in the process gives the box an equivalent amount of kinetic energy.

W = mgh,
W = mgh.

Contrast this with the force of kinetic friction, which is nonconservative. To
slide a box of mass m across the floor with constant speed, as shown in Figure 8–2,
you must exert a force of magnitude After sliding the box a distance
d, the work you have done is In this case, when you release the box
it simply stays put—friction does no work on it after you let go. Thus, the work
done by a nonconservative force cannot be recovered later as kinetic energy; in-
stead, it is converted to other forms of energy, such as a slight warming of the
floor and box in our example.

The differences between conservative and nonconservative forces are even
more apparent if we consider moving an object around a closed path. Consider,
for example, the path shown in Figure 8–3. If we move a box of mass m along this
path, the total work done by gravity is the sum of the work done on each segment
of the path; that is The work done by grav-
ity from A to B and from C to D is zero, since the force is at right angles to the dis-
placement on these segments. Thus On the segment from B to
C, gravity does negative work (displacement and force are in opposite directions),

WAB = WCD = 0.

Wtotal = WAB + WBC + WCD + WDA.

W = mkmgd.
mkN = mkmg.
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When box falls, this energy becomes kinetic energy.
Wnet = mgh = ∆K .
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FIGURE 8–2 Work against friction
Pushing a box with constant speed
against friction takes a work 
When the box is released, it quickly
comes to rest and friction does no further
work. Friction is a nonconservative force.
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▲

8–1 Conservative and Nonconservative Forces
In physics, we classify forces according to whether they are conservative or
nonconservative. The key distinction is that when a conservative force acts, the
work it does is stored in the form of energy that can be released at a later time. In
this section, we sharpen this distinction and explore some examples of conserva-
tive and nonconservative forces.

Perhaps the simplest case of a conservative force is gravity. Imagine lifting a
box of mass m from the floor to a height h, as in Figure 8–1. To lift the box with
constant speed, the force you must exert against gravity is mg. Since the upward
distance is h, the work you do on the box is If you now release the box
and allow it to drop back to the floor, gravity does the same work, and
in the process gives the box an equivalent amount of kinetic energy.

W = mgh,
W = mgh.

Contrast this with the force of kinetic friction, which is nonconservative. To
slide a box of mass m across the floor with constant speed, as shown in Figure 8–2,
you must exert a force of magnitude After sliding the box a distance
d, the work you have done is In this case, when you release the box
it simply stays put—friction does no work on it after you let go. Thus, the work
done by a nonconservative force cannot be recovered later as kinetic energy; in-
stead, it is converted to other forms of energy, such as a slight warming of the
floor and box in our example.

The differences between conservative and nonconservative forces are even
more apparent if we consider moving an object around a closed path. Consider,
for example, the path shown in Figure 8–3. If we move a box of mass m along this
path, the total work done by gravity is the sum of the work done on each segment
of the path; that is The work done by grav-
ity from A to B and from C to D is zero, since the force is at right angles to the dis-
placement on these segments. Thus On the segment from B to
C, gravity does negative work (displacement and force are in opposite directions),

WAB = WCD = 0.

Wtotal = WAB + WBC + WCD + WDA.

W = mkmgd.
mkN = mkmg.
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When the box is in the air, it has the “potential” to have kinetic
energy.

The man put in work lifting it, as long as the box is held in the air,
this energy is stored.



Potential Energy

This illustrates that there is another type of energy that it makes
intuitive sense to assign in some systems.

That is a kind of energy that results from the configuration of the
system, the potential energy.



Work Done Lifting a Box

Work done by person (applied force) Wapp = Fd cos(0◦) = mgh.
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Lifting a box against gravity with con-
stant speed takes a work mgh. When the
box is released, gravity does the same
work on the box as it falls. Gravity is a
conservative force.
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FIGURE 8–2 Work against friction
Pushing a box with constant speed
against friction takes a work 
When the box is released, it quickly
comes to rest and friction does no further
work. Friction is a nonconservative force.

mkmgd.

▲

8–1 Conservative and Nonconservative Forces
In physics, we classify forces according to whether they are conservative or
nonconservative. The key distinction is that when a conservative force acts, the
work it does is stored in the form of energy that can be released at a later time. In
this section, we sharpen this distinction and explore some examples of conserva-
tive and nonconservative forces.

Perhaps the simplest case of a conservative force is gravity. Imagine lifting a
box of mass m from the floor to a height h, as in Figure 8–1. To lift the box with
constant speed, the force you must exert against gravity is mg. Since the upward
distance is h, the work you do on the box is If you now release the box
and allow it to drop back to the floor, gravity does the same work, and
in the process gives the box an equivalent amount of kinetic energy.

W = mgh,
W = mgh.

Contrast this with the force of kinetic friction, which is nonconservative. To
slide a box of mass m across the floor with constant speed, as shown in Figure 8–2,
you must exert a force of magnitude After sliding the box a distance
d, the work you have done is In this case, when you release the box
it simply stays put—friction does no work on it after you let go. Thus, the work
done by a nonconservative force cannot be recovered later as kinetic energy; in-
stead, it is converted to other forms of energy, such as a slight warming of the
floor and box in our example.

The differences between conservative and nonconservative forces are even
more apparent if we consider moving an object around a closed path. Consider,
for example, the path shown in Figure 8–3. If we move a box of mass m along this
path, the total work done by gravity is the sum of the work done on each segment
of the path; that is The work done by grav-
ity from A to B and from C to D is zero, since the force is at right angles to the dis-
placement on these segments. Thus On the segment from B to
C, gravity does negative work (displacement and force are in opposite directions),

WAB = WCD = 0.

Wtotal = WAB + WBC + WCD + WDA.

W = mkmgd.
mkN = mkmg.
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Work done by gravity Wg = Fd cos(180◦) = −mgh.



Conservative and Nonconservative Forces

The work done by gravity when raising and lowering an object
around a closed path is zero.
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FIGURE 8–3 Work done by gravity on
a closed path is zero
Gravity does no work on the two hori-
zontal segments of the path. On the two
vertical segments, the amounts of work
done are equal in magnitude but oppo-
site in sign. Therefore, the total work
done by gravity on this—or any—closed
path is zero.
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FIGURE 8–4 Work done by friction 
on a closed path is nonzero
The work done by friction when an
object moves through a distance d is

Thus, the total work done by
friction on a closed path is nonzero. In
this case, it is equal to - 4 mkmgd.

-mkmgd.

▲

but it does positive work from D to A (displacement and force are in the same
direction). Hence, and As a result, the total work done
by gravity is zero:

With friction, the results are quite different. If we push the box around the
closed horizontal path shown in Figure 8–4, the total work done by friction does
not vanish. In fact, friction does the negative work on each
segment. Therefore, the total work done by kinetic friction is

These results lead to the following definition of a conservative force:

Conservative Force: Definition 1
A conservative force is a force that does zero total work on any closed path.

