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Last time

• collisions in 1-D

• elastic and inelastic



Overview

• ballistic pendulum

• 2-D collisions

• rotational quantities



1-D Elastic Collision Example

Ch 9, #62

Two titanium spheres approach each other head-on with the same
speed and collide elastically. After the collision, one of the spheres,
whose mass is 300 g, remains at rest.

(a) What is the mass of the other sphere?

(b) What is the speed of the two-sphere center of mass if the
initial speed of each sphere is 2.00 m/s?



1-D Elastic Collision Example
(a) What is the mass of the other sphere?

use: {
m1v1i +m2v2i = m1��*

0
v1f +m2v2f

v1i +��*
0

v1f = v2f + v2i

m2 = 100 g

(b) What is the speed of the two-sphere center of mass if the
initial speed of each sphere is 2.00 m/s?

use:

vCM =
1

M

∑
i

mivi

vCM = 1.00 m/s
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Collisions and Energy

The Ballistic Pendulum
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a

Figure 9.9  (Example 9.6) (a) Diagram of a ballistic pendulum. Notice that vS1A is the velocity of the projectile imme-
diately before the collision and vSB is the velocity of the projectile–block system immediately after the perfectly inelas-
tic collision. (b) Multiflash photograph of a ballistic pendulum used in the laboratory.
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Finalize   We had to solve this problem in two steps. Each step involved a different system and a different analysis model: 
isolated system (momentum) for the first step and isolated system (energy) for the second. Because the collision was 
assumed to be perfectly inelastic, some mechanical energy was transformed to internal energy during the collision. 
Therefore, it would have been incorrect to apply the isolated system (energy) model to the entire process by equating 
the initial kinetic energy of the incoming projectile with the final gravitational potential energy of the projectile–
block–Earth combination.

 

▸ 9.6 c o n t i n u e d

Noting that v2A 5 0, solve Equation 9.15 for vB: (1)   vB 5
m1v1A

m1 1 m2

Analyze   Write an expression for the total kinetic energy of 
the system immediately after the collision:

(2)   KB 5 1
2 1m1 1 m2 2vB

2

Substitute the value of vB from Equation (1) into Equation (2): KB 5
m1

2v1A
2

2 1m1 1 m2 2
Apply the isolated system model to the system: DK 1 DU 5 0    S   (KC 2 KB) 1 (UC 2 UB) 5 0

Solve for v1A: v1A 5 am1 1 m2

m1
b"2gh

Categorize   For the process during which the projectile–block combination swings upward to height h (ending at a 
configuration we’ll call C), we focus on a different system, that of the projectile, the block, and the Earth. We categorize 
this part of the problem as one involving an isolated system for energy with no nonconservative forces acting.

This kinetic energy of the system immediately after the collision is less than the initial kinetic energy of the projectile 
as is expected in an inelastic collision.
 We define the gravitational potential energy of the system for configuration B to be zero. Therefore, UB 5 0, whereas 
UC 5 (m1 1 m2)gh.

Substitute the energies: a0 2
m1

2v1A
2

2 1m1 1 m2 2 b 1 3 1m1 1 m2 2gh 2 0 4 5 0

Example 9.7   A Two-Body Collision with a Spring 

A block of mass m1 5 1.60 kg initially moving to the right with a speed of 4.00 m/s on a frictionless, horizontal track 
collides with a light spring attached to a second block of mass m2 5 2.10 kg initially moving to the left with a speed of 
2.50 m/s as shown in Figure 9.10a. The spring constant is 600 N/m.

AM

The ballistic pendulum is an apparatus used to measure the speed
of a fast-moving projectile such as a bullet. A projectile of mass
m1 is fired into a large block of wood of mass m2 suspended from
some light wires. The projectile embeds in the block, and the
entire system swings through a height h. How can we determine
the speed of the projectile from a measurement of h?

1Serway & Jewett, page 262.



The Ballistic Pendulum

We know m1, m2, and h. We want to know the speed of the
bullet, v1.

