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Last time

• center of mass

• linear momentum

• momentum and Newton’s second law

• impulse



Overview

• more about impulse

• conservation of momentum



Linear Momentum

Linear momentum

The linear momentum of an object is the product of the object’s
mass with its velocity.

p = mv

It is a vector.

Units:

kg m/s
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Bouncing
Does a ball that strikes a wall and stops dead experience more or
less impulse than a ball that bounces? (Assume masses and
velocities are the same.)

The bouncing ball must experience a larger impulse, because its
momentum change is bigger!

9–1 LINEAR MOMENTUM 241

9–1 Linear Momentum
Imagine for a moment that you are sitting at rest on a skateboard that can roll
without friction on a smooth surface. If you catch a heavy, slow-moving ball
tossed to you by a friend, you begin to move. If, on the other hand, your friend
tosses you a light, yet fast-moving ball, the net effect may be the same—that is,
catching a lightweight ball moving fast enough will cause you to move with the
same speed as when you caught the heavy ball.

In physics, the previous observations are made precise by defining a quantity
called the linear momentum, , which is defined as the product of the mass m
and velocity of an object:

Definition of Linear Momentum, 

9–1

In our example, if the heavy ball has twice the mass of the light ball but the light
ball has twice the speed of the heavy ball, the momenta of the two balls are equal
in magnitude. We can see from Equation 9–1 that the units of linear momentum
are simply the units of mass times the units of velocity: There is no spe-
cial shorthand name given to this combination of units.

It is important to note that a constant linear momentum is the momentum of
an object of mass m that is moving in a straight line with a velocity In Chapter 11
we introduce a similar quantity to describe the momentum of an object that
rotates. This momentum will be referred to as the angular momentum. In general,
when we simply say momentum, we are referring to the linear momentum We
will always specify angular momentum when referring to the momentum associ-
ated with rotation.

Because the velocity is a vector with both a magnitude and a direction, so
too is the momentum, The next exercise gives some feeling for the
magnitude of the momentum, for everyday objects.

EXERCISE 9–1
(a) A 1180-kg car drives along a city street at 30.0 miles per hour (13.4 m/s). What
is the magnitude of the car’s momentum? (b) A major-league pitcher can give a
0.142-kg baseball a speed of 101 mi/h (45.1 m/s). Find the magnitude of the baseball’s
momentum.

Solution

a. Using we find

b. Similarly,

As an illustration of the vector nature of momentum, consider the situations
shown in Figures 9–1 (a) and (b). In Figure 9–1 (a), a 0.10-kg beanbag bear is
dropped to the floor, where it hits with a speed of 4.0 m/s and sticks. In Fig-
ure 9–1 (b) a 0.10-kg rubber ball also hits the floor with a speed of 4.0 m/s, but
in this case the ball bounces upward off the floor. Assuming an ideal rubber
ball, its initial upward speed is 4.0 m/s. Now the question in each case is,
“What is the change in momentum?”

To approach the problem systematically, we introduce a coordinate system as
shown in Figure 9–1. With this choice, we can see that neither object has
momentum in the x direction; thus we need only consider the y component of
momentum, The problem, therefore, is one-dimensional; still, we must be care-
ful about the sign of py.

py.

pb = mbvb = 10.142 kg2145.1 m/s2 = 6.40 kg # m/s

pc = mcvc = 11180 kg2113.4 m/s2 = 15,800 kg # m/s
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▲ FIGURE 9–1 Change in momentum
A beanbag bear and a rubber ball, with
the same mass m and the same down-
ward speed v, hit the floor. (a) The
beanbag bear comes to rest on hitting 
the floor. Its change in momentum is mv
upward. (b) The rubber ball bounces
upward with a speed v. Its change in
momentum is 2mv upward.

WALKMC09_0131536311.QXD  12/8/05  17:52  Page 241

∆pbear = mv j ∆pball = 2mv j
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Crash test example

In a particular crash test, a car of mass
1500 kg collides with a wall. The initial
and final velocities of the car are:

vi = −15.0 i m/s
and vf = 5.00 i m/s.