Wtotal = 1-mkmgd2 + 1-mkmgd2 + 1-mkmgd2 + 1-mkmgd2 = -4 mkmgd

W = -fkd = -mkmgd

Wtotal = 0 + 1-mgh2 + 0 + mgh = 0

WDA = mgh.WBC = -mgh
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The path taken doesn’t matter; if it comes back to the start, the
work done is zero.

Forces (like gravity) that behave this way are called conservative
forces.



Conservative and Nonconservative Forces

The work done by friction when pushing an object around a closed
path is not zero.
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a closed path is zero
Gravity does no work on the two hori-
zontal segments of the path. On the two
vertical segments, the amounts of work
done are equal in magnitude but oppo-
site in sign. Therefore, the total work
done by gravity on this—or any—closed
path is zero.
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Thus, the total work done by
friction on a closed path is nonzero. In
this case, it is equal to - 4 mkmgd.
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but it does positive work from D to A (displacement and force are in the same
direction). Hence, and As a result, the total work done
by gravity is zero:

With friction, the results are quite different. If we push the box around the
closed horizontal path shown in Figure 8–4, the total work done by friction does
not vanish. In fact, friction does the negative work on each
segment. Therefore, the total work done by kinetic friction is

These results lead to the following definition of a conservative force:

Conservative Force: Definition 1
A conservative force is a force that does zero total work on any closed path.

Wtotal = 1-mkmgd2 + 1-mkmgd2 + 1-mkmgd2 + 1-mkmgd2 = -4 mkmgd

W = -fkd = -mkmgd

Wtotal = 0 + 1-mgh2 + 0 + mgh = 0

WDA = mgh.WBC = -mgh
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Forces (like friction) where the work done over a closed path is not
zero are called nonconservative forces.



Nonconservative Forces: Friction

The work done by kinetic friction is always negative.

Kinetic friction points in the opposite direction to the velocity /
instantaneous displacement.
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Lifting a box against gravity with con-
stant speed takes a work mgh. When the
box is released, gravity does the same
work on the box as it falls. Gravity is a
conservative force.
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FIGURE 8–2 Work against friction
Pushing a box with constant speed
against friction takes a work 
When the box is released, it quickly
comes to rest and friction does no further
work. Friction is a nonconservative force.
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8–1 Conservative and Nonconservative Forces
In physics, we classify forces according to whether they are conservative or
nonconservative. The key distinction is that when a conservative force acts, the
work it does is stored in the form of energy that can be released at a later time. In
this section, we sharpen this distinction and explore some examples of conserva-
tive and nonconservative forces.

Perhaps the simplest case of a conservative force is gravity. Imagine lifting a
box of mass m from the floor to a height h, as in Figure 8–1. To lift the box with
constant speed, the force you must exert against gravity is mg. Since the upward
distance is h, the work you do on the box is If you now release the box
and allow it to drop back to the floor, gravity does the same work, and
in the process gives the box an equivalent amount of kinetic energy.

W = mgh,
W = mgh.

Contrast this with the force of kinetic friction, which is nonconservative. To
slide a box of mass m across the floor with constant speed, as shown in Figure 8–2,
you must exert a force of magnitude After sliding the box a distance
d, the work you have done is In this case, when you release the box
it simply stays put—friction does no work on it after you let go. Thus, the work
done by a nonconservative force cannot be recovered later as kinetic energy; in-
stead, it is converted to other forms of energy, such as a slight warming of the
floor and box in our example.

The differences between conservative and nonconservative forces are even
more apparent if we consider moving an object around a closed path. Consider,
for example, the path shown in Figure 8–3. If we move a box of mass m along this
path, the total work done by gravity is the sum of the work done on each segment
of the path; that is The work done by grav-
ity from A to B and from C to D is zero, since the force is at right angles to the dis-
placement on these segments. Thus On the segment from B to
C, gravity does negative work (displacement and force are in opposite directions),

WAB = WCD = 0.

Wtotal = WAB + WBC + WCD + WDA.

W = mkmgd.
mkN = mkmg.
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Wfric = −fkd = −µkNd

where d is the distance the object moves along the surface.



Nonconservative Forces: Friction

Air resistance is another nonconservative force.

When a force does negative work on a system, energy is
transferred out of the system.

In the case of kinetic friction, this energy increases the
temperature of the two surfaces that rub on each other, and may
also leave as sound waves.

This energy is lost to the system, but not to the universe.



Conservative Forces: Work Done Lifting a Box
Work done by person (applied force) W = Fd cos(0◦) = mgh.
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against friction takes a work 
When the box is released, it quickly
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8–1 Conservative and Nonconservative Forces
In physics, we classify forces according to whether they are conservative or
nonconservative. The key distinction is that when a conservative force acts, the
work it does is stored in the form of energy that can be released at a later time. In
this section, we sharpen this distinction and explore some examples of conserva-
tive and nonconservative forces.

Perhaps the simplest case of a conservative force is gravity. Imagine lifting a
box of mass m from the floor to a height h, as in Figure 8–1. To lift the box with
constant speed, the force you must exert against gravity is mg. Since the upward
distance is h, the work you do on the box is If you now release the box
and allow it to drop back to the floor, gravity does the same work, and
in the process gives the box an equivalent amount of kinetic energy.

W = mgh,
W = mgh.

Contrast this with the force of kinetic friction, which is nonconservative. To
slide a box of mass m across the floor with constant speed, as shown in Figure 8–2,
you must exert a force of magnitude After sliding the box a distance
d, the work you have done is In this case, when you release the box
it simply stays put—friction does no work on it after you let go. Thus, the work
done by a nonconservative force cannot be recovered later as kinetic energy; in-
stead, it is converted to other forms of energy, such as a slight warming of the
floor and box in our example.

The differences between conservative and nonconservative forces are even
more apparent if we consider moving an object around a closed path. Consider,
for example, the path shown in Figure 8–3. If we move a box of mass m along this
path, the total work done by gravity is the sum of the work done on each segment
of the path; that is The work done by grav-
ity from A to B and from C to D is zero, since the force is at right angles to the dis-
placement on these segments. Thus On the segment from B to
C, gravity does negative work (displacement and force are in opposite directions),

WAB = WCD = 0.

Wtotal = WAB + WBC + WCD + WDA.

W = mkmgd.
mkN = mkmg.
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When box falls, this energy becomes kinetic energy.
Wnet = mgh = ∆K .

The man put in work lifting it, as long as the box is held in the air,
this energy is stored.



Conservative Forces: Potential Energy

Any box that has been lifted a height h has had the same work
done on it: mgh.

The path the box took to get to that height doesn’t matter.

This is because gravity is a conservative force.

For any conservative force acting on an object, we can say that the
object has some amount of stored energy that depends on its
configuration.

Potential energy

energy that system has as a result of its configuration. Is always
the result of the effect of a conservative force.
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Potential Energy

Potential energy

energy that system has as a result of its configuration. Is always
the result of the effect of a conservative force.

What is the “configuration” of the box?

The “configuration” of the system refers to how close the box is to
center of the Earth.

To have a potential energy, we must include the Earth in the
system and make the weight of the box an internal force.