Step 1: how does the speed of the block vB depend on the bullet
speed? Conservation of momentum, perfectly inelastic collision:

(m1 +m2)vB = m1v1 +m2(0)

vB =
m1v1

m1 +m2
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The Ballistic Pendulum
Step 2: What happens after the bullet hits the block?

How does
vB relate to h? Conservation of energy:

∆K + ∆Ug = 0

(0 −
1

2
(m1 +m2)v

2
B) + ((m1 +m2)gh − 0) = 0

1

2
(m1 +m2)v

2
B = (m1 +m2)gh

Replace vB = m1v1
m1+m2

:

1

2
(m1 +m2)

(
m1v1

m1 +m2

)2

= (m1 +m2)gh(
m2

1v
2
1

m1 +m2

)
= 2(m1 +m2)gh

v1 =

(
m1 +m2

m1

)√
2gh
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Collisions in 2 Dimensions

Collisions can take place in 2 dimensions.

As an example, consider the case of a glancing collision.
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Finalize  The negative value for v2f means that block 2 is still moving to the left at the instant we are considering.

(C) Determine the distance the spring is compressed at that instant.

Conceptualize  Once again, focus on the configuration of the system shown in Figure 9.10b.

Categorize  For the system of the spring and two blocks, no friction or other nonconservative forces act within the sys-
tem. Therefore, we categorize the system as an isolated system in terms of energy with no nonconservative forces acting. 
The system also remains an isolated system in terms of momentum.

Analyze   We choose the initial configuration of the system to be that existing immediately before block 1 strikes the 
spring and the final configuration to be that when block 1 is moving to the right at 3.00 m/s.

S O L U T I O N

Write the appropriate reduction of  
Equation 8.2:

DK 1 DU 5 0

Evaluate the energies, recognizing that two 
objects in the system have kinetic energy 
and that the potential energy is elastic:

3 11
2m1v1f

2 1 1
2m2v2f

2 2 2 11
2m1v1i

2 1 1
2m2v2i

2 2 4 1 11
2kx2 2 0 2 5 0

Solve for x 2: x2 5 1
k 3m1 1v1i

2 2 v1f
2 2 1 m2 1v2i

2 2 v2f
2 2 4

Substitute  
numerical values:

x2 5 a 1
600 N/m

b5 11.60 kg 2 3 14.00 m/s 22 2 13.00 m/s 22 4 1 12.10 kg 2 3 12.50 m/s 22 2 11.74 m/s 22 4 6
S   x 5   0.173 m

Finalize This answer is not the maximum compression of the spring because the two blocks are still moving toward 
each other at the instant shown in Figure 9.10b. Can you determine the maximum compression of the spring?

9.5 Collisions in Two Dimensions
In Section 9.2, we showed that the momentum of a system of two particles is con-
served when the system is isolated. For any collision of two particles, this result 
implies that the momentum in each of the directions x, y, and z is conserved. An 
important subset of collisions takes place in a plane. The game of billiards is a famil-
iar example involving multiple collisions of objects moving on a two-dimensional 
surface. For such two-dimensional collisions, we obtain two component equations 
for conservation of momentum:

m1v1ix 1 m2v2ix 5 m1v1fx 1 m2v2fx

m1v1iy 1 m2v2iy 5 m1v1fy 1 m2v2fy

where the three subscripts on the velocity components in these equations repre-
sent, respectively, the identification of the object (1, 2), initial and final values (i, f ), 
and the velocity component (x, y).
 Let us consider a specific two-dimensional problem in which particle 1 of mass m1 
collides with particle 2 of mass m2 initially at rest as in Figure 9.11. After the collision 
(Fig. 9.11b), particle 1 moves at an angle u with respect to the horizontal and particle 2 
moves at an angle f with respect to the horizontal. This event is called a glancing colli-
sion. Applying the law of conservation of momentum in component form and noting 
that the initial y component of the momentum of the two-particle system is zero gives

 Dpx 5 0    S    pix 5 pfx    S    m1v1i 5 m1v1f cos u 1 m2v2f cos f (9.25)

 Dpy 5 0    S    piy 5 pfy    S           0 5 m1v1f sin u 2 m2v2f sin f (9.26)

 

▸ 9.7 c o n t i n u e d

m1

m2

Before the collision

After the collision

v2f  cos

v1f  cos

v1f  sin

2f  sin

θ
φ

φ

φ

θ

θ

v

a

b

v1i
S

v1f
S

v2f
S

Figure 9.11 An elastic, glancing 
collision between two particles.
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Figure 9.11 An elastic, glancing 
collision between two particles.