If the collision lasts 0.150 s, find the
impulse caused by the collision and the
average net force exerted on the car.

What would the net force be if the car
stuck to the wall after the collision?

+2.60 m/s

–15.0 m/s
Before

After

1Serway & Jewett, Physics for Scientists and Engineers, 9th ed, page 255.



Crash test example
Impulse?

J = ∆p

= m(vf − vi )

= (1500 kg)(5.00 − (−15.0) m/s) i

= 3.00× 104 i kg m/s

Average net force?

Fnet,avg =
J

∆t

=
3.00× 104 i kg m/s

0.150 s

= 2.00× 105 i N

If car does not recoil:

Fnet,avg = 1.50× 105 i N
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Crash test example

Conclusion: designing a car to deform and not recoil in a collision
can reduce the forces involved.

1Image from http://northdallasgazette.com



Impulse Question

284 Chapter 9 Linear Momentum and Collisions

(c) what is the acceleration of the car? Express the accel-
eration as a multiple of the acceleration due to gravity.

 18. A tennis player receives a shot with the ball (0.060 0 kg)  
traveling horizontally at 20.0 m/s and returns the shot 
with the ball traveling horizontally at 40.0 m/s in the 
opposite direction. (a) What is the impulse delivered 
to the ball by the tennis racket? (b) Some work is done 
on the system of the ball and some energy appears in 
the ball as an increase in internal energy during the 
collision between the ball and the racket. What is the 
sum W 2 DE int for the ball?

 19. The magnitude of the net 
force exerted in the x direc-
tion on a 2.50-kg particle 
varies in time as shown in 
Figure P9.19. Find (a) the 
impulse of the force over 
the 5.00-s time interval, 
(b) the final velocity the 
particle attains if it is origi-
nally at rest, (c) its final 
velocity if its original veloc-
ity is 22.00 î m/s, and (d) the average force exerted on 
the particle for the time interval between 0 and 5.00 s.

 20. Review. A force platform is a tool used to analyze the per-
formance of athletes by measuring the vertical force 
the athlete exerts on the ground as a function of time. 
Starting from rest, a 65.0-kg athlete jumps down onto 
the platform from a height of 0.600 m. While she is in 
contact with the platform during the time interval 0 , 
t , 0.800 s, the force she exerts on it is described by the 
function

F 5 9 200t 2 11 500t2

  where F is in newtons and t is in seconds. (a) What im-
pulse did the athlete receive from the platform? (b) With  
what speed did she reach the platform? (c) With what 
speed did she leave it? (d) To what height did she jump 
upon leaving the platform?

 21. Water falls without splashing at a rate of 0.250 L/s from 
a height of 2.60 m into a 0.750-kg bucket on a scale. If 
the bucket is originally empty, what does the scale read 
in newtons 3.00 s after water starts to accumulate in it?

Section 9.4 Collisions in One Dimension
 22. A 1 200-kg car traveling initially at vCi 5 25.0 m/s in an 

easterly direction crashes into the back of a 9 000-kg 
truck moving in the same direction at vTi 5 20.0 m/s 
(Fig. P9.22). The velocity of the car immediately after 
the collision is vCf 5 18.0 m/s to the east. (a) What is 
the velocity of the truck immediately after the colli-

AMT

4
F (N)

3

2

1

0 1 2 3 4 5
t (s)

Figure P9.19

Q/C

in the spring or in the cord? (d) Explain your answer 
to part (c). (e) Is the momentum of the system con-
served in the bursting-apart process? Explain how that 
is possible considering (f) there are large forces acting 
and (g) there is no motion beforehand and plenty of 
motion afterward?