Any time a potential energy is introduced, the source of the
conservative force becomes part of the system.
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Potential Energy

Potential energy

energy that system has as a result of its configuration. Is always
the result of the effect of a conservative force.

What is the “configuration” of the box?

The “configuration” of the system refers to how close the box is to
center of the Earth.

To have a potential energy, we must include the Earth in the
system and make the weight of the box an internal force.

Any time a potential energy is introduced, the source of the
conservative force becomes part of the system.



Potential Energy

Potential energy

energy that system has as a result of its configuration. Is always
the result of the effect of a conservative force.

∆U = −Wcons

Only conservative forces can have associated potential energies!

If a nonconservative force acts, any work done to displace the
system (at constant velocity) leaves the system again as heat and
sound.

That energy isn’t stored ⇒ no potential energy.



Gravitational Potential Energy

The change of potential energy when lifting an object of mass m
near the Earth’s surface:

∆U = mg(∆h)

If we choose the convention that U = 0 at the Earth’s surface,
then an object (mass m) at a height h has gravitational potential
energy:

U = mgh

The Earth (which creates the gravitational force on the box) is
part of our system description.



Gravitational Potential Energy
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on the object during this time interval? (c) What is the 
speed of the particle at t 5 2.00 s?

Section 7.6 Potential Energy of a System
 40. A 1 000-kg roller coaster car is initially at the top of a  

rise, at point !. It then moves 135 ft, at an angle of 40.08  
below the horizontal, to a lower point ". (a) Choose 
the car at point " to be the zero configuration for 
gravitational potential energy of the roller coaster–
Earth system. Find the potential energy of the system 
when the car is at points ! and ", and the change 
in potential energy as the car moves between these 
points. (b) Repeat part (a), setting the zero configura-
tion with the car at point !.

 41. A 0.20-kg stone is held 1.3 m above the top edge of a 
water well and then dropped into it. The well has a 
depth of 5.0 m. Relative to the configuration with the 
stone at the top edge of the well, what is the gravita-
tional potential energy of the stone–Earth system  
(a) before the stone is released and (b) when it reaches 
the bottom of the well? (c) What is the change in gravi-
tational potential energy of the system from release to 
reaching the bottom of the well?

 42. A 400-N child is in a swing that is attached to a pair 
of ropes 2.00 m long. Find the gravitational potential 
energy of the child–Earth system relative to the child’s 
lowest position when (a) the ropes are horizontal,  
(b) the ropes make a 30.08 angle with the vertical, and 
(c) the child is at the bottom of the circular arc.

Section 7.7 Conservative and Nonconservative Forces
 43. A 4.00-kg particle moves 

from the origin to posi-
tion #, having coordi-
nates x 5 5.00 m and y 5 
5.00 m (Fig. P7.43). One 
force on the particle is 
the gravitational force 
acting in the negative y 
direction. Using Equa-
tion 7.3, calculate the 
work done by the gravi-
tational force on the 
particle as it goes from O 
to # along (a) the purple path, (b) the red path, and  
(c) the blue path. (d) Your results should all be identi-
cal. Why?

 44. (a) Suppose a constant force acts on an object. The 
force does not vary with time or with the position or 
the velocity of the object. Start with the general defini-
tion for work done by a force

W 5 3
f

i
 F

S
? d rS

  and show that the force is conservative. (b) As a spe-
cial case, suppose the force F

S
5 13 î 1 4ĵ 2  N acts on a 

particle that moves from O to # in Figure P7.43. Cal-
culate the work done by F

S
 on the particle as it moves 

along each one of the three paths shown in the figure 

W

(5.00, 5.00)

y (m)

x (m)
O !

"
#

Figure P7.43  
Problems 43 through 46.

Q/C
M

 34. A 4.00-kg particle is subject to a net force that varies 
with position as shown in Figure P7.15. The particle 
starts from rest at x 5 0. What is its speed at (a) x 5 
5.00 m, (b) x 5 10.0 m, and (c) x 5 15.0 m?

 35. A 2 100-kg pile driver is used to drive a steel I-beam into 
the ground. The pile driver falls 5.00 m before coming 
into contact with the top of the beam, and it drives the 
beam 12.0 cm farther into the ground before coming 
to rest. Using energy considerations, calculate the aver-
age force the beam exerts on the pile driver while the 
pile driver is brought to rest.

 36. Review. In an electron microscope, there is an electron 
gun that contains two charged metallic plates 2.80 cm 
apart. An electric force accelerates each electron in 
the beam from rest to 9.60% of the speed of light over 
this distance. (a) Determine the kinetic energy of the 
electron as it leaves the electron gun. Electrons carry 
this energy to a phosphorescent viewing screen where 
the microscope’s image is formed, making it glow. For 
an electron passing between the plates in the electron 
gun, determine (b) the magnitude of the constant 
electric force acting on the electron, (c) the accelera-
tion of the electron, and (d) the time interval the elec-
tron spends between the plates.

 37. Review. You can think of the work–kinetic energy the-
orem as a second theory of motion, parallel to New-
ton’s laws in describing how outside influences affect 
the motion of an object. In this problem, solve parts 
(a), (b), and (c) separately from parts (d) and (e) so 
you can compare the predictions of the two theories. 
A 15.0-g bullet is accelerated from rest to a speed of 
780 m/s in a rifle barrel of length 72.0 cm. (a) Find 
the kinetic energy of the bullet as it leaves the bar-
rel. (b) Use the work–kinetic energy theorem to find 
the net work that is done on the bullet. (c) Use your 
result to part (b) to find the magnitude of the average 
net force that acted on the bullet while it was in the 
barrel. (d) Now model the bullet as a particle under 
constant acceleration. Find the constant acceleration 
of a bullet that starts from rest and gains a speed of  
780 m/s over a distance of 72.0 cm. (e) Modeling the 
bullet as a particle under a net force, find the net 
force that acted on it during its acceleration. (f) What 
conclusion can you draw from comparing your results 
of parts (c) and (e)?

 38. Review. A 7.80-g bullet moving at 575 m/s strikes the 
hand of a superhero, causing the hand to move 5.50 cm  
in the direction of the bullet’s velocity before stopping. 
(a) Use work and energy considerations to find the 
average force that stops the bullet. (b) Assuming the 
force is constant, determine how much time elapses 
between the moment the bullet strikes the hand and 
the moment it stops moving.

 39. Review. A 5.75-kg object passes through the origin 
at time t 5 0 such that its x component of velocity is  
5.00 m/s and its y component of velocity is 23.00 m/s. 
(a) What is the kinetic energy of the object at this time? 
(b) At a later time t 5 2.00 s, the particle is located at 
x 5 8.50 m and y 5 5.00 m. What constant force acted 
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(a) U = (mg)y = (400 N)(2 m) = 800J

(b) U = (mg)y = (400 N)(2 m)(1 − cos 30◦) = 107J

(c) U = 0.
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on the object during this time interval? (c) What is the 
speed of the particle at t 5 2.00 s?

