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Last time

• ballistic pendulum

• 2-D collisions (not on test)

• rotational quantities



Overview

• relation of angular to translational quantities

• rotational kinematics

• torque (?)



Angular Quantities

change in angle, ∆θ (rad)

angular speed, ω = dθ
dt (rad/s)

angular acceleration, α = dω
dt (rad/s2)



Rotation of Rigid Objects and Vector Quantities

We can also define these quantities as vectors! (Provided we fix
the axis of rotation.)

The angle can be positive or negative depending on whether it is
clockwise or counterclockwise from the reference point.

This is the same way that a 1-dimensional displacement x can be
positive or negative based on whether it is on the left or right of
the origin.



Rotation of Rigid Objects and Vector Quantities

We can also define these quantities as vectors! (Provided we fix
the axis of rotation.)

The angle can be positive or negative depending on whether it is
clockwise or counterclockwise from the reference point.

This is the same way that a 1-dimensional displacement x can be
positive or negative based on whether it is on the left or right of
the origin.



Rotation of Rigid Objects and Vector Quantities

By convention, we define the counterclockwise direction to be
positive. The vector itself is drawn along the axis of rotation.296 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

direction of vS for the particle is out of the plane of the diagram when the rotation 
is counterclockwise and into the plane of the diagram when the rotation is clock-
wise. To illustrate this convention, it is convenient to use the right-hand rule demon-
strated in Figure 10.3. When the four fingers of the right hand are wrapped in the 
direction of rotation, the extended right thumb points in the direction of vS . The 
direction of aS follows from its definition aS ; dvS  /dt. It is in the same direction as 
vS if the angular speed is increasing in time, and it is antiparallel to vS if the angular 
speed is decreasing in time.

10.2  Analysis Model: Rigid Object Under  
Constant Angular Acceleration

In our study of translational motion, after introducing the kinematic variables, we 
considered the special case of a particle under constant acceleration. We follow the 
same procedure here for a rigid object under constant angular acceleration. 
 Imagine a rigid object such as the CD in Figure 10.1 rotates about a fixed axis 
and has a constant angular acceleration. In parallel with our analysis model of the 
particle under constant acceleration, we generate a new analysis model for rota-
tional motion called the rigid object under constant angular acceleration. We 
develop kinematic relationships for this model in this section. Writing Equation 
10.5 in the form dv 5 a dt and integrating from ti 5 0 to tf 5 t gives

 vf 5 vi 1 at (for constant a) (10.6)

where vi is the angular speed of the rigid object at time t 5 0. Equation 10.6 allows 
us to find the angular speed vf of the object at any later time t. Substituting Equa-
tion 10.6 into Equation 10.3 and integrating once more, we obtain

 uf 5 ui 1 vit 1 1
2at 2 1 for constant a 2  (10.7)

where ui is the angular position of the rigid object at time t 5 0. Equation 10.7 
allows us to find the angular position uf of the object at any later time t. Eliminating 
t from Equations 10.6 and 10.7 gives

 vf
2 5 vi

2 1 2a(uf 2 ui) (for constant a) (10.8)

This equation allows us to find the angular speed vf of the rigid object for any value of  
its angular position uf . If we eliminate a between Equations 10.6 and 10.7, we obtain

 uf 5 ui 1 1
2 1vi 1 vf 2 t 1 for constant a 2  (10.9)

 Notice that these kinematic expressions for the rigid object under constant angu-
lar acceleration are of the same mathematical form as those for a particle under 
constant acceleration (Chapter 2). They can be generated from the equations for 
translational motion by making the substitutions x S u, v S v, and a S a. Table 
10.1 compares the kinematic equations for the rigid object under constant angular 
acceleration and particle under constant acceleration models.

Q uick Quiz 10.2  Consider again the pairs of angular positions for the rigid 
object in Quick Quiz 10.1. If the object starts from rest at the initial angular 
position, moves counterclockwise with constant angular acceleration, and 
arrives at the final angular position with the same angular speed in all three 
cases, for which choice is the angular acceleration the highest?

Rotational kinematic X 
equations
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Figure 10.3  The right-hand rule 
for determining the direction of the 
angular velocity vector.

