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Last time

• impulse

• isolated and nonisolated systems

• conservation of momentum



Overview

• inelastic and elastic collisions



Collisions

A major application of momentum conservation is studying
collisions.

This is not just useful for mechanics but also for statistical
mechanics, subatomic physics, etc.

For our purposes, there are two main kinds of collision:

• elastic

• inelastic



Collisions

If two objects collide and there are no net external forces, then the
only forces each object experiences are internal forces.

Internal forces obey Newton’s third law ⇒ Momentum is
conserved.

This is true for both elastic and inelastic collisions. (So long as
there is no external net force.)
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Collisions

Collisions can occur in macroscopic systems through contact.

256 Chapter 9 Linear Momentum and Collisions

9.4 Collisions in One Dimension
In this section, we use the isolated system (momentum) model to describe what 
happens when two particles collide. The term collision represents an event during 
which two particles come close to each other and interact by means of forces. The 
interaction forces are assumed to be much greater than any external forces present, 
so we can use the impulse approximation.
 A collision may involve physical contact between two macroscopic objects as 
described in Figure 9.5a, but the notion of what is meant by a collision must be 
generalized because “physical contact” on a submicroscopic scale is ill-defined and 
hence meaningless. To understand this concept, consider a collision on an atomic 
scale (Fig. 9.5b) such as the collision of a proton with an alpha particle (the nucleus 
of a helium atom). Because the particles are both positively charged, they repel 
each other due to the strong electrostatic force between them at close separations 
and never come into “physical contact.”
 When two particles of masses m1 and m2 collide as shown in Figure 9.5, the 
impulsive forces may vary in time in complicated ways, such as that shown in Figure 
9.3. Regardless of the complexity of the time behavior of the impulsive force, how-
ever, this force is internal to the system of two particles. Therefore, the two particles 
form an isolated system and the momentum of the system must be conserved in any 
collision.

Figure 9.5 (a) The collision 
between two objects as the result of 
direct contact. (b) The “collision” 
between two charged particles.
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▸ 9.3 c o n t i n u e d

air resistance). Furthermore, the gravitational force and the normal force exerted by the road on the car are perpen-
dicular to the motion and therefore do not affect the horizontal momentum. Therefore, we categorize the problem as 
one in which we can apply the impulse approximation in the horizontal direction. We also see that the car’s momentum 
changes due to an impulse from the environment. Therefore, we can apply the nonisolated system (momentum) model.

Analyze

Use Equation 9.13 to find the impulse 
on the car:

I
S

5 DpS 5 pSf 2 pSi 5 mvSf 2 mvSi 5 m 1 vSf 2 vSi 2
5 11 500 kg 2 32.60 î m/s 2 1215.0 î m/s 2 4 5 2.64 3 104

 î kg # m/s

Use Equation 9.11 to evaluate the aver-
age net force exerted on the car:

1 a F
S 2 avg 5

 I
S

Dt
5

2.64 3 104
 î kg # m/s

0.150 s
5 1.76 3 105

 î N

Finalize  The net force found above is a combination of the normal force on the car from the wall and any friction 
force between the tires and the ground as the front of the car crumples. If the brakes are not operating while the crash 
occurs and the crumpling metal does not interfere with the free rotation of the tires, this friction force could be rela-
tively small due to the freely rotating wheels. Notice that the signs of the velocities in this example indicate the reversal 
of directions. What would the mathematics be describing if both the initial and final velocities had the same sign?

What if the car did not rebound from the wall? Suppose the final velocity of the car is zero and the time 
interval of the collision remains at 0.150 s. Would that represent a larger or a smaller net force on the car?

Answer In the original situation in which the car rebounds, the net force on the car does two things during the time 
interval: (1) it stops the car, and (2) it causes the car to move away from the wall at 2.60 m/s after the collision. If the car 
does not rebound, the net force is only doing the first of these steps—stopping the car—which requires a smaller force.
 Mathematically, in the case of the car that does not rebound, the impulse is

  I
S

5 DpS 5 pSf 2 pSi 5 0 2 11 500 kg 2 1215.0 î m/s 2 5 2.25 3 104
 î kg # m/s

The average net force exerted on the car is1 a F
S 2 avg 5

I
S

Dt
5

2.25 3 104
 î kg # m/s

0.150 s
5 1.50 3 105

 î N

which is indeed smaller than the previously calculated value, as was argued conceptually.

WHAT IF ?

And collisions can occur through purely repulsive forces, even if
two particles never make contact.
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Types of Collision
There are two different types of collisions:

Elastic collisions

are collisions in which none of the kinetic energy of the colliding
objects is lost. (Ki = Kf )

• truly elastic collisions do not occur at macroscopic scales
• many collisions are close to elastic, so we can model them as

elastic

Inelastic collisions

are collisions in which energy is lost as sound, heat, or in
deformations of the colliding objects.