Conserve momentum in the x and y directions.



Collisions in 2 Dimensions

The conservation of momentum equation is a vector equation.

pi = pf ⇒ m1v1i +m2v2i = m1v1f +m2v2f

We can write equations for each component of the momentum. In
2-d, with x and y components:

x : m1v1ix +m2v2ix = m1v1fx +m2v2fx

y : m1v1iy +m2v2iy = m1v1fy +m2v2fy

If it is an elastic collision:

Ki = Kf ⇒ 1

2
m1(v1i )

2 +
1

2
m2(v2i )

2 =
1

2
m1(v1f )

2 +
1

2
m2(v2f )

2
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Rotation of Rigid Objects

Now we understand that while we can treat a collection of particles
as a single point particle at the center of mass, we do not have to
do that.

This will allow us to describe another important kind of motion:
rotation.

Begin with rotational kinematics.
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Rotation of Rigid Objects

To begin, consider a rotating disc.
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defining kinematic variables: position, velocity, and acceleration. We do the same 
here for rotational motion.
 Figure 10.1 illustrates an overhead view of a rotating compact disc, or CD. The 
disc rotates about a fixed axis perpendicular to the plane of the figure and passing 
through the center of the disc at O. A small element of the disc modeled as a par-
ticle at P is at a fixed distance r from the origin and rotates about it in a circle of 
radius r. (In fact, every element of the disc undergoes circular motion about O.) It is 
convenient to represent the position of P with its polar coordinates (r, u), where r is 
the distance from the origin to P and u is measured counterclockwise from some refer-
ence line fixed in space as shown in Figure 10.1a. In this representation, the angle u  
changes in time while r remains constant. As the particle moves along the cir-
cle from the reference line, which is at angle u 5 0, it moves through an arc of 
length s as in Figure 10.1b. The arc length s is related to the angle u through the 
relationship

 s 5 r u (10.1a)

 u 5
s
r  (10.1b)

Because u is the ratio of an arc length and the radius of the circle, it is a pure num-
ber. Usually, however, we give u the artificial unit radian (rad), where one radian is 
the angle subtended by an arc length equal to the radius of the arc. Because the cir-
cumference of a circle is 2pr, it follows from Equation 10.1b that 3608 corresponds 
to an angle of (2pr/r) rad 5 2p rad. Hence, 1 rad 5 3608/2p < 57.38. To convert an 
angle in degrees to an angle in radians, we use that p rad 5 1808, so

u 1rad 2 5
p

1808
 u 1deg 2

For example, 608 equals p/3 rad and 458 equals p/4 rad.
 Because the disc in Figure 10.1 is a rigid object, as the particle moves through an 
angle u from the reference line, every other particle on the object rotates through 
the same angle u. Therefore, we can associate the angle u with the entire rigid 
object as well as with an individual particle, which allows us to define the angular 
position of a rigid object in its rotational motion. We choose a reference line on 
the object, such as a line connecting O and a chosen particle on the object. The 
angular position of the rigid object is the angle u between this reference line on 
the object and the fixed reference line in space, which is often chosen as the x axis. 
Such identification is similar to the way we define the position of an object in trans-
lational motion as the distance x between the object and the reference position, 
which is the origin, x 5 0. Therefore, the angle u plays the same role in rotational 
motion that the position x does in translational motion.
 As the particle in question on our rigid object travels from position ! to posi-
tion " in a time interval Dt as in Figure 10.2, the reference line fixed to the object 
sweeps out an angle Du 5 uf 2 ui. This quantity Du is defined as the angular dis-
placement of the rigid object:

Du ; uf 2 ui 

The rate at which this angular displacement occurs can vary. If the rigid object 
spins rapidly, this displacement can occur in a short time interval. If it rotates 
slowly, this displacement occurs in a longer time interval. These different rotation 
rates can be quantified by defining the average angular speed vavg (Greek letter 
omega) as the ratio of the angular displacement of a rigid object to the time inter-
val Dt during which the displacement occurs:

 vavg ;
uf 2 ui

tf 2 ti
5

Du

Dt
 (10.2)Average angular speed X

Reference
line

O P
r

O

P

Reference
line

r s
u

To define angular position 
for the disc, a fixed reference 
line is chosen. A particle at P 
is located at a distance r from 
the rotation axis through O.