Pitfall Prevention 10.3
Just Like Translation? Equations 
10.6 to 10.9 and Table 10.1 might 
suggest that rotational kinematics 
is just like translational kinemat-
ics. That is almost true, with two 
key differences. (1) In rotational 
kinematics, you must specify a 
rotation axis (per Pitfall Pre-
vention 10.2). (2) In rotational 
motion, the object keeps return-
ing to its original orientation; 
therefore, you may be asked for 
the number of revolutions made 
by a rigid object. This concept has 
no analog in translational motion.

Table 10.1 Kinematic Equations for Rotational and Translational Motion
Rigid Object Under Constant Angular Acceleration Particle Under Constant Acceleration
 vf 5 vi 1 at (10.6) vf 5 vi 1 at (2.13)
 uf 5 ui 1 vit 1 12at2 (10.7) xf 5 xi 1 vit 1 12at2 (2.16)
 vf

2 5 vi
2 1 2a(uf 2 ui) (10.8) vf

2 5 vi
2 1 2a(xf 2 xi) (2.17)

 uf 5 ui 1 12(vi 1 vf)t (10.9) xf 5 xi 1 12(vi 1 vf)t (2.15)
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Then we can write:

θθθ =
s

r
n̂ ; ωωω =

dθθθ

dt
; α =

dωωω

dt

where n̂ is a unit vector perpendicular to the plane of rotation.



Comparison of Linear and Rotational quantities

Linear Quantities Rotational Quantities

x θ

v = dx
dt ω = dθ

dt

a = dv
dt α = dω

dt



Rotational Kinematics

If α is constant, we have basically the same kinematics equations
as before, but the relations are between the new quantities.

ωf =ωi + αt

θf = θi +ωi t +
1

2
αt2

ω2
f = ω2

i + 2α ·∆θ

ωavg =
1

2
(ωi +ωf )

θf = θi +
1

2
(ωi +ωf )t



Kinematics Comparison

Linear Quantities Rotational Quantities

vf = vi + at ωf =ωi + αt

xf = xi + vit +
1
2at

2 θf = θi +ωi t +
1
2αt

2

v2f = v2i + 2a ·∆x ω2
f = ω2

i + 2α ·∆θ

vavg = 1
2(vi + vf) ωavg =

1
2(ωi +ωf )

xf = xi +
1
2(vi + vf)t θf = θi +

1
2(ωi +ωf )t



Relating Rotational Quantities to Translation of
Points

Consider a point on the rotating object. How does its speed relate
to the angular speed?
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10.3 Angular and Translational Quantities
In this section, we derive some useful relationships between the angular speed and 
acceleration of a rotating rigid object and the translational speed and acceleration 
of a point in the object. To do so, we must keep in mind that when a rigid object 
rotates about a fixed axis as in Figure 10.4, every particle of the object moves in a 
circle whose center is on the axis of rotation.
 Because point P in Figure 10.4 moves in a circle, the translational velocity vector vS 
is always tangent to the circular path and hence is called tangential velocity. The mag-
nitude of the tangential velocity of the point P is by definition the tangential speed 
v 5 ds/dt, where s is the distance traveled by this point measured along the circular 
path. Recalling that s 5 r u (Eq. 10.1a) and noting that r is constant, we obtain

v 5
ds
dt

5 r 
du

dt

Because d u/dt 5 v (see Eq. 10.3), it follows that

 v 5 rv (10.10)

As we saw in Equation 4.17, the tangential speed of a point on a rotating rigid 
object equals the perpendicular distance of that point from the axis of rotation 
multiplied by the angular speed. Therefore, although every point on the rigid 
object has the same angular speed, not every point has the same tangential speed 
because r is not the same for all points on the object. Equation 10.10 shows that 
the tangential speed of a point on the rotating object increases as one moves 
outward from the center of rotation, as we would intuitively expect. For example, 
the outer end of a swinging golf club moves much faster than a point near the 
handle.
 We can relate the angular acceleration of the rotating rigid object to the tangen-
tial acceleration of the point P by taking the time derivative of v :

at 5
dv
dt

5 r 
dv

dt
 

 at 5 ra (10.11)

That is, the tangential component of the translational acceleration of a point on 
a rotating rigid object equals the point’s perpendicular distance from the axis of 
rotation multiplied by the angular acceleration.
 In Section 4.4, we found that a point moving in a circular path undergoes a 
radial acceleration ar directed toward the center of rotation and whose magnitude 
is that of the centripetal acceleration v 2/r (Fig. 10.5). Because v 5 rv for a point 