• all macroscopic collisions are somewhat inelastic
• when the colliding objects stick together afterwards the

collision is perfectly inelastic



Types of Collision
There are two different types of collisions:

Elastic collisions

are collisions in which none of the kinetic energy of the colliding
objects is lost. (Ki = Kf )

• truly elastic collisions do not occur at macroscopic scales
• many collisions are close to elastic, so we can model them as

elastic

Inelastic collisions

are collisions in which energy is lost as sound, heat, or in
deformations of the colliding objects.

• all macroscopic collisions are somewhat inelastic

• when the colliding objects stick together afterwards the
collision is perfectly inelastic



Types of Collision
There are two different types of collisions:

Elastic collisions

are collisions in which none of the kinetic energy of the colliding
objects is lost. (Ki = Kf )

• truly elastic collisions do not occur at macroscopic scales
• many collisions are close to elastic, so we can model them as

elastic

Inelastic collisions

are collisions in which energy is lost as sound, heat, or in
deformations of the colliding objects.

• all macroscopic collisions are somewhat inelastic
• when the colliding objects stick together afterwards the

collision is perfectly inelastic



Inelastic Collisions

For general inelastic collisions, some kinetic energy is “lost”, so
Ki > Kf .

Momentum is still conserved:

pi = pf ⇒ m1v1i +m2v2i = m1v1f +m2v2f

However, in a special case of perfectly inelastic collisions, we have
more information.
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Perfectly Inelastic Collisions

 9.4 Collisions in One Dimension 257

 In contrast, the total kinetic energy of the system of particles may or may not be con-
served, depending on the type of collision. In fact, collisions are categorized as being 
either elastic or inelastic depending on whether or not kinetic energy is conserved.
 An elastic collision between two objects is one in which the total kinetic energy 
(as well as total momentum) of the system is the same before and after the collision. 
Collisions between certain objects in the macroscopic world, such as billiard balls, 
are only approximately elastic because some deformation and loss of kinetic energy 
take place. For example, you can hear a billiard ball collision, so you know that 
some of the energy is being transferred away from the system by sound. An elastic 
collision must be perfectly silent! Truly elastic collisions occur between atomic and 
subatomic particles. These collisions are described by the isolated system model for 
both energy and momentum. Furthermore, there must be no transformation of 
kinetic energy into other types of energy within the system.
 An inelastic collision is one in which the total kinetic energy of the system is not 
the same before and after the collision (even though the momentum of the system 
is conserved). Inelastic collisions are of two types. When the objects stick together 
after they collide, as happens when a meteorite collides with the Earth, the collision 
is called perfectly inelastic. When the colliding objects do not stick together but 
some kinetic energy is transformed or transferred away, as in the case of a rubber 
ball colliding with a hard surface, the collision is called inelastic (with no modify-
ing adverb). When the rubber ball collides with the hard surface, some of the ball’s 
kinetic energy is transformed when the ball is deformed while it is in contact with 
the surface. Inelastic collisions are described by the momentum version of the iso-
lated system model. The system could be isolated for energy, with kinetic energy 
transformed to potential or internal energy. If the system is nonisolated, there could 
be energy leaving the system by some means. In this latter case, there could also 
be some transformation of energy within the system. In either of these cases, the 
kinetic energy of the system changes.
 In the remainder of this section, we investigate the mathematical details for col-
lisions in one dimension and consider the two extreme cases, perfectly inelastic 
and elastic collisions.

Perfectly Inelastic Collisions
Consider two particles of masses m1 and m2 moving with initial velocities vS1i and vS2i 
along the same straight line as shown in Figure 9.6. The two particles collide head-
on, stick together, and then move with some common velocity vSf  after the collision. 
Because the momentum of an isolated system is conserved in any collision, we can 
say that the total momentum before the collision equals the total momentum of the 
composite system after the collision:

 DpS 5 0    S    pSi 5 pSf     S    m1 vS1i 1 m2 vS2i 5 1m1 1 m2 2 vSf  (9.14)
Solving for the final velocity gives

 vSf 5
m1 vS1i 1 m2 vS2i

m1 1 m2
 (9.15)

Elastic Collisions
Consider two particles of masses m1 and m2 moving with initial velocities vS1i and vS2i 
along the same straight line as shown in Figure 9.7 on page 258. The two particles 
collide head-on and then leave the collision site with different velocities, vS1f  and 
vS2f . In an elastic collision, both the momentum and kinetic energy of the system 
are conserved. Therefore, considering velocities along the horizontal direction in 
Figure 9.7, we have

 pi 5 pf    S    m1v1i 1 m2v2i 5 m1v1f 1 m2v2f (9.16)

 Ki 5 Kf    S    12m1v1i 2 1 1
2m2v2i 2 5 1

2m1v1f 2 1 1
2m2v2f 2 (9.17)

Pitfall Prevention 9.2
Inelastic Collisions Generally, 
inelastic collisions are hard to 
analyze without additional infor-
mation. Lack of this information 
appears in the mathematical 
representation as having more 
unknowns than equations.