As the disc rotates, a particle at 
P moves through an arc length 
s on a circular path of radius r. 
The angular position of P is u.

a

b

Figure 10.1  A compact disc 
rotating about a fixed axis 
through O perpendicular to the 
plane of the figure.

Pitfall Prevention 10.1
Remember the Radian In rota-
tional equations, you must use 
angles expressed in radians.  
Don’t fall into the trap of using 
angles measured in degrees in 
rotational equations.

x

y

", t f

!, ti
r

i

O

fu

u

Figure 10.2  A particle on a rotat-
ing rigid object moves from ! to 
" along the arc of a circle. In the 
time interval Dt 5 tf 2 ti , the radial 
line of length r moves through an 
angular displacement Du 5 uf 2 ui.
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Figure 10.1  A compact disc 
rotating about a fixed axis 
through O perpendicular to the 
plane of the figure.

Pitfall Prevention 10.1
Remember the Radian In rota-
tional equations, you must use 
angles expressed in radians.  
Don’t fall into the trap of using 
angles measured in degrees in 
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Figure 10.2  A particle on a rotat-
ing rigid object moves from ! to 
" along the arc of a circle. In the 
time interval Dt 5 tf 2 ti , the radial 
line of length r moves through an 
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s = rθ ; θ =
s

r

r is constant in time for a rigid object.

Units for θ: radians. Often written as “rad”. But notice, that a
dimensional analysis gives [m]

[m] = 1, unitless! The radian is an
artificial unit. In fact, angles given in radians are dimensionless.



Rotation of Rigid Objects

To begin, consider a rotating disc.
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defining kinematic variables: position, velocity, and acceleration. We do the same 
here for rotational motion.
 Figure 10.1 illustrates an overhead view of a rotating compact disc, or CD. The 
disc rotates about a fixed axis perpendicular to the plane of the figure and passing 
through the center of the disc at O. A small element of the disc modeled as a par-
ticle at P is at a fixed distance r from the origin and rotates about it in a circle of 
radius r. (In fact, every element of the disc undergoes circular motion about O.) It is 
convenient to represent the position of P with its polar coordinates (r, u), where r is 
the distance from the origin to P and u is measured counterclockwise from some refer-
ence line fixed in space as shown in Figure 10.1a. In this representation, the angle u  
changes in time while r remains constant. As the particle moves along the cir-
cle from the reference line, which is at angle u 5 0, it moves through an arc of 
length s as in Figure 10.1b. The arc length s is related to the angle u through the 
relationship

 s 5 r u (10.1a)

 u 5
s
r  (10.1b)

Because u is the ratio of an arc length and the radius of the circle, it is a pure num-
ber. Usually, however, we give u the artificial unit radian (rad), where one radian is 
the angle subtended by an arc length equal to the radius of the arc. Because the cir-
cumference of a circle is 2pr, it follows from Equation 10.1b that 3608 corresponds 
to an angle of (2pr/r) rad 5 2p rad. Hence, 1 rad 5 3608/2p < 57.38. To convert an 
angle in degrees to an angle in radians, we use that p rad 5 1808, so

u 1rad 2 5
p

1808
 u 1deg 2

For example, 608 equals p/3 rad and 458 equals p/4 rad.
 Because the disc in Figure 10.1 is a rigid object, as the particle moves through an 
angle u from the reference line, every other particle on the object rotates through 
the same angle u. Therefore, we can associate the angle u with the entire rigid 
object as well as with an individual particle, which allows us to define the angular 
position of a rigid object in its rotational motion. We choose a reference line on 
the object, such as a line connecting O and a chosen particle on the object. The 
angular position of the rigid object is the angle u between this reference line on 
the object and the fixed reference line in space, which is often chosen as the x axis. 
Such identification is similar to the way we define the position of an object in trans-
lational motion as the distance x between the object and the reference position, 
which is the origin, x 5 0. Therefore, the angle u plays the same role in rotational 
motion that the position x does in translational motion.
 As the particle in question on our rigid object travels from position ! to posi-
tion " in a time interval Dt as in Figure 10.2, the reference line fixed to the object 
sweeps out an angle Du 5 uf 2 ui. This quantity Du is defined as the angular dis-
placement of the rigid object:

Du ; uf 2 ui 

The rate at which this angular displacement occurs can vary. If the rigid object 
spins rapidly, this displacement can occur in a short time interval. If it rotates 
slowly, this displacement occurs in a longer time interval. These different rotation 
rates can be quantified by defining the average angular speed vavg (Greek letter 
omega) as the ratio of the angular displacement of a rigid object to the time inter-
val Dt during which the displacement occurs:
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defining kinematic variables: position, velocity, and acceleration. We do the same 
here for rotational motion.
 Figure 10.1 illustrates an overhead view of a rotating compact disc, or CD. The 
disc rotates about a fixed axis perpendicular to the plane of the figure and passing 
through the center of the disc at O. A small element of the disc modeled as a par-
ticle at P is at a fixed distance r from the origin and rotates about it in a circle of 
radius r. (In fact, every element of the disc undergoes circular motion about O.) It is 
convenient to represent the position of P with its polar coordinates (r, u), where r is 
the distance from the origin to P and u is measured counterclockwise from some refer-
ence line fixed in space as shown in Figure 10.1a. In this representation, the angle u  
changes in time while r remains constant. As the particle moves along the cir-
cle from the reference line, which is at angle u 5 0, it moves through an arc of 
length s as in Figure 10.1b. The arc length s is related to the angle u through the 
relationship

 s 5 r u (10.1a)

 u 5
s
r  (10.1b)

Because u is the ratio of an arc length and the radius of the circle, it is a pure num-
ber. Usually, however, we give u the artificial unit radian (rad), where one radian is 
the angle subtended by an arc length equal to the radius of the arc. Because the cir-
cumference of a circle is 2pr, it follows from Equation 10.1b that 3608 corresponds 
to an angle of (2pr/r) rad 5 2p rad. Hence, 1 rad 5 3608/2p < 57.38. To convert an 
angle in degrees to an angle in radians, we use that p rad 5 1808, so

u 1rad 2 5
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1808
 u 1deg 2

For example, 608 equals p/3 rad and 458 equals p/4 rad.
 Because the disc in Figure 10.1 is a rigid object, as the particle moves through an 
angle u from the reference line, every other particle on the object rotates through 
the same angle u. Therefore, we can associate the angle u with the entire rigid 
object as well as with an individual particle, which allows us to define the angular 
position of a rigid object in its rotational motion. We choose a reference line on 
the object, such as a line connecting O and a chosen particle on the object. The 
angular position of the rigid object is the angle u between this reference line on 
the object and the fixed reference line in space, which is often chosen as the x axis. 
Such identification is similar to the way we define the position of an object in trans-
lational motion as the distance x between the object and the reference position, 
which is the origin, x 5 0. Therefore, the angle u plays the same role in rotational 
motion that the position x does in translational motion.
 As the particle in question on our rigid object travels from position ! to posi-
tion " in a time interval Dt as in Figure 10.2, the reference line fixed to the object 
sweeps out an angle Du 5 uf 2 ui. This quantity Du is defined as the angular dis-
placement of the rigid object:

Du ; uf 2 ui 

The rate at which this angular displacement occurs can vary. If the rigid object 
spins rapidly, this displacement can occur in a short time interval. If it rotates 
slowly, this displacement occurs in a longer time interval. These different rotation 
rates can be quantified by defining the average angular speed vavg (Greek letter 
omega) as the ratio of the angular displacement of a rigid object to the time inter-
val Dt during which the displacement occurs:
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s = rθ ; θ =
s

r

r is constant in time for a rigid object.