Section 7.6 Potential Energy of a System
 40. A 1 000-kg roller coaster car is initially at the top of a  

rise, at point !. It then moves 135 ft, at an angle of 40.08  
below the horizontal, to a lower point ". (a) Choose 
the car at point " to be the zero configuration for 
gravitational potential energy of the roller coaster–
Earth system. Find the potential energy of the system 
when the car is at points ! and ", and the change 
in potential energy as the car moves between these 
points. (b) Repeat part (a), setting the zero configura-
tion with the car at point !.

 41. A 0.20-kg stone is held 1.3 m above the top edge of a 
water well and then dropped into it. The well has a 
depth of 5.0 m. Relative to the configuration with the 
stone at the top edge of the well, what is the gravita-
tional potential energy of the stone–Earth system  
(a) before the stone is released and (b) when it reaches 
the bottom of the well? (c) What is the change in gravi-
tational potential energy of the system from release to 
reaching the bottom of the well?

 42. A 400-N child is in a swing that is attached to a pair 
of ropes 2.00 m long. Find the gravitational potential 
energy of the child–Earth system relative to the child’s 
lowest position when (a) the ropes are horizontal,  
(b) the ropes make a 30.08 angle with the vertical, and 
(c) the child is at the bottom of the circular arc.

Section 7.7 Conservative and Nonconservative Forces
 43. A 4.00-kg particle moves 

from the origin to posi-
tion #, having coordi-
nates x 5 5.00 m and y 5 
5.00 m (Fig. P7.43). One 
force on the particle is 
the gravitational force 
acting in the negative y 
direction. Using Equa-
tion 7.3, calculate the 
work done by the gravi-
tational force on the 
particle as it goes from O 
to # along (a) the purple path, (b) the red path, and  
(c) the blue path. (d) Your results should all be identi-
cal. Why?

 44. (a) Suppose a constant force acts on an object. The 
force does not vary with time or with the position or 
the velocity of the object. Start with the general defini-
tion for work done by a force

W 5 3
f
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S
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  and show that the force is conservative. (b) As a spe-
cial case, suppose the force F

S
5 13 î 1 4ĵ 2  N acts on a 

particle that moves from O to # in Figure P7.43. Cal-
culate the work done by F

S
 on the particle as it moves 

along each one of the three paths shown in the figure 
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Problems 43 through 46.
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 34. A 4.00-kg particle is subject to a net force that varies 
with position as shown in Figure P7.15. The particle 
starts from rest at x 5 0. What is its speed at (a) x 5 
5.00 m, (b) x 5 10.0 m, and (c) x 5 15.0 m?

 35. A 2 100-kg pile driver is used to drive a steel I-beam into 
the ground. The pile driver falls 5.00 m before coming 
into contact with the top of the beam, and it drives the 
beam 12.0 cm farther into the ground before coming 
to rest. Using energy considerations, calculate the aver-
age force the beam exerts on the pile driver while the 
pile driver is brought to rest.

 36. Review. In an electron microscope, there is an electron 
gun that contains two charged metallic plates 2.80 cm 
apart. An electric force accelerates each electron in 
the beam from rest to 9.60% of the speed of light over 
this distance. (a) Determine the kinetic energy of the 
electron as it leaves the electron gun. Electrons carry 
this energy to a phosphorescent viewing screen where 
the microscope’s image is formed, making it glow. For 
an electron passing between the plates in the electron 
gun, determine (b) the magnitude of the constant 
electric force acting on the electron, (c) the accelera-
tion of the electron, and (d) the time interval the elec-
tron spends between the plates.

 37. Review. You can think of the work–kinetic energy the-
orem as a second theory of motion, parallel to New-
ton’s laws in describing how outside influences affect 
the motion of an object. In this problem, solve parts 
(a), (b), and (c) separately from parts (d) and (e) so 
you can compare the predictions of the two theories. 
A 15.0-g bullet is accelerated from rest to a speed of 
780 m/s in a rifle barrel of length 72.0 cm. (a) Find 
the kinetic energy of the bullet as it leaves the bar-
rel. (b) Use the work–kinetic energy theorem to find 
the net work that is done on the bullet. (c) Use your 
result to part (b) to find the magnitude of the average 
net force that acted on the bullet while it was in the 
barrel. (d) Now model the bullet as a particle under 
constant acceleration. Find the constant acceleration 
of a bullet that starts from rest and gains a speed of  
780 m/s over a distance of 72.0 cm. (e) Modeling the 
bullet as a particle under a net force, find the net 
force that acted on it during its acceleration. (f) What 
conclusion can you draw from comparing your results 
of parts (c) and (e)?

 38. Review. A 7.80-g bullet moving at 575 m/s strikes the 
hand of a superhero, causing the hand to move 5.50 cm  
in the direction of the bullet’s velocity before stopping. 
(a) Use work and energy considerations to find the 
average force that stops the bullet. (b) Assuming the 
force is constant, determine how much time elapses 
between the moment the bullet strikes the hand and 
the moment it stops moving.

 39. Review. A 5.75-kg object passes through the origin 
at time t 5 0 such that its x component of velocity is  
5.00 m/s and its y component of velocity is 23.00 m/s. 
(a) What is the kinetic energy of the object at this time? 
(b) At a later time t 5 2.00 s, the particle is located at 
x 5 8.50 m and y 5 5.00 m. What constant force acted 
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(a) U = (mg)y = (400 N)(2 m) = 800J

(b) U = (mg)y = (400 N)(2 m)(1 − cos 30◦) = 107J

(c) U = 0.
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on the object during this time interval? (c) What is the 
speed of the particle at t 5 2.00 s?

Section 7.6 Potential Energy of a System
 40. A 1 000-kg roller coaster car is initially at the top of a  

rise, at point !. It then moves 135 ft, at an angle of 40.08  
below the horizontal, to a lower point ". (a) Choose 
the car at point " to be the zero configuration for 
gravitational potential energy of the roller coaster–
Earth system. Find the potential energy of the system 
when the car is at points ! and ", and the change 
in potential energy as the car moves between these 
points. (b) Repeat part (a), setting the zero configura-
tion with the car at point !.

 41. A 0.20-kg stone is held 1.3 m above the top edge of a 
water well and then dropped into it. The well has a 
depth of 5.0 m. Relative to the configuration with the 
stone at the top edge of the well, what is the gravita-
tional potential energy of the stone–Earth system  
(a) before the stone is released and (b) when it reaches 
the bottom of the well? (c) What is the change in gravi-
tational potential energy of the system from release to 
reaching the bottom of the well?

 42. A 400-N child is in a swing that is attached to a pair 
of ropes 2.00 m long. Find the gravitational potential 
energy of the child–Earth system relative to the child’s 
lowest position when (a) the ropes are horizontal,  
(b) the ropes make a 30.08 angle with the vertical, and 
(c) the child is at the bottom of the circular arc.