Figure 9.6 Schematic repre-
sentation of a perfectly inelastic 
head-on collision between two 
particles.
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Now the two particles stick together after colliding ⇒ same final
velocity!

pi = pf ⇒ m1v1i +m2v2i = (m1 +m2)vf



Perfectly Inelastic Collisions

In this case it is straightforward to find an expression for the final
velocity:

m1v1i +m2v2i = (m1 +m2)vf

So,

vf =
m1v1i +m2v2i

m1 +m2



Inelastic Collision Example

Two freight rail cars collide and lock together. Initially, one is
moving at 10 m/s and the other is at rest. Both have the same
mass. What is their final velocity?

Suppose the moving train travels in the x-direction.

pnet,i = pnet,f

mvi = (2m)vf

vf =
mvi
2m

vf = 5 m/s i

The final mass is twice as much, so the final speed must be only
half as much: vf = 5 m/s.
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Collision Question

Two objects collide and move apart after the collision. Could the
collision be inelastic?

(A) Yes.

(B) No.
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Because all velocities in Figure 9.7 are either to the left or the right, they can be 
represented by the corresponding speeds along with algebraic signs indicating 
direction. We shall indicate v as positive if a particle moves to the right and nega-
tive if it moves to the left.
 In a typical problem involving elastic collisions, there are two unknown quanti-
ties, and Equations 9.16 and 9.17 can be solved simultaneously to find them. An 
alternative approach, however—one that involves a little mathematical manipula-
tion of Equation 9.17—often simplifies this process. To see how, let us cancel the 
factor 1

2 in Equation 9.17 and rewrite it by gathering terms with subscript 1 on the 
left and 2 on the right:

 m1(v1i
2 2 v1f

2) 5 m2(v2f
2 2 v2i

2) 

Factoring both sides of this equation gives

 m1(v1i 2 v1f) (v1i 1 v1f) 5 m2(v2f 2 v2i)(v2f 1 v2i) (9.18)

 Next, let us separate the terms containing m1 and m2 in Equation 9.16 in a simi-
lar way to obtain

 m1(v1i 2 v1f) 5 m2(v2f 2 v2i) (9.19)

To obtain our final result, we divide Equation 9.18 by Equation 9.19 and obtain

 v1i 1 v1f 5 v2f 1 v2i 

Now rearrange terms once again so as to have initial quantities on the left and final 
quantities on the right:
 v1i 2 v2i 5 2(v1f

 2 v2f) (9.20)

This equation, in combination with Equation 9.16, can be used to solve problems 
dealing with elastic collisions. This pair of equations (Eqs. 9.16 and 9.20) is easier 
to handle than the pair of Equations 9.16 and 9.17 because there are no quadratic 
terms like there are in Equation 9.17. According to Equation 9.20, the relative veloc-
ity of the two particles before the collision, v1i 2 v2i, equals the negative of their 
relative velocity after the collision, 2(v1f 2 v2f).
 Suppose the masses and initial velocities of both particles are known. Equations 
9.16 and 9.20 can be solved for the final velocities in terms of the initial velocities 
because there are two equations and two unknowns:

 v1f 5 am1 2 m2

m1 1 m2
bv1i 1 a 2m2

m1 1 m2
bv2i (9.21)

 v2f 5 a 2m1

m1 1 m2
bv1i 1 am2 2 m1

m1 1 m2
bv2i (9.22)

It is important to use the appropriate signs for v1i and v2i in Equations 9.21 and 9.22.
 Let us consider some special cases. If m1 5 m2, Equations 9.21 and 9.22 show that 
v1f 5 v2i and v2f 5 v1i , which means that the particles exchange velocities if they 
have equal masses. That is approximately what one observes in head-on billiard ball 
collisions: the cue ball stops and the struck ball moves away from the collision with 
the same velocity the cue ball had.
 If particle 2 is initially at rest, then v2i 5 0, and Equations 9.21 and 9.22 become

 v1f 5 am1 2 m2

m1 1 m2
bv1i (9.23)

 v2f 5 a 2m1

m1 1 m2
bv1i (9.24)

If m1 is much greater than m2 and v2i 5 0, we see from Equations 9.23 and 9.24 that 
v1f < v1i and v2f < 2v1i. That is, when a very heavy particle collides head-on with a 

Elastic collision: particle 2 X
initially at rest

1i 2i

1f 2f

m1 m2

Before the collision, the 
particles move separately.