Units for θ: radians. Often written as “rad”. But notice, that a
dimensional analysis gives [m]

[m] = 1, unitless! The radian is an
artificial unit. In fact, angles given in radians are dimensionless.



Rotation of Rigid Objects

How does the angle advance in time?
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defining kinematic variables: position, velocity, and acceleration. We do the same 
here for rotational motion.
 Figure 10.1 illustrates an overhead view of a rotating compact disc, or CD. The 
disc rotates about a fixed axis perpendicular to the plane of the figure and passing 
through the center of the disc at O. A small element of the disc modeled as a par-
ticle at P is at a fixed distance r from the origin and rotates about it in a circle of 
radius r. (In fact, every element of the disc undergoes circular motion about O.) It is 
convenient to represent the position of P with its polar coordinates (r, u), where r is 
the distance from the origin to P and u is measured counterclockwise from some refer-
ence line fixed in space as shown in Figure 10.1a. In this representation, the angle u  
changes in time while r remains constant. As the particle moves along the cir-
cle from the reference line, which is at angle u 5 0, it moves through an arc of 
length s as in Figure 10.1b. The arc length s is related to the angle u through the 
relationship

 s 5 r u (10.1a)

 u 5
s
r  (10.1b)

Because u is the ratio of an arc length and the radius of the circle, it is a pure num-
ber. Usually, however, we give u the artificial unit radian (rad), where one radian is 
the angle subtended by an arc length equal to the radius of the arc. Because the cir-
cumference of a circle is 2pr, it follows from Equation 10.1b that 3608 corresponds 
to an angle of (2pr/r) rad 5 2p rad. Hence, 1 rad 5 3608/2p < 57.38. To convert an 
angle in degrees to an angle in radians, we use that p rad 5 1808, so

u 1rad 2 5
p

1808
 u 1deg 2

For example, 608 equals p/3 rad and 458 equals p/4 rad.
 Because the disc in Figure 10.1 is a rigid object, as the particle moves through an 
angle u from the reference line, every other particle on the object rotates through 
the same angle u. Therefore, we can associate the angle u with the entire rigid 
object as well as with an individual particle, which allows us to define the angular 
position of a rigid object in its rotational motion. We choose a reference line on 
the object, such as a line connecting O and a chosen particle on the object. The 
angular position of the rigid object is the angle u between this reference line on 
the object and the fixed reference line in space, which is often chosen as the x axis. 
Such identification is similar to the way we define the position of an object in trans-
lational motion as the distance x between the object and the reference position, 
which is the origin, x 5 0. Therefore, the angle u plays the same role in rotational 
motion that the position x does in translational motion.
 As the particle in question on our rigid object travels from position ! to posi-
tion " in a time interval Dt as in Figure 10.2, the reference line fixed to the object 
sweeps out an angle Du 5 uf 2 ui. This quantity Du is defined as the angular dis-
placement of the rigid object:

Du ; uf 2 ui 

The rate at which this angular displacement occurs can vary. If the rigid object 
spins rapidly, this displacement can occur in a short time interval. If it rotates 
slowly, this displacement occurs in a longer time interval. These different rotation 
rates can be quantified by defining the average angular speed vavg (Greek letter 
omega) as the ratio of the angular displacement of a rigid object to the time inter-
val Dt during which the displacement occurs:
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∆θ = θf − θi



Angular Speed

Rate at which the angle advances is a speed: the angular speed, ω.

Average angular speed:

ωavg =
θf − θi
tf − ti

=
∆θ

∆t

Instantaneous angular speed:

ω =
dθ

dt



Angular Acceleration

Rate at which the angular speed changes: the angular acceleration,
α.

Average angular acceleration:

αavg =
ωf −ωi

tf − ti
=
∆ω

∆t

Instantaneous angular acceleration:

α =
dω

dt



Summary

• ballistic pendulum

• 2-D collisions

• rotational quantities

2nd Test Thursday.

Homework
• Ch 9 Prob: 49, 521

• Ch 10 Probs: 2, 7, 9, 13, 19, 29 (won’t be on 2nd test -
covered fully tomorrow)

1ans: 0.073 m