Relation between tangential X 
velocity and angular velocity

Relation between tangential X 
acceleration and angular 

acceleration

Figure 10.4 As a rigid object 
rotates about the fixed axis (the  
z axis) through O, the point P 
has a tangential velocity vS that is 
always tangent to the circular path 
of radius r.

y

P

x
O

r s
u

vS

 

▸ 10.1 c o n t i n u e d

Answer  Notice that these questions are translational analogs to parts (A) and (C) of the original problem. The mathemat-
ical solution follows exactly the same form. For the displacement, from the particle under constant acceleration model,

Dx 5 xf 2 xi 5 vit 1 1
2at 2  

5 12.00 m/s 2 12.00 s 2 1 1
2 13.50 m/s2 2 12.00 s 22 5 11.0 m

and for the velocity,

vf 5 vi 1 at 5 2.00 m/s 1 (3.50 m/s2)(2.00 s) 5 9.00 m/s

There is no translational analog to part (B) because translational motion under constant acceleration is not repetitive.

We know s = rθ, so since the object’s speed is its speed along the
path s,

v =
ds

dt
= r

dθ

dt



Relating Rotational Quantities to Translation of
Points

Since ω = dθ
dt , that gives us and expression for (tangential) speed

v = rω

And differentiating both sides with respect to t again:

at = rα

Notice that the above equation gives the rate of change of speed,
which is the tangential acceleration.



Relating Rotational Quantities to Translation of
Points

Since ω = dθ
dt , that gives us and expression for (tangential) speed

v = rω

And differentiating both sides with respect to t again:

at = rα

Notice that the above equation gives the rate of change of speed,
which is the tangential acceleration.



Centripetal Acceleration

Remember:

at =
dv

dt

where v is the speed, not velocity.

So,
at = rα

But of course, in order for a mass at that point, radius r , to
continue moving in a circle, there must be a centripetal component
of acceleration also.

ac =
v2

r
= ω2r

For a rigid object, the force that supplies this acceleration will be
some internal forces between the mass at the rotating point and
the other masses in the object. Those are the forces that hold the
object together.
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Example 1

Page 325, #5
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mine the angular position, angular speed, and angu-
lar acceleration of the door (a) at t 5 0 and (b) at t 5 
3.00 s.

 4. A bar on a hinge starts from rest and rotates with an 
angular acceleration a 5 10 1 6t, where a is in rad/s2  
and t is in seconds. Determine the angle in radians 
through which the bar turns in the first 4.00 s.

Section 10.2 Analysis Model: Rigid Object  
Under Constant Angular Acceleration
 5. A wheel starts from rest and rotates with constant 

angular acceleration to reach an angular speed of  
12.0 rad/s in 3.00 s. Find (a) the magnitude of the angu-

W

Section 10.1 Angular Position, Velocity, and Acceleration
 1. (a) Find the angular speed of the Earth’s rotation about 

its axis. (b) How does this rotation affect the shape of 
the Earth?

 2. A potter’s wheel moves uniformly from rest to an angu-
lar speed of 1.00 rev/s in 30.0 s. (a) Find its average 
angular acceleration in radians per second per second. 
(b) Would doubling the angular acceleration during 
the given period have doubled the final angular speed?

 3. During a certain time interval, the angular position 
of a swinging door is described by u 5 5.00 1 10.0t 1 
2.00t 2, where u is in radians and t is in seconds. Deter-

Q/C

W

far side and pulled forward horizontally, the tricycle 
would start to roll forward. (a) Instead, assume a string 
is attached to the lower pedal on the near side and 
pulled forward horizontally as shown by A. Will the tri-
cycle start to roll? If so, which way? Answer the same 
questions if (b) the string is pulled forward and upward 
as shown by B, (c) if the string is pulled straight down 
as shown by C, and (d) if the string is pulled forward 
and downward as shown by D. (e) What If? Suppose 
the string is instead attached to the rim of the front 
wheel and pulled upward and backward as shown by E. 
Which way does the tricycle roll? (f) Explain a pattern 
of reasoning, based on the figure, that makes it easy to 
answer questions such as these. What physical quantity 
must you evaluate?