Section 9.3 Analysis Model: Nonisolated System 
(Momentum)
 12. A man claims that he can hold onto a 12.0-kg child in a 

head-on collision as long as he has his seat belt on. 
Consider this man in a collision in which he is in one 
of two identical cars each traveling toward the other at 
60.0 mi/h relative to the ground. The car in which he 
rides is brought to rest in 0.10 s. (a) Find the magni-
tude of the average force needed to hold onto the 
child. (b) Based on your result to part (a), is the man’s 
claim valid? (c) What does the answer to this problem 
say about laws requiring the use of proper safety 
devices such as seat belts and special toddler seats?

 13. An estimated force–
time curve for a baseball 
struck by a bat is shown 
in Figure P9.13. From 
this curve, determine 
(a) the magnitude of the 
impulse delivered to the 
ball and (b) the average 
force exerted on the ball.

 14. Review. After a 0.300-kg rubber ball is dropped from 
a height of 1.75 m, it bounces off a concrete floor and 
rebounds to a height of 1.50 m. (a) Determine the 
magnitude and direction of the impulse delivered to 
the ball by the floor. (b) Estimate the time the ball is 
in contact with the floor and use this estimate to calcu-
late the average force the floor exerts on the ball.

 15. A glider of mass m is free to slide along a horizontal 
air track. It is pushed against a launcher at one end 
of the track. Model the launcher as a light spring of 
force constant k compressed by a distance x. The glider 
is released from rest. (a) Show that the glider attains a 
speed of v 5 x(k/m)1/2. (b) Show that the magnitude 
of the impulse imparted to the glider is given by the 
expression I 5 x(km)1/2. (c) Is more work done on a cart 
with a large or a small mass?

 16. In a slow-pitch softball game, a 0.200-kg softball crosses 
the plate at 15.0 m/s at an angle of 45.0° below the hor-
izontal. The batter hits the ball toward center field, giv-
ing it a velocity of 40.0 m/s at 30.0° above the horizontal.  
(a) Determine the impulse delivered to the ball. (b) If  
the force on the ball increases linearly for 4.00 ms, 
holds constant for 20.0 ms, and then decreases linearly 
to zero in another 4.00 ms, what is the maximum force 
on the ball? 

 17. The front 1.20 m of a 1 400-kg car is designed as a 
“crumple zone” that collapses to absorb the shock of a 
collision. If a car traveling 25.0 m/s stops uniformly in 
1.20 m, (a) how long does the collision last, (b) what 
is the magnitude of the average force on the car, and  

Q/C
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Question

(a) Average force to hold child:

Fnet,avg =
|J|

∆t

=
m|vf − vi |

∆t

=
(12)(60 mi/h)(1609 m/mi)

(0.10 s)(3600 s/h)

= 3.2× 103 N

(b) man’s claim?
It seems unlikely that he will be able to exert 3200 N of force on
the child.

(c) Secure your toddler with a child safety seat!
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Conservation of Momentum

Momentum has a very important property.

It obeys a conservation law.

If there is no net external force, the total momentum of all objects
interacting does not change.

total momentum = total momentum
before interaction after interaction

Equivalently, there is zero change in the total momentum:

∆pnet =
∑

(∆p) = 0



Conservation of Momentum

Even though the total momentum does not change, individual
objects may see their momentum change.

For example, consider two colliding balls:

The momentum of each ball changes in the collision, but the sum
of their momenta is the same before and after.

1Image from http://www.compuphase.com.



Conservation of Linear Momentum

For an isolated system, ie. a system with no external forces, total
linear momentum is conserved.

 9.2 Analysis Model: Isolated System (Momentum) 251

Example 9.1   The Archer 

Let us consider the situation proposed at the beginning of Section 9.1. A 60-kg archer 
stands at rest on frictionless ice and fires a 0.030-kg arrow horizontally at 85 m/s (Fig. 
9.2). With what velocity does the archer move across the ice after firing the arrow?

Conceptualize  You may have conceptualized this problem already when it was 
introduced at the beginning of Section 9.1. Imagine the arrow being fired one way 
and the archer recoiling in the opposite direction.