After the collision, the 
particles continue to move 
separately with new velocities.

a

b

vS vS

vS vS

Figure 9.7 Schematic represen-
tation of an elastic head-on colli-
sion between two particles.

Pitfall Prevention 9.3
Not a General Equation Equation 
9.20 can only be used in a very spe-
cific situation, a one- dimensional, 
elastic collision between two 
objects. The general  concept is 
conservation of momentum (and 
conservation of kinetic energy if 
the collision is elastic) for an iso-
lated system.
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Pitfall Prevention 9.3
Not a General Equation Equation 
9.20 can only be used in a very spe-
cific situation, a one- dimensional, 
elastic collision between two 
objects. The general  concept is 
conservation of momentum (and 
conservation of kinetic energy if 
the collision is elastic) for an iso-
lated system.

For two particles involved in an elastic collision, we can write two
equations:

pi = pf ⇒ m1v1i +m2v2i = m1v1f +m2v2f

Ki = Kf ⇒ 1

2
m1(v1i )

2 +
1

2
m2(v2i )

2 =
1

2
m1(v1f )

2 +
1

2
m2(v2f )

2

(Assume the masses of the two particles remain unchanged.)
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pi = pf ⇒ m1v1i +m2v2i = m1v1f +m2v2f

Ki = Kf ⇒ 1

2
m1(v1i )

2 +
1

2
m2(v2i )

2 =
1

2
m1(v1f )

2 +
1

2
m2(v2f )

2

These are independent equations ⇒ can solve for multiple
unknowns.

However, the terms with squares in the KE equation make this a
bit tedious in practice.
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One convenient trick is replace the KE equation with another one
that doesn’t have the quadratic terms.

This only works in 1-dimensional collisions.

m1v1i +m2v2i = m1v1f +m2v2f

1

2
m1(v1i )

2 +
1

2
m2(v2i )

2 =
1

2
m1(v1f )

2 +
1

2
m2(v2f )

2

From those two, this equation can be derived:

(v1i + v1f ) = (v2f + v2i )

(The v ’s are assumed to lie along a single direction and can be positive

or negative)
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Elastic Collisions - in 1 Dimension only

Simplify the kinetic energy equation:

1

2
m1(v1i )

2 +
1

2
m2(v2i )

2 =
1

2
m1(v1f )

2 +
1

2
m2(v2f )

2

m1(v1i )
2 +m2(v2i )

2 = m1(v1f )
2 +m2(v2f )

2

Collect the m1 terms separately:

m1(v
2
1i − v21f ) = m2(v

2
2f − v22i )

m1(v1i − v1f )(v1i + v1f ) = m2(v2f − v2i )(v2f + v2i ) (1)

But notice, we can collect the m1 terms in the momentum
equation also (notice v ’s may be negative in this expression!):

m1(v1i − v1f ) = m2(v2f − v2i ) (2)
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Elastic Collisions - in 1 Dimension only

m1(v1i − v1f )(v1i + v1f ) = m2(v2f − v2i )(v2f + v2i ) (1)

m1(v1i − v1f ) = m2(v2f − v2i ) (2)

Divide equation 1 by equation 2 :

(v1i + v1f ) = (v2f + v2i )

Gives us a different pair of independent equations to solve from:{
m1v1i +m2v2i = m1v1f +m2v2f

v1i + v1f = v2f + v2i

(where the v ’s are assumed to lie along a single direction and can be
positive or negative)
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1-D Elastic Collision Example

Ch 9, #62

Two titanium spheres approach each other head-on with the same
speed and collide elastically. After the collision, one of the spheres,
whose mass is 300 g, remains at rest.

(a) What is the mass of the other sphere?

(b) What is the speed of the two-sphere center of mass if the
initial speed of each sphere is 2.00 m/s?



1-D Elastic Collision Example
(a) What is the mass of the other sphere?

use: {
m1v1i +m2v2i = m1��*

0
v1f +m2v2f

v1i +��*
0

v1f = v2f + v2i

m2 = 100 g

(b) What is the speed of the two-sphere center of mass if the
initial speed of each sphere is 2.00 m/s?

use:

vCM =
1

M

∑
i

mivi

vCM = 1.00 m/s
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1-D Elastic Collision Example, More detail

(a)
2nd equation:

v1i +��*
0

v1f = v2f + v2i

v + 0 = v2f + (−v)

v2f = 2v

Conservation of momentum (1st equation):

m1v1i +m2v2i = m1��*
0

v1f +m2v2f

m1v +m2(−v) = 0 +m2(2v)

m1 −m2 = 2m2

m2 =
m1

3

m2 = 100 g



Summary

• collisions

2nd Test Thursday, Nov 15.

Homework
• Ch 9 Ques: 3; Prob: 51, 601, 61, 63

1Ans: (a) 1.9 m/s, (b) right, (c) yes.