B

A

D
C

E

Figure CQ10.15

 16. A person balances a meterstick in a horizontal posi-
tion on the extended index fingers of her right and 
left hands. She slowly brings the two fingers together. 
The stick remains balanced, and the two fingers always 
meet at the 50-cm mark regardless of their original 
positions. (Try it!) Explain why that occurs.

 11. If you see an object rotating, is there necessarily a net 
torque acting on it?

 12. If a small sphere of mass M were placed at the end 
of the rod in Figure 10.21, would the result for v be 
greater than, less than, or equal to the value obtained 
in Example 10.11?

 13. Three objects of uniform density—a solid sphere, 
a solid cylinder, and a hollow  cylinder—are placed 
at the top of an incline (Fig. CQ10.13). They are all 
released from rest at the same elevation and roll with-
out slipping. (a) Which object reaches the bottom first?  
(b) Which reaches it last? Note: The result is indepen-
dent of the masses and the radii of the objects. (Try 
this activity at home!)

Figure CQ10.13

 14. Which of the entries in Table 10.2 applies to finding 
the moment of inertia (a) of a long, straight sewer pipe 
rotating about its axis of symmetry? (b) Of an embroi-
dery hoop rotating about an axis through its center 
and perpendicular to its plane? (c) Of a uniform door 
turning on its hinges? (d) Of a coin turning about an 
axis through its center and perpendicular to its faces?

 15. Figure CQ10.15 shows a side view of a child’s tricycle 
with rubber tires on a horizontal concrete sidewalk. 
If a string were attached to the upper pedal on the 

Problems

 
The problems found in this  

 chapter may be assigned 
online in Enhanced WebAssign

1.  straightforward; 2. intermediate;  
3. challenging

1.   full solution available in the Student 
Solutions Manual/Study Guide

AMT   Analysis Model tutorial available in 
Enhanced WebAssign

 GP  Guided Problem

 M   Master It tutorial available in Enhanced 
WebAssign

 W   Watch It video solution available in 
Enhanced WebAssign

BIO

Q/C
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 Problems 325

lar acceleration of the wheel and (b) the angle in radi-
ans through which it rotates in this time interval.

 6. A centrifuge in a medical laboratory rotates at an angu-
lar speed of 3 600 rev/min. When switched off, it rotates 
through 50.0 revolutions before coming to rest. Find 
the constant angular acceleration of the centrifuge.

 7. An electric motor rotating a workshop grinding wheel 
at 1.00 3 102 rev/min is switched off. Assume the wheel 
has a constant negative angular acceleration of magni-
tude 2.00 rad/s2. (a) How long does it take the grinding 
wheel to stop? (b) Through how many radians has the 
wheel turned during the time interval found in part (a)?

 8. A machine part rotates at an angular speed of 
0.060  rad/s; its speed is then increased to 2.2 rad/s 
at an angular acceleration of 0.70 rad/s2. (a) Find the 
angle through which the part rotates before reaching 
this final speed. (b) If both the initial and final angu-
lar speeds are doubled and the angular acceleration 
remains the same, by what factor is the angular dis-
placement changed? Why?

 9. A dentist’s drill starts from rest. After 3.20 s of con-
stant angular acceleration, it turns at a rate of 2.51 3 
104 rev/min. (a) Find the drill’s angular acceleration.  
(b) Determine the angle (in radians) through which 
the drill rotates during this period.

 10. Why is the following situation impossible? Starting from 
rest, a disk rotates around a fixed axis through an 
angle of 50.0   rad in a time interval of 10.0 s. The 
angular acceleration of the disk is constant during the 
entire motion, and its final angular speed is 8.00 rad/s.

 11. A rotating wheel requires 3.00 s to rotate through  
37.0 revolutions. Its angular speed at the end of the 
3.00-s interval is 98.0 rad/s. What is the constant angu-
lar acceleration of the wheel?

 12. The tub of a washer goes into its spin cycle, starting 
from rest and gaining angular speed steadily for 8.00 s,  
at which time it is turning at 5.00 rev/s. At this point, 
the person doing the laundry opens the lid, and a 
safety switch turns off the washer. The tub smoothly 
slows to rest in 12.0 s. Through how many revolutions 
does the tub turn while it is in motion?

 13. A spinning wheel is slowed down by a brake, giving it 
a constant angular acceleration of 25.60 rad/s2. Dur-
ing a 4.20-s time interval, the wheel rotates through  
62.4 rad. What is the angular speed of the wheel at the 
end of the 4.20-s interval?