Categorize  As discussed in Section 9.1, we cannot solve this problem with models 
based on motion, force, or energy. Nonetheless, we can solve this problem very eas-
ily with an approach involving momentum.
 Let us take the system to consist of the archer (including the bow) and the arrow. 
The system is not isolated because the gravitational force and the normal force from 
the ice act on the system. These forces, however, are vertical and perpendicular to 
the motion of the system. There are no external forces in the horizontal direction, 
and we can apply the isolated system (momentum) model in terms of momentum com-
ponents in this direction.

Analyze  The total horizontal momentum of the system before the arrow is fired is zero because nothing in the sys-
tem is moving. Therefore, the total horizontal momentum of the system after the arrow is fired must also be zero. We 
choose the direction of firing of the arrow as the positive x direction. Identifying the archer as particle 1 and the arrow 
as particle 2, we have m1 5 60 kg, m2 5 0.030 kg, and vS2f 5 85 î m/s.

AM

S O L U T I O N

Figure 9.2  (Example 9.1) An 
archer fires an arrow horizontally 
to the right. Because he is standing 
on frictionless ice, he will begin to 
slide to the left across the ice.

Using the isolated system (momentum) model, 
begin with Equation 9.5:

DpS 5 0    S    pSf  2 pSi 5 0    S    pSf  5 pSi    S    m1 vS1f 1 m2 vS2f 5 0

Solve this equation for vS1f  and substitute 
numerical values:

vS1f 5 2
m 2

m1
 vS2f 5 2a0.030 kg

60 kg
b 185 î m/s 2 5 20.042 î m/s

Analysis Model   Isolated System (Momentum)
Imagine you have identified a system to be analyzed and have defined a 
system boundary. If there are no external forces on the system, the system 
is isolated. In that case, the total momentum of the system, which is the 
vector sum of the momenta of all members of the system, is conserved: 

 DpStot 5 0 (9.5)

Examples: 

each other (Chapter 21)

Momentum

System
boundary

If no external forces act on the 
system, the total momentum of 
the system is constant.

continued

Finalize  The negative sign for vS1f  indicates that the archer is moving to the left in Figure 9.2 after the arrow is fired, in 
the direction opposite the direction of motion of the arrow, in accordance with Newton’s third law. Because the archer 

1Figures from Serway & Jewett.



Conservation of Linear Momentum

For an isolated system, ie. a system with no external forces, total
linear momentum is conserved:

d

dt

(∑
i

pi

)
= 0

(Note: before when speaking of energy “isolated” meant “not exchanging

energy” now, for momentum, it means, no net external force acts on the

system.)



Nonisolated Systems

 9.3 Analysis Model: Nonisolated System (Momentum) 255

continued

the ball and bat during the collision. When we use this approximation, it is impor-
tant to remember that pSi and pSf  represent the momenta immediately before and 
after the collision, respectively. Therefore, in any situation in which it is proper to 
use the impulse approximation, the particle moves very little during the collision.

Q uick Quiz 9.3  Two objects are at rest on a frictionless surface. Object 1 has a 
greater mass than object 2. (i) When a constant force is applied to object 1, it 
accelerates through a distance d in a straight line. The force is removed from 
object 1 and is applied to object 2. At the moment when object 2 has accelerated 
through the same distance d, which statements are true? (a) p1 , p2 (b) p1 5 p2 
(c) p1 . p2 (d) K1 , K2 (e) K1 5 K2 (f) K1 . K2 (ii) When a force is applied to 
object 1, it accelerates for a time interval Dt. The force is removed from object 1  
and is applied to object 2. From the same list of choices, which statements are 
true after object 2 has accelerated for the same time interval Dt?

Q uick Quiz 9.4  Rank an automobile dashboard, seat belt, and air bag, each used 
alone in separate collisions from the same speed, in terms of (a) the impulse and 
(b) the average force each delivers to a front-seat passenger, from greatest to least.