Section 7.7 Conservative and Nonconservative Forces
 43. A 4.00-kg particle moves 

from the origin to posi-
tion #, having coordi-
nates x 5 5.00 m and y 5 
5.00 m (Fig. P7.43). One 
force on the particle is 
the gravitational force 
acting in the negative y 
direction. Using Equa-
tion 7.3, calculate the 
work done by the gravi-
tational force on the 
particle as it goes from O 
to # along (a) the purple path, (b) the red path, and  
(c) the blue path. (d) Your results should all be identi-
cal. Why?

 44. (a) Suppose a constant force acts on an object. The 
force does not vary with time or with the position or 
the velocity of the object. Start with the general defini-
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 34. A 4.00-kg particle is subject to a net force that varies 
with position as shown in Figure P7.15. The particle 
starts from rest at x 5 0. What is its speed at (a) x 5 
5.00 m, (b) x 5 10.0 m, and (c) x 5 15.0 m?

 35. A 2 100-kg pile driver is used to drive a steel I-beam into 
the ground. The pile driver falls 5.00 m before coming 
into contact with the top of the beam, and it drives the 
beam 12.0 cm farther into the ground before coming 
to rest. Using energy considerations, calculate the aver-
age force the beam exerts on the pile driver while the 
pile driver is brought to rest.

 36. Review. In an electron microscope, there is an electron 
gun that contains two charged metallic plates 2.80 cm 
apart. An electric force accelerates each electron in 
the beam from rest to 9.60% of the speed of light over 
this distance. (a) Determine the kinetic energy of the 
electron as it leaves the electron gun. Electrons carry 
this energy to a phosphorescent viewing screen where 
the microscope’s image is formed, making it glow. For 
an electron passing between the plates in the electron 
gun, determine (b) the magnitude of the constant 
electric force acting on the electron, (c) the accelera-
tion of the electron, and (d) the time interval the elec-
tron spends between the plates.

 37. Review. You can think of the work–kinetic energy the-
orem as a second theory of motion, parallel to New-
ton’s laws in describing how outside influences affect 
the motion of an object. In this problem, solve parts 
(a), (b), and (c) separately from parts (d) and (e) so 
you can compare the predictions of the two theories. 
A 15.0-g bullet is accelerated from rest to a speed of 
780 m/s in a rifle barrel of length 72.0 cm. (a) Find 
the kinetic energy of the bullet as it leaves the bar-
rel. (b) Use the work–kinetic energy theorem to find 
the net work that is done on the bullet. (c) Use your 
result to part (b) to find the magnitude of the average 
net force that acted on the bullet while it was in the 
barrel. (d) Now model the bullet as a particle under 
constant acceleration. Find the constant acceleration 
of a bullet that starts from rest and gains a speed of  
780 m/s over a distance of 72.0 cm. (e) Modeling the 
bullet as a particle under a net force, find the net 
force that acted on it during its acceleration. (f) What 
conclusion can you draw from comparing your results 
of parts (c) and (e)?

 38. Review. A 7.80-g bullet moving at 575 m/s strikes the 
hand of a superhero, causing the hand to move 5.50 cm  
in the direction of the bullet’s velocity before stopping. 
(a) Use work and energy considerations to find the 
average force that stops the bullet. (b) Assuming the 
force is constant, determine how much time elapses 
between the moment the bullet strikes the hand and 
the moment it stops moving.

 39. Review. A 5.75-kg object passes through the origin 
at time t 5 0 such that its x component of velocity is  
5.00 m/s and its y component of velocity is 23.00 m/s. 
(a) What is the kinetic energy of the object at this time? 
(b) At a later time t 5 2.00 s, the particle is located at 
x 5 8.50 m and y 5 5.00 m. What constant force acted 
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(a) U = (mg)y = (400 N)(2 m) = 800J

(b) U = (mg)y = (400 N)(2 m)(1 − cos 30◦) = 107J

(c) U = 0.
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on the object during this time interval? (c) What is the 
speed of the particle at t 5 2.00 s?
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 40. A 1 000-kg roller coaster car is initially at the top of a  

rise, at point !. It then moves 135 ft, at an angle of 40.08  
below the horizontal, to a lower point ". (a) Choose 
the car at point " to be the zero configuration for 
gravitational potential energy of the roller coaster–
Earth system. Find the potential energy of the system 
when the car is at points ! and ", and the change 
in potential energy as the car moves between these 
points. (b) Repeat part (a), setting the zero configura-
tion with the car at point !.

 41. A 0.20-kg stone is held 1.3 m above the top edge of a 
water well and then dropped into it. The well has a 
depth of 5.0 m. Relative to the configuration with the 
stone at the top edge of the well, what is the gravita-
tional potential energy of the stone–Earth system  
(a) before the stone is released and (b) when it reaches 
the bottom of the well? (c) What is the change in gravi-
tational potential energy of the system from release to 
reaching the bottom of the well?

 42. A 400-N child is in a swing that is attached to a pair 
of ropes 2.00 m long. Find the gravitational potential 
energy of the child–Earth system relative to the child’s 
lowest position when (a) the ropes are horizontal,  
(b) the ropes make a 30.08 angle with the vertical, and 
(c) the child is at the bottom of the circular arc.

Section 7.7 Conservative and Nonconservative Forces
 43. A 4.00-kg particle moves 

from the origin to posi-
tion #, having coordi-
nates x 5 5.00 m and y 5 
5.00 m (Fig. P7.43). One 
force on the particle is 
the gravitational force 
acting in the negative y 
direction. Using Equa-
tion 7.3, calculate the 
work done by the gravi-
tational force on the 
particle as it goes from O 
to # along (a) the purple path, (b) the red path, and  
(c) the blue path. (d) Your results should all be identi-
cal. Why?

 44. (a) Suppose a constant force acts on an object. The 
force does not vary with time or with the position or 
the velocity of the object. Start with the general defini-
tion for work done by a force
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  and show that the force is conservative. (b) As a spe-
cial case, suppose the force F
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 34. A 4.00-kg particle is subject to a net force that varies 
with position as shown in Figure P7.15. The particle 
starts from rest at x 5 0. What is its speed at (a) x 5 
5.00 m, (b) x 5 10.0 m, and (c) x 5 15.0 m?

 35. A 2 100-kg pile driver is used to drive a steel I-beam into 
the ground. The pile driver falls 5.00 m before coming 
into contact with the top of the beam, and it drives the 
beam 12.0 cm farther into the ground before coming 
to rest. Using energy considerations, calculate the aver-
age force the beam exerts on the pile driver while the 
pile driver is brought to rest.

 36. Review. In an electron microscope, there is an electron 
gun that contains two charged metallic plates 2.80 cm 
apart. An electric force accelerates each electron in 
the beam from rest to 9.60% of the speed of light over 
this distance. (a) Determine the kinetic energy of the 
electron as it leaves the electron gun. Electrons carry 
this energy to a phosphorescent viewing screen where 
the microscope’s image is formed, making it glow. For 
an electron passing between the plates in the electron 
gun, determine (b) the magnitude of the constant 
electric force acting on the electron, (c) the accelera-
tion of the electron, and (d) the time interval the elec-
tron spends between the plates.