 14. Review. Consider a tall building located on the Earth’s 
equator. As the Earth rotates, a person on the top floor of 
the building moves faster than someone on the ground 
with respect to an inertial reference frame because the 
person on the ground is closer to the Earth’s axis. Con-
sequently, if an object is dropped from the top floor to 
the ground a distance h below, it lands east of the point 
vertically below where it was dropped. (a) How far to the 
east will the object land? Express your answer in terms 
of h, g, and the angular speed v of the Earth. Ignore air 
resistance and assume the free-fall acceleration is con-
stant over this range of heights. (b) Evaluate the east-
ward displacement for h 5 50.0 m. (c) In your judgment, 

M

Q/C

M
AMT

W

Q/C
S

were we justified in ignoring this aspect of the Coriolis 
effect in our previous study of free fall? (d) Suppose the 
angular speed of the Earth were to decrease due to tidal 
friction with constant angular acceleration. Would the 
eastward displacement of the dropped object increase 
or decrease compared with that in part (b)?

Section 10.3 Angular and Translational Quantities
 15. A racing car travels on a circular track of radius 250 m.  

Assuming the car moves with a constant speed of  
45.0 m/s, find (a) its angular speed and (b) the magni-
tude and direction of its acceleration.

 16. Make an order-of-magnitude estimate of the number 
of revolutions through which a typical automobile tire 
turns in one year. State the quantities you measure or 
estimate and their values.

 17. A discus thrower (Fig. P4.33, page 104) accelerates a 
discus from rest to a speed of 25.0 m/s by whirling it 
through 1.25 rev. Assume the discus moves on the arc 
of a circle 1.00 m in radius. (a) Calculate the final angu-
lar speed of the discus. (b) Determine the magnitude 
of the angular acceleration of the discus, assuming it 
to be constant. (c) Calculate the time interval required 
for the discus to accelerate from rest to 25.0 m/s.

 18. Figure P10.18 shows the drive train of a bicycle that 
has wheels 67.3 cm in diameter and pedal cranks  
17.5 cm long. The cyclist pedals at a steady cadence of  
76.0 rev/min. The chain engages with a front sprocket 
15.2 cm in diameter and a rear sprocket 7.00 cm in 
diameter. Calculate (a) the speed of a link of the chain 
relative to the bicycle frame, (b) the angular speed of 
the bicycle wheels, and (c) the speed of the bicycle rela-
tive to the road. (d) What pieces of data, if any, are not 
necessary for the calculations?

Chain

Front sprocket
Pedal crank

Rear
sprocket

Figure P10.18

 19. A wheel 2.00 m in diameter lies in a vertical plane and 
rotates about its central axis with a constant angular 
acceleration of 4.00 rad/s2. The wheel starts at rest at  
t 5 0, and the radius vector of a certain point P on the 
rim makes an angle of 57.38 with the horizontal at this 
time. At t 5 2.00 s, find (a) the angular speed of the 
wheel and, for point P, (b) the tangential speed, (c) the 
total acceleration, and (d) the angular position.

 20. A car accelerates uniformly from rest and reaches a 
speed of 22.0 m/s in 9.00 s. Assuming the diameter of 
a tire is 58.0 cm, (a) find the number of revolutions the 
tire makes during this motion, assuming that no slip-
ping occurs. (b) What is the final angular speed of a 
tire in revolutions per second?

W

W
Q/C

M

W



Example 1

Known: ωi , ωf , t

(a) Angular accel., α?

ωf = ωi + αt

α =
ωf −ωi

t

α =
12.0 rad/s − 0

3.00 s

α = 4.00 rad s−2



Example 1

Known: ωi , ωf , t, α

(b) Angle in radians, ∆θ?

Either use

∆θ = ωi t +
1

2
αt2 = 0 +

1

2
(4)(3)2 = 18 radians

or use

∆θ =
1

2
(ωi +ωf )t

∆θ =
1

2
(0 + 12.0)(3.00)

= 18.0 radians



Example 2
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lar acceleration of the wheel and (b) the angle in radi-
ans through which it rotates in this time interval.

 6. A centrifuge in a medical laboratory rotates at an angu-
lar speed of 3 600 rev/min. When switched off, it rotates 
through 50.0 revolutions before coming to rest. Find 
the constant angular acceleration of the centrifuge.