Analysis Model   Nonisolated System (Momentum)

Imagine you have identified a system to be analyzed and have defined a system 
boundary. If external forces are applied on the system, the system is nonisolated. 
In that case, the change in the total momentum of the system is equal to the 
impulse on the system, a statement known as the impulse–momentum theorem: 

 DpS 5 I
S

 (9.13)

Examples: 

(Chapter 34)

Momentum

System
boundary

Impulse

The change in the total 
momentum of the system 
is equal to the total 
impulse on the system.

Example 9.3   How Good Are the Bumpers? 

In a particular crash test, a car of mass 1 500 kg col-
lides with a wall as shown in Figure 9.4. The initial 
and final velocities of the car are vSi 5 215.0 î m/s 
and vSf 5 2.60 î m/s, respectively. If the collision lasts 
0.150 s, find the impulse caused by the collision and 
the average net force exerted on the car.

Conceptualize  The collision time is short, so we can 
imagine the car being brought to rest very rapidly 
and then moving back in the opposite direction with 
a reduced speed.

Categorize  Let us assume the net force exerted on 
the car by the wall and friction from the ground is 
large compared with other forces on the car (such as 

AM

S O L U T I O N
+2.60 m/s

–15.0 m/s
Before

After

a b

Figure 9.4  (Example 9.3) (a) This car’s momentum changes as a 
result of its collision with the wall. (b) In a crash test, much of the 
car’s initial kinetic energy is transformed into energy associated 
with the damage to the car.
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Newton’s Third Law and Conservation of
Momentum

248 Chapter 9 Linear Momentum and Collisions

applying a conservation principle, conservation of energy. Let us consider another 
situation and see if we can solve it with the models we have developed so far:

A 60-kg archer stands at rest on frictionless ice and fires a 0.030-kg arrow 
horizontally at 85 m/s. With what velocity does the archer move across the ice 
after firing the arrow?

From Newton’s third law, we know that the force that the bow exerts on the arrow 
is paired with a force in the opposite direction on the bow (and the archer). This 
force causes the archer to slide backward on the ice with the speed requested in the 
problem. We cannot determine this speed using motion models such as the particle 
under constant acceleration because we don’t have any information about the accel-
eration of the archer. We cannot use force models such as the particle under a net 
force because we don’t know anything about forces in this situation. Energy models 
are of no help because we know nothing about the work done in pulling the bow-
string back or the elastic potential energy in the system related to the taut bowstring.
 Despite our inability to solve the archer problem using models learned so far, 
this problem is very simple to solve if we introduce a new quantity that describes 
motion, linear momentum. To generate this new quantity, consider an isolated system 
of two particles (Fig. 9.1) with masses m1 and m2 moving with velocities vS1 and vS2 at 
an instant of time. Because the system is isolated, the only force on one particle is 
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From a system point of view, this equation says that if we add up the forces on the 
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Consequently, this sum must be constant. We learn from this discussion that the 
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The linear momentum of a particle or an object that can be modeled as a 
particle of mass m moving with a velocity vS is defined to be the product of the 
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ptotal = p1 + p2 does not change with time. Or, ∆ptotal = 0.
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Newton’s third law ⇔ conservation of momentum

No external forces (only internal action-reaction pairs):

∆ptotal = 0



Conservation of Momentum Example

A honeybee with a mass of 0.150 g lands on one end of a floating
4.75-g popsicle stick. After sitting at rest for a moment, it runs
toward the other end with a velocity vb relative to the still water.
The stick moves in the opposite direction with a speed of
0.120 cm/s.

What is the velocity of the bee? (Let the direction of the bee’s
motion be the positive x direction.)

