Mechanics
 More Collisions
 Rotational Quantites

Lana Sheridan
De Anza College

Nov 13, 2018

Last time

- collisions in 1-D
- elastic and inelastic

Overview

- ballistic pendulum
- 2-D collisions
- rotational quantities

1-D Elastic Collision Example

Ch 9, \#62
Two titanium spheres approach each other head-on with the same speed and collide elastically. After the collision, one of the spheres, whose mass is 300 g , remains at rest.
(a) What is the mass of the other sphere?
(b) What is the speed of the two-sphere center of mass if the initial speed of each sphere is $2.00 \mathrm{~m} / \mathrm{s}$?

1-D Elastic Collision Example

(a) What is the mass of the other sphere?
use:

$$
\left\{\begin{array}{c}
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}-\frac{0}{+} m_{2} v_{2 f} \\
v_{1 i}+v_{1} \stackrel{\boxed{0}}{=} v_{2 f}+v_{2 i}
\end{array}\right.
$$

1-D Elastic Collision Example

(a) What is the mass of the other sphere?
use:

$$
\left\{\begin{array}{c}
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1} \stackrel{0}{+} m_{2} v_{2 f} \\
v_{1 i}+v_{1 f} \stackrel{0}{=} v_{2 f}+v_{2 i} \\
m_{2}=100 \mathrm{~g}
\end{array}\right.
$$

(b) What is the speed of the two-sphere center of mass if the initial speed of each sphere is $2.00 \mathrm{~m} / \mathrm{s}$?
use:

$$
\mathbf{v}_{\mathrm{CM}}=\frac{1}{M} \sum_{i} m_{i} \mathbf{v}_{i}
$$

1-D Elastic Collision Example

(a) What is the mass of the other sphere?
use:

$$
\left\{\begin{array}{c}
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f} \stackrel{0}{+} m_{2} v_{2 f} \\
v_{1 i}+v_{1 f} \stackrel{0}{=} v_{2 f}+v_{2 i}
\end{array}\right.
$$

$$
m_{2}=100 \mathrm{~g}
$$

(b) What is the speed of the two-sphere center of mass if the initial speed of each sphere is $2.00 \mathrm{~m} / \mathrm{s}$?
use:

$$
\begin{aligned}
\mathbf{v}_{\mathrm{CM}} & =\frac{1}{M} \sum_{i} m_{i} \mathbf{v}_{i} \\
v_{\mathrm{CM}} & =1.00 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Collisions and Energy

The Ballistic Pendulum

The ballistic pendulum is an apparatus used to measure the speed of a fast-moving projectile such as a bullet. A projectile of mass m_{1} is fired into a large block of wood of mass m_{2} suspended from some light wires. The projectile embeds in the block, and the entire system swings through a height h. How can we determine the speed of the projectile from a measurement of h ?
${ }^{1}$ Serway \& Jewett, page 262.

The Ballistic Pendulum

We know m_{1}, m_{2}, and h. We want to know the speed of the bullet, v_{1}.

The Ballistic Pendulum

We know m_{1}, m_{2}, and h. We want to know the speed of the bullet, v_{1}.

Step 1: how does the speed of the block v_{B} depend on the bullet speed?

The Ballistic Pendulum

We know m_{1}, m_{2}, and h. We want to know the speed of the bullet, v_{1}.

Step 1: how does the speed of the block v_{B} depend on the bullet speed? Conservation of momentum, perfectly inelastic collision:

$$
\begin{aligned}
\left(m_{1}+m_{2}\right) v_{B} & =m_{1} v_{1}+m_{2}(0) \\
v_{B} & =\frac{m_{1} v_{1}}{m_{1}+m_{2}}
\end{aligned}
$$

The Ballistic Pendulum

Step 2: What happens after the bullet hits the block?

The Ballistic Pendulum

Step 2: What happens after the bullet hits the block? How does v_{B} relate to h ?

The Ballistic Pendulum

Step 2: What happens after the bullet hits the block? How does v_{B} relate to h ? Conservation of energy:

$$
\begin{aligned}
\Delta K+\Delta U_{g} & =0 \\
\left(0-\frac{1}{2}\left(m_{1}+m_{2}\right) v_{B}^{2}\right)+\left(\left(m_{1}+m_{2}\right) g h-0\right) & =0 \\
\frac{1}{2}\left(m_{1}+m_{2}\right) v_{B}^{2} & =\left(m_{1}+m_{2}\right) g h
\end{aligned}
$$

The Ballistic Pendulum

Step 2: What happens after the bullet hits the block? How does v_{B} relate to h ? Conservation of energy:

$$
\begin{aligned}
\Delta K+\Delta U_{g} & =0 \\
\left(0-\frac{1}{2}\left(m_{1}+m_{2}\right) v_{B}^{2}\right)+\left(\left(m_{1}+m_{2}\right) g h-0\right) & =0 \\
\frac{1}{2}\left(m_{1}+m_{2}\right) v_{B}^{2} & =\left(m_{1}+m_{2}\right) g h
\end{aligned}
$$

Replace $v_{B}=\frac{m_{1} v_{1}}{m_{1}+m_{2}}$:

$$
\begin{aligned}
\frac{1}{2}\left(m_{1}+m_{2}\right)\left(\frac{m_{1} v_{1}}{m_{1}+m_{2}}\right)^{2} & =\left(m_{1}+m_{2}\right) g h \\
\left(\frac{m_{1}^{2} v_{1}^{2}}{m_{1}+m_{2}}\right) & =2\left(m_{1}+m_{2}\right) g h \\
v_{1} & =\left(\frac{m_{1}+m_{2}}{m_{1}}\right) \sqrt{2 g h}
\end{aligned}
$$

Collisions in 2 Dimensions

Collisions can take place in 2 dimensions.
As an example, consider the case of a glancing collision.