 7. An electric motor rotating a workshop grinding wheel 
at 1.00 3 102 rev/min is switched off. Assume the wheel 
has a constant negative angular acceleration of magni-
tude 2.00 rad/s2. (a) How long does it take the grinding 
wheel to stop? (b) Through how many radians has the 
wheel turned during the time interval found in part (a)?

 8. A machine part rotates at an angular speed of 
0.060  rad/s; its speed is then increased to 2.2 rad/s 
at an angular acceleration of 0.70 rad/s2. (a) Find the 
angle through which the part rotates before reaching 
this final speed. (b) If both the initial and final angu-
lar speeds are doubled and the angular acceleration 
remains the same, by what factor is the angular dis-
placement changed? Why?

 9. A dentist’s drill starts from rest. After 3.20 s of con-
stant angular acceleration, it turns at a rate of 2.51 3 
104 rev/min. (a) Find the drill’s angular acceleration.  
(b) Determine the angle (in radians) through which 
the drill rotates during this period.

 10. Why is the following situation impossible? Starting from 
rest, a disk rotates around a fixed axis through an 
angle of 50.0   rad in a time interval of 10.0 s. The 
angular acceleration of the disk is constant during the 
entire motion, and its final angular speed is 8.00 rad/s.

 11. A rotating wheel requires 3.00 s to rotate through  
37.0 revolutions. Its angular speed at the end of the 
3.00-s interval is 98.0 rad/s. What is the constant angu-
lar acceleration of the wheel?

 12. The tub of a washer goes into its spin cycle, starting 
from rest and gaining angular speed steadily for 8.00 s,  
at which time it is turning at 5.00 rev/s. At this point, 
the person doing the laundry opens the lid, and a 
safety switch turns off the washer. The tub smoothly 
slows to rest in 12.0 s. Through how many revolutions 
does the tub turn while it is in motion?

 13. A spinning wheel is slowed down by a brake, giving it 
a constant angular acceleration of 25.60 rad/s2. Dur-
ing a 4.20-s time interval, the wheel rotates through  
62.4 rad. What is the angular speed of the wheel at the 
end of the 4.20-s interval?

 14. Review. Consider a tall building located on the Earth’s 
equator. As the Earth rotates, a person on the top floor of 
the building moves faster than someone on the ground 
with respect to an inertial reference frame because the 
person on the ground is closer to the Earth’s axis. Con-
sequently, if an object is dropped from the top floor to 
the ground a distance h below, it lands east of the point 
vertically below where it was dropped. (a) How far to the 
east will the object land? Express your answer in terms 
of h, g, and the angular speed v of the Earth. Ignore air 
resistance and assume the free-fall acceleration is con-
stant over this range of heights. (b) Evaluate the east-
ward displacement for h 5 50.0 m. (c) In your judgment, 
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were we justified in ignoring this aspect of the Coriolis 
effect in our previous study of free fall? (d) Suppose the 
angular speed of the Earth were to decrease due to tidal 
friction with constant angular acceleration. Would the 
eastward displacement of the dropped object increase 
or decrease compared with that in part (b)?

Section 10.3 Angular and Translational Quantities
 15. A racing car travels on a circular track of radius 250 m.  

Assuming the car moves with a constant speed of  
45.0 m/s, find (a) its angular speed and (b) the magni-
tude and direction of its acceleration.

 16. Make an order-of-magnitude estimate of the number 
of revolutions through which a typical automobile tire 
turns in one year. State the quantities you measure or 
estimate and their values.

 17. A discus thrower (Fig. P4.33, page 104) accelerates a 
discus from rest to a speed of 25.0 m/s by whirling it 
through 1.25 rev. Assume the discus moves on the arc 
of a circle 1.00 m in radius. (a) Calculate the final angu-
lar speed of the discus. (b) Determine the magnitude 
of the angular acceleration of the discus, assuming it 
to be constant. (c) Calculate the time interval required 
for the discus to accelerate from rest to 25.0 m/s.

 18. Figure P10.18 shows the drive train of a bicycle that 
has wheels 67.3 cm in diameter and pedal cranks  
17.5 cm long. The cyclist pedals at a steady cadence of  
76.0 rev/min. The chain engages with a front sprocket 
15.2 cm in diameter and a rear sprocket 7.00 cm in 
diameter. Calculate (a) the speed of a link of the chain 
relative to the bicycle frame, (b) the angular speed of 
the bicycle wheels, and (c) the speed of the bicycle rela-
tive to the road. (d) What pieces of data, if any, are not 
necessary for the calculations?