SKETCH:

252 CHAPTER 9 LINEAR MOMENTUM AND COLLISIONS

CONCEPTUAL CHECKPOINT 9–2 Momentum Versus Kinetic Energy
In Example 9–3, the final momentum of the system (consisting of the two canoes and their
occupants) is equal to the initial momentum of the system. Is the final kinetic energy (a) equal to,
(b) less than, or (c) greater than the initial kinetic energy?
Reasoning and Discussion
The final momentum of the two canoes is zero because one canoe has a positive momentum and
the other has a negative momentum of the same magnitude. The two momenta, then, sum to zero.
Kinetic energy, which is cannot be negative, hence no such cancellation is possible. Both
canoes have positive kinetic energies, hence, the final kinetic energy is greater than the initial
kinetic energy, which is zero.

Where does the increase in kinetic energy come from? It comes from the muscular work done by the
person who pushes the canoes apart.
Answer:
(c) is greater than 

A special case of some interest is the universe. Since there is nothing external to
the universe—by definition—it follows that the net external force acting on it is
zero. Therefore, its net momentum is conserved. No matter what happens—a comet
collides with the Earth, a star explodes and becomes a supernova, a black hole swal-
lows part of a galaxy—the total momentum of the universe simply cannot change.
A particularly vivid illustration of momentum conservation in our own galaxy is
provided by the exploding star Eta Carinae. As can be seen in the Hubble Space
Telescope photograph, jets of material are moving away from the star in opposite di-
rections, just like the canoes moving apart from one another in Example 9–3.

Conservation of momentum also applies to the more everyday situation
described in the next Active Example.

Ki.Kf

1
2 mv 2,

ACTIVE EXAMPLE 9–2 Find the Velocity of the Bee
A honeybee with a mass of 0.150 g lands on one end of a floating 4.75-g popsicle
stick. After sitting at rest for a moment, it runs toward the other end with a veloc-
ity relative to the still water. The stick moves in the opposite direction with a
speed of 0.120 cm/s. What is the velocity of the bee? (Let the direction of the bee’s
motion be the positive x direction.)

Solution (Test your understanding by performing the calculations indicated in each step.)

1. Set the total momentum of the
system equal to zero:

2. Solve for the momentum of the bee:

3. Calculate the momentum of the stick:

4. Calculate the momentum of the bee:

5. Divide by the bee’s mass to find 
its velocity:

Insight
Because only internal forces are at work while the bee walks on the stick, the
system’s total momentum must remain zero.
Your Turn
Suppose the mass of the popsicle stick is 9.50 g rather than 4.75 g. What is the bee’s
velocity in this case?
(Answers to Your Turn problems are given in the back of the book.)

v
!
b = p

!
b/mb = 13.80 cm/s2xNp

!
b = mbvbxN = -p

!
s = 10.570 g # cm/s2xNp

!
s = -msvsxN = 1-0.570 g # cm/s2xNp
!
b = -p

!
s = mbvbxN

p
!
b + p

!
s = 0

v
!
b

vb
vs

x

▲ This Hubble Space Telescope photo-
graph shows the aftermath of a violent
explosion of the star Eta Carinae. The ex-
plosion, which was observed on Earth in
1841 and briefly made Eta Carinae the sec-
ond brightest star in the sky, produced two
bright lobes of matter spewing outward in
opposite directions. In this photograph,
these lobes have expanded to about the
size of our solar system. The momentum
of the star before the explosion must be the
same as the total momentum of the star
and the bright lobes after the explosion.
Since the lobes are roughly symmetric and
move in opposite directions, their net mo-
mentum is essentially zero. Thus, we con-
clude that the momentum of the star itself
was virtually unchanged by the explosion.

REAL-WORLD PHYSICS
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Conservation of Momentum Example

The net external force is zero, so ∆p = 0.

ptot,i = ptot,f

0 = pb + ps

pb = −ps

mbvb = −msvs

vb =
msvs
mb

i

vb = 3.80 cm/s i
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Summary

• more about impulse

• conservation of momentum

Quiz tomorrow, start of class (a chapter 9 HW problem).

Lab Report due tomorrow, for Tuesday lab only.

2nd Test next week.

Homework
• Ch 9 Probs: 19, 21, 25, 27, 39, 40