 37. Review. You can think of the work–kinetic energy the-
orem as a second theory of motion, parallel to New-
ton’s laws in describing how outside influences affect 
the motion of an object. In this problem, solve parts 
(a), (b), and (c) separately from parts (d) and (e) so 
you can compare the predictions of the two theories. 
A 15.0-g bullet is accelerated from rest to a speed of 
780 m/s in a rifle barrel of length 72.0 cm. (a) Find 
the kinetic energy of the bullet as it leaves the bar-
rel. (b) Use the work–kinetic energy theorem to find 
the net work that is done on the bullet. (c) Use your 
result to part (b) to find the magnitude of the average 
net force that acted on the bullet while it was in the 
barrel. (d) Now model the bullet as a particle under 
constant acceleration. Find the constant acceleration 
of a bullet that starts from rest and gains a speed of  
780 m/s over a distance of 72.0 cm. (e) Modeling the 
bullet as a particle under a net force, find the net 
force that acted on it during its acceleration. (f) What 
conclusion can you draw from comparing your results 
of parts (c) and (e)?

 38. Review. A 7.80-g bullet moving at 575 m/s strikes the 
hand of a superhero, causing the hand to move 5.50 cm  
in the direction of the bullet’s velocity before stopping. 
(a) Use work and energy considerations to find the 
average force that stops the bullet. (b) Assuming the 
force is constant, determine how much time elapses 
between the moment the bullet strikes the hand and 
the moment it stops moving.

 39. Review. A 5.75-kg object passes through the origin 
at time t 5 0 such that its x component of velocity is  
5.00 m/s and its y component of velocity is 23.00 m/s. 
(a) What is the kinetic energy of the object at this time? 
(b) At a later time t 5 2.00 s, the particle is located at 
x 5 8.50 m and y 5 5.00 m. What constant force acted 

W

M

AMT

Q/C
GP

(a) U = (mg)y = (400 N)(2 m) = 800J

(b) U = (mg)y = (400 N)(2 m)(1 − cos 30◦) = 107J

(c) U = 0.
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Spring Force: Another Conservative Force

The spring force is also a conservative force.

If we stretch a spring, we can say that the spring stores the energy.

That energy is converted to kinetic energy when the end of the
spring is released.

There is also spring potential energy!

Choosing U = 0 when the spring is at its natural length (relaxed):

U =
1

2
kx2

(The spring must be part of our system.)



Spring Force: Another Conservative Force

The spring force is also a conservative force.

If we stretch a spring, we can say that the spring stores the energy.

That energy is converted to kinetic energy when the end of the
spring is released.

There is also spring potential energy!

Choosing U = 0 when the spring is at its natural length (relaxed):

U =
1

2
kx2

(The spring must be part of our system.)



Potential Energy Diagrams
Potential energy can be plotted as a function of position. eg.
potential energy of a spring:200 Chapter 7 Energy of a System

energy function for a block–spring system, given by Us 5 1
2kx2. This function is 

plotted versus x in Figure 7.20a, where x is the position of the block. The force Fs 
exerted by the spring on the block is related to Us through Equation 7.29:

Fs 5 2
dUs

dx
5 2kx

As we saw in Quick Quiz 7.8, the x component of the force is equal to the nega-
tive of the slope of the U -versus-x curve. When the block is placed at rest at the 
equilibrium position of the spring (x 5 0), where Fs 5 0, it will remain there unless 
some external force Fext acts on it. If this external force stretches the spring from 
equilibrium, x is positive and the slope dU/dx is positive; therefore, the force Fs 
exerted by the spring is negative and the block accelerates back toward x 5 0 when 
released. If the external force compresses the spring, x is negative and the slope is 
negative; therefore, Fs is positive and again the mass accelerates toward x 5 0 upon 
release.
 From this analysis, we conclude that the x 5 0 position for a block–spring sys-
tem is one of stable equilibrium. That is, any movement away from this position 
results in a force directed back toward x 5 0. In general, configurations of a sys-
tem in stable equilibrium correspond to those for which U(x) for the system is a 
minimum.
 If the block in Figure 7.20 is moved to an initial position xmax and then released 
from rest, its total energy initially is the potential energy 12kx2

max stored in the spring. 
As the block starts to move, the system acquires kinetic energy and loses potential 
energy. The block oscillates (moves back and forth) between the two points x 5 
2xmax and x 5 1xmax, called the turning points. In fact, because no energy is trans-
formed to internal energy due to friction, the block oscillates between 2xmax and 
1xmax forever. (We will discuss these oscillations further in Chapter 15.)
 Another simple mechanical system with a configuration of stable equilibrium is 
a ball rolling about in the bottom of a bowl. Anytime the ball is displaced from its 
lowest position, it tends to return to that position when released.
 Now consider a particle moving along the x axis under the influence of a conser-
vative force Fx, where the U -versus-x curve is as shown in Figure 7.21. Once again,  
Fx 5 0 at x 5 0, and so the particle is in equilibrium at this point. This position, 
 however, is one of unstable equilibrium for the following reason. Suppose the 
particle is displaced to the right (x . 0). Because the slope is negative for x . 0,  
Fx 5 2dU/dx is positive and the particle accelerates away from x 5 0. If instead the 
particle is at x 5 0 and is displaced to the left (x , 0), the force is negative because 
the slope is positive for x , 0 and the particle again accelerates away from the equi-
librium position. The position x 5 0 in this situation is one of unstable equilibrium 
because for any displacement from this point, the force pushes the particle farther 
away from equilibrium and toward a position of lower potential energy. A pencil 
balanced on its point is in a position of unstable equilibrium. If the pencil is dis-
placed slightly from its absolutely vertical position and is then released, it will surely 
fall over. In general, configurations of a system in unstable equilibrium correspond 
to those for which U(x) for the system is a maximum.
 Finally, a configuration called neutral equilibrium arises when U is constant 
over some region. Small displacements of an object from a position in this region 
produce neither restoring nor disrupting forces. A ball lying on a flat, horizontal 
surface is an example of an object in neutral equilibrium.

0
x

U

Negative slopePositive slope
x ! 0 x " 0

Figure 7.21  A plot of U versus  
x for a particle that has a position 
of unstable equilibrium located 
at x 5 0. For any finite displace-
ment of the particle, the force on 
the particle is directed away from 
x 5 0.

Pitfall Prevention 7.10
Energy Diagrams A common 
mistake is to think that potential 
energy on the graph in an energy 
diagram represents the height of 
some object. For example, that 
is not the case in Figure 7.20, 
where the block is only moving 
horizontally.