After the collision

Conserve momentum in the x and y directions.

Collisions in 2 Dimensions

The conservation of momentum equation is a vector equation.

$$
\mathbf{p}_{i}=\mathbf{p}_{f} \quad \Rightarrow \quad m_{1} \mathbf{v}_{1 i}+m_{2} \mathbf{v}_{2 i}=m_{1} \mathbf{v}_{1 f}+m_{2} \mathbf{v}_{2 f}
$$

Collisions in 2 Dimensions

The conservation of momentum equation is a vector equation.

$$
\mathbf{p}_{i}=\mathbf{p}_{f} \quad \Rightarrow \quad m_{1} \mathbf{v}_{1 i}+m_{2} \mathbf{v}_{2 i}=m_{1} \mathbf{v}_{1 f}+m_{2} \mathbf{v}_{2 f}
$$

We can write equations for each component of the momentum. In 2-d, with x and y components:

$$
\begin{array}{ll}
\mathbf{x}: & m_{1} v_{1 i x}+m_{2} v_{2 i x}=m_{1} v_{1 f x}+m_{2} v_{2 f x} \\
\mathbf{y}: & m_{1} v_{1 i y}+m_{2} v_{2 i y}=m_{1} v_{1 f y}+m_{2} v_{2 f y}
\end{array}
$$

Collisions in 2 Dimensions

The conservation of momentum equation is a vector equation.

$$
\mathbf{p}_{i}=\mathbf{p}_{f} \quad \Rightarrow \quad m_{1} \mathbf{v}_{1 i}+m_{2} \mathbf{v}_{2 i}=m_{1} \mathbf{v}_{1 f}+m_{2} \mathbf{v}_{2 f}
$$

We can write equations for each component of the momentum. In 2-d, with x and y components:

$$
\begin{array}{ll}
\mathbf{x}: & m_{1} v_{1 i x}+m_{2} v_{2 i x}=m_{1} v_{1 f x}+m_{2} v_{2 f x} \\
\mathbf{y}: & m_{1} v_{1 i y}+m_{2} v_{2 i y}=m_{1} v_{1 f y}+m_{2} v_{2 f y}
\end{array}
$$

If it is an elastic collision:
$K_{i}=K_{f} \quad \Rightarrow \quad \frac{1}{2} m_{1}\left(v_{1 i}\right)^{2}+\frac{1}{2} m_{2}\left(v_{2 i}\right)^{2}=\frac{1}{2} m_{1}\left(v_{1 f}\right)^{2}+\frac{1}{2} m_{2}\left(v_{2 f}\right)^{2}$

Rotation of Rigid Objects

Now we understand that while we can treat a collection of particles as a single point particle at the center of mass, we do not have to do that.

This will allow us to describe another important kind of motion: rotation.

Rotation of Rigid Objects

Now we understand that while we can treat a collection of particles as a single point particle at the center of mass, we do not have to do that.

This will allow us to describe another important kind of motion: rotation.

Begin with rotational kinematics.

Rotation of Rigid Objects

To begin, consider a rotating disc.

r is constant in time for a rigid object.

Rotation of Rigid Objects

To begin, consider a rotating disc.

$$
s=r \theta ; \quad \theta=\frac{s}{r}
$$

r is constant in time for a rigid object.
Units for θ : radians. Often written as "rad". But notice, that a dimensional analysis gives $\frac{[\mathrm{m}]}{[\mathrm{m}]}=1$, unitless! The radian is an artificial unit. In fact, angles given in radians are dimensionless.

Rotation of Rigid Objects

How does the angle advance in time?

$$
\Delta \theta=\theta_{f}-\theta_{i}
$$

Angular Speed

Rate at which the angle advances is a speed: the angular speed, ω.

Average angular speed:

$$
\omega_{\mathrm{avg}}=\frac{\theta_{f}-\theta_{i}}{t_{f}-t_{i}}=\frac{\Delta \theta}{\Delta t}
$$

Instantaneous angular speed:

$$
\omega=\frac{\mathrm{d} \theta}{\mathrm{dt}}
$$

Angular Acceleration

Rate at which the angular speed changes: the angular acceleration, α.

Average angular acceleration:

$$
\alpha_{\mathrm{avg}}=\frac{\omega_{f}-\omega_{i}}{t_{f}-t_{i}}=\frac{\Delta \omega}{\Delta t}
$$

Instantaneous angular acceleration:

$$
\alpha=\frac{\mathrm{d} \omega}{\mathrm{dt}}
$$

Summary

- ballistic pendulum
- 2-D collisions
- rotational quantities

2nd Test Thursday.

Homework

- Ch 9 Prob: 49,52 ${ }^{1}$
- Ch 10 Probs: 2, 7, 9, 13, 19, 29 (won't be on 2nd test covered fully tomorrow)
${ }^{1}$ ans: 0.073 m