E

#xmax 0

Us

x

$ # kx21
2Us

xmax

xmaxx $ 0

m

Fs
S

The restoring force exerted by the 
spring always acts toward x $ 0, 
the position of stable equilibrium.

a

b

Figure 7.20 (a) Potential energy 
as a function of x for the friction-
less block–spring system shown in 
(b). For a given energy E of the sys-
tem, the block oscillates between 
the turning points, which have the 
coordinates x 5 6xmax.
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equilibrium position of the spring (x 5 0), where Fs 5 0, it will remain there unless 
some external force Fext acts on it. If this external force stretches the spring from 
equilibrium, x is positive and the slope dU/dx is positive; therefore, the force Fs 
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balanced on its point is in a position of unstable equilibrium. If the pencil is dis-
placed slightly from its absolutely vertical position and is then released, it will surely 
fall over. In general, configurations of a system in unstable equilibrium correspond 
to those for which U(x) for the system is a maximum.
 Finally, a configuration called neutral equilibrium arises when U is constant 
over some region. Small displacements of an object from a position in this region 
produce neither restoring nor disrupting forces. A ball lying on a flat, horizontal 
surface is an example of an object in neutral equilibrium.
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Figure 7.21  A plot of U versus  
x for a particle that has a position 
of unstable equilibrium located 
at x 5 0. For any finite displace-
ment of the particle, the force on 
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Pitfall Prevention 7.10
Energy Diagrams A common 
mistake is to think that potential 
energy on the graph in an energy 
diagram represents the height of 
some object. For example, that 
is not the case in Figure 7.20, 
where the block is only moving 
horizontally.
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The restoring force exerted by the 
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Figure 7.20 (a) Potential energy 
as a function of x for the friction-
less block–spring system shown in 
(b). For a given energy E of the sys-
tem, the block oscillates between 
the turning points, which have the 
coordinates x 5 6xmax.

Fsp = −kx

1Figure from Serway & Jewett, 9th ed.



Potential Energy Diagrams

Recall that the work done by a force is the area under the
force-displacement curve.

The work done by the spring relates to the change in the spring
potential:

Wsp = −∆Usp

So the area is also equal to −∆Usp.



Potential Energy Diagrams
Comparison:

Area under v -t graph = ∆x .

Figure 2.40 Vertical position, vertical velocity, and vertical acceleration vs. time for a rock thrown vertically up at the edge of a cliff. Notice that velocity changes linearly
with time and that acceleration is constant. Misconception Alert! Notice that the position vs. time graph shows vertical position only. It is easy to get the impression that
the graph shows some horizontal motion—the shape of the graph looks like the path of a projectile. But this is not the case; the horizontal axis is time, not space. The
actual path of the rock in space is straight up, and straight down.

Discussion

The interpretation of these results is important. At 1.00 s the rock is above its starting point and heading upward, since and are both

positive. At 2.00 s, the rock is still above its starting point, but the negative velocity means it is moving downward. At 3.00 s, both and

are negative, meaning the rock is below its starting point and continuing to move downward. Notice that when the rock is at its highest point (at

1.5 s), its velocity is zero, but its acceleration is still . Its acceleration is for the whole trip—while it is moving up and
while it is moving down. Note that the values for are the positions (or displacements) of the rock, not the total distances traveled. Finally, note

that free-fall applies to upward motion as well as downward. Both have the same acceleration—the acceleration due to gravity, which remains
constant the entire time. Astronauts training in the famous Vomit Comet, for example, experience free-fall while arcing up as well as down, as we
will discuss in more detail later.

Making Connections: Take-Home Experiment—Reaction Time

A simple experiment can be done to determine your reaction time. Have a friend hold a ruler between your thumb and index finger, separated by
about 1 cm. Note the mark on the ruler that is right between your fingers. Have your friend drop the ruler unexpectedly, and try to catch it
between your two fingers. Note the new reading on the ruler. Assuming acceleration is that due to gravity, calculate your reaction time. How far
would you travel in a car (moving at 30 m/s) if the time it took your foot to go from the gas pedal to the brake was twice this reaction time?
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Slope of U-x curve = −F .
(F = − dU

dx )200 Chapter 7 Energy of a System

energy function for a block–spring system, given by Us 5 1
2kx2. This function is 

plotted versus x in Figure 7.20a, where x is the position of the block. The force Fs 
exerted by the spring on the block is related to Us through Equation 7.29:

Fs 5 2
dUs

dx
5 2kx

As we saw in Quick Quiz 7.8, the x component of the force is equal to the nega-
tive of the slope of the U -versus-x curve. When the block is placed at rest at the 
equilibrium position of the spring (x 5 0), where Fs 5 0, it will remain there unless 
some external force Fext acts on it. If this external force stretches the spring from 
equilibrium, x is positive and the slope dU/dx is positive; therefore, the force Fs 
exerted by the spring is negative and the block accelerates back toward x 5 0 when 
released. If the external force compresses the spring, x is negative and the slope is 
negative; therefore, Fs is positive and again the mass accelerates toward x 5 0 upon 
release.
 From this analysis, we conclude that the x 5 0 position for a block–spring sys-
tem is one of stable equilibrium. That is, any movement away from this position 
results in a force directed back toward x 5 0. In general, configurations of a sys-
tem in stable equilibrium correspond to those for which U(x) for the system is a 
minimum.
 If the block in Figure 7.20 is moved to an initial position xmax and then released 
from rest, its total energy initially is the potential energy 12kx2

max stored in the spring. 
As the block starts to move, the system acquires kinetic energy and loses potential 
energy. The block oscillates (moves back and forth) between the two points x 5 
2xmax and x 5 1xmax, called the turning points. In fact, because no energy is trans-
formed to internal energy due to friction, the block oscillates between 2xmax and 
1xmax forever. (We will discuss these oscillations further in Chapter 15.)
 Another simple mechanical system with a configuration of stable equilibrium is 
a ball rolling about in the bottom of a bowl. Anytime the ball is displaced from its 
lowest position, it tends to return to that position when released.
 Now consider a particle moving along the x axis under the influence of a conser-
vative force Fx, where the U -versus-x curve is as shown in Figure 7.21. Once again,  
Fx 5 0 at x 5 0, and so the particle is in equilibrium at this point. This position, 
 however, is one of unstable equilibrium for the following reason. Suppose the 
particle is displaced to the right (x . 0). Because the slope is negative for x . 0,  
Fx 5 2dU/dx is positive and the particle accelerates away from x 5 0. If instead the 
particle is at x 5 0 and is displaced to the left (x , 0), the force is negative because 
the slope is positive for x , 0 and the particle again accelerates away from the equi-
librium position. The position x 5 0 in this situation is one of unstable equilibrium 
because for any displacement from this point, the force pushes the particle farther 
away from equilibrium and toward a position of lower potential energy. A pencil 
balanced on its point is in a position of unstable equilibrium. If the pencil is dis-
placed slightly from its absolutely vertical position and is then released, it will surely 
fall over. In general, configurations of a system in unstable equilibrium correspond 
to those for which U(x) for the system is a maximum.
 Finally, a configuration called neutral equilibrium arises when U is constant 
over some region. Small displacements of an object from a position in this region 
produce neither restoring nor disrupting forces. A ball lying on a flat, horizontal 
surface is an example of an object in neutral equilibrium.
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Figure 7.21  A plot of U versus  
x for a particle that has a position 
of unstable equilibrium located 
at x 5 0. For any finite displace-
ment of the particle, the force on 
the particle is directed away from 
x 5 0.

Pitfall Prevention 7.10
Energy Diagrams A common 
mistake is to think that potential 
energy on the graph in an energy 
diagram represents the height of 
some object. For example, that 
is not the case in Figure 7.20, 
where the block is only moving 
horizontally.
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The restoring force exerted by the 
spring always acts toward x $ 0, 
the position of stable equilibrium.
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Figure 7.20 (a) Potential energy 
as a function of x for the friction-
less block–spring system shown in 
(b). For a given energy E of the sys-
tem, the block oscillates between 
the turning points, which have the 
coordinates x 5 6xmax.



Potential Energy, Conservative Force, & Equilibrium

The value of a conservative force F at a particular point can be
found as the slope of the potential energy curve:
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2kx2. This function is 
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exerted by the spring on the block is related to Us through Equation 7.29:
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5 2kx
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a ball rolling about in the bottom of a bowl. Anytime the ball is displaced from its 
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vative force Fx, where the U -versus-x curve is as shown in Figure 7.21. Once again,  
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librium position. The position x 5 0 in this situation is one of unstable equilibrium 
because for any displacement from this point, the force pushes the particle farther 
away from equilibrium and toward a position of lower potential energy. A pencil 
balanced on its point is in a position of unstable equilibrium. If the pencil is dis-
placed slightly from its absolutely vertical position and is then released, it will surely 
fall over. In general, configurations of a system in unstable equilibrium correspond 
to those for which U(x) for the system is a maximum.
 Finally, a configuration called neutral equilibrium arises when U is constant 
over some region. Small displacements of an object from a position in this region 
produce neither restoring nor disrupting forces. A ball lying on a flat, horizontal 
surface is an example of an object in neutral equilibrium.
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x for a particle that has a position 
of unstable equilibrium located 
at x 5 0. For any finite displace-
ment of the particle, the force on 
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mistake is to think that potential 
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some object. For example, that 
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where the block is only moving 
horizontally.
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Figure 7.20 (a) Potential energy 
as a function of x for the friction-
less block–spring system shown in 
(b). For a given energy E of the sys-
tem, the block oscillates between 
the turning points, which have the 
coordinates x 5 6xmax.

Fsp = −(slope of U(x)) = −kx

If F is the only force acting on the particle, stationary points
(slope = 0) are force equilibrium points.



Energy Diagrams and Equilibrium

System is in equilibrium when Fnet = Fsp = 0.
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energy function for a block–spring system, given by Us 5 1
2kx2. This function is 

plotted versus x in Figure 7.20a, where x is the position of the block. The force Fs 
exerted by the spring on the block is related to Us through Equation 7.29:
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As we saw in Quick Quiz 7.8, the x component of the force is equal to the nega-
tive of the slope of the U -versus-x curve. When the block is placed at rest at the 
equilibrium position of the spring (x 5 0), where Fs 5 0, it will remain there unless 
some external force Fext acts on it. If this external force stretches the spring from 
equilibrium, x is positive and the slope dU/dx is positive; therefore, the force Fs 
exerted by the spring is negative and the block accelerates back toward x 5 0 when 
released. If the external force compresses the spring, x is negative and the slope is 
negative; therefore, Fs is positive and again the mass accelerates toward x 5 0 upon 
release.
 From this analysis, we conclude that the x 5 0 position for a block–spring sys-
tem is one of stable equilibrium. That is, any movement away from this position 
results in a force directed back toward x 5 0. In general, configurations of a sys-
tem in stable equilibrium correspond to those for which U(x) for the system is a 
minimum.
 If the block in Figure 7.20 is moved to an initial position xmax and then released 
from rest, its total energy initially is the potential energy 12kx2

max stored in the spring. 
As the block starts to move, the system acquires kinetic energy and loses potential 
energy. The block oscillates (moves back and forth) between the two points x 5 
2xmax and x 5 1xmax, called the turning points. In fact, because no energy is trans-
formed to internal energy due to friction, the block oscillates between 2xmax and 
1xmax forever. (We will discuss these oscillations further in Chapter 15.)
 Another simple mechanical system with a configuration of stable equilibrium is 
a ball rolling about in the bottom of a bowl. Anytime the ball is displaced from its 
lowest position, it tends to return to that position when released.
 Now consider a particle moving along the x axis under the influence of a conser-
vative force Fx, where the U -versus-x curve is as shown in Figure 7.21. Once again,  
Fx 5 0 at x 5 0, and so the particle is in equilibrium at this point. This position, 
 however, is one of unstable equilibrium for the following reason. Suppose the 
particle is displaced to the right (x . 0). Because the slope is negative for x . 0,  
Fx 5 2dU/dx is positive and the particle accelerates away from x 5 0. If instead the 
particle is at x 5 0 and is displaced to the left (x , 0), the force is negative because 
the slope is positive for x , 0 and the particle again accelerates away from the equi-
librium position. The position x 5 0 in this situation is one of unstable equilibrium 
because for any displacement from this point, the force pushes the particle farther 
away from equilibrium and toward a position of lower potential energy. A pencil 
balanced on its point is in a position of unstable equilibrium. If the pencil is dis-
placed slightly from its absolutely vertical position and is then released, it will surely 
fall over. In general, configurations of a system in unstable equilibrium correspond 
to those for which U(x) for the system is a maximum.
 Finally, a configuration called neutral equilibrium arises when U is constant 
over some region. Small displacements of an object from a position in this region 
produce neither restoring nor disrupting forces. A ball lying on a flat, horizontal 
surface is an example of an object in neutral equilibrium.
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Figure 7.21  A plot of U versus  
x for a particle that has a position 
of unstable equilibrium located 
at x 5 0. For any finite displace-
ment of the particle, the force on 
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Pitfall Prevention 7.10
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mistake is to think that potential 
energy on the graph in an energy 
diagram represents the height of 
some object. For example, that 
is not the case in Figure 7.20, 
where the block is only moving 
horizontally.
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Figure 7.20 (a) Potential energy 
as a function of x for the friction-
less block–spring system shown in 
(b). For a given energy E of the sys-
tem, the block oscillates between 
the turning points, which have the 
coordinates x 5 6xmax.

In this case, the force is always back toward the x = 0 point, so
this is a stable equilibrium.

Examples:

• spring force

• ball inside a bowl
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Figure 7.20 (a) Potential energy 
as a function of x for the friction-
less block–spring system shown in 
(b). For a given energy E of the sys-
tem, the block oscillates between 
the turning points, which have the 
coordinates x 5 6xmax.

In this case, the force is always away from the x = 0 point, so this
is a unstable equilibrium.

Examples:

• ball on upside-down a bowl



Neutral Equilibrium

A system can also be in neutral equilibrium.

In this case, no forces act, even when the system is displaced left
or right.

Example:

• ball on a flat surface



Summary

• potential energy

• conservative and nonconservative forces

Quiz given out tomorrow.

Homework
• Ch 8 Probs: 1, 3, 5, 7