Chain

Front sprocket
Pedal crank

Rear
sprocket

Figure P10.18

 19. A wheel 2.00 m in diameter lies in a vertical plane and 
rotates about its central axis with a constant angular 
acceleration of 4.00 rad/s2. The wheel starts at rest at  
t 5 0, and the radius vector of a certain point P on the 
rim makes an angle of 57.38 with the horizontal at this 
time. At t 5 2.00 s, find (a) the angular speed of the 
wheel and, for point P, (b) the tangential speed, (c) the 
total acceleration, and (d) the angular position.

 20. A car accelerates uniformly from rest and reaches a 
speed of 22.0 m/s in 9.00 s. Assuming the diameter of 
a tire is 58.0 cm, (a) find the number of revolutions the 
tire makes during this motion, assuming that no slip-
ping occurs. (b) What is the final angular speed of a 
tire in revolutions per second?
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Example 2

Known: ωi , ωf , α

(a) ∆θ?

ω2
f = ω2

i + 2α∆θ

∆θ =
ω2

f −ω
2
i

2α

=
(2.2)2 − (0.060)2

2× 0.70

= 3.5 rad



Example 2

(b) If both ωi and ωf are doubled, α kept constant, what happens
to ∆θ?

∆θ ′ =
(2×ωf )

2 − (2×ωi )
2

2α

= 4
ω2

f −ω
2
i

2α

= 4∆θ



Torque

Torque is a measure of force-causing-rotation.

It is not a force, but it is related. It depends on a force vector and
its point of application relative to an axis of rotation.

Torque is given by:

τ = r × F

That is: the cross product between

• a vector r, the displacement of the point of application of the
force from the axis of rotation, and

• an the force vector F

Units: N m Newton-meters. These are not Joules!
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300 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

(C) What is the angular acceleration of the compact disc over the 4 473-s time interval?

Categorize  We again model the disc as a rigid object under constant angular acceleration. In this case, Equation 10.6 gives 
the value of the constant angular acceleration. Another approach is to use Equation 10.4 to find the average angular 
acceleration. In this case, we are not assuming the angular acceleration is constant. The answer is the same from both 
equations; only the interpretation of the result is different.

S O L U T I O N

Analyze  Use Equation 10.6 to find the angular 
acceleration: a 5

vf 2 vi

t
5

22 rad/s 2 57 rad/s
4 473 s

5 27.6 3 1023 rad/s2

Finalize  The disc experiences a very gradual decrease in its rotation rate, as expected from the long time interval 
required for the angular speed to change from the initial value to the final value. In reality, the angular acceleration of 
the disc is not constant. Problem 90 allows you to explore the actual time behavior of the angular acceleration.

Do the same for the outer track: vf 5
v
rf

5
1.3 m/s

5.8 3 1022 m
5 22 rad/s 5 2.1 3 102 rev/min

Use Equation 10.9 to find the angular displacement of 
the disc at t 5 4 473 s:

Du 5 uf 2 ui 5 1
2 1vi 1 vf 2 t 

5 1
2 157 rad/s 1 22 rad/s 2 14 473 s 2 5 1.8 3 105 rad

The CD player adjusts the angular speed v of the disc within this range so that information moves past the objective 
lens at a constant rate.

(B)  The maximum playing time of a standard music disc is 74 min and 33 s. How many revolutions does the disc 
make during that time?

Categorize  From part (A), the angular speed decreases as the disc plays. Let us assume it decreases steadily, with a 
constant. We can then apply the rigid object under constant angular acceleration model to the disc.

Analyze  If t 5 0 is the instant the disc begins rotating, with angular speed of 57 rad/s, the final value of the time t is 
(74 min)(60 s/min) 1 33 s 5 4 473 s. We are looking for the angular displacement Du during this time interval.

Convert this angular displacement to revolutions: Du 5 11.8 3 105 rad 2 a 1 rev
2p rad

b 5 2.8 3 104 rev

 

▸ 10.2 c o n t i n u e d

10.4 Torque
In our study of translational motion, after investigating the description of motion, 
we studied the cause of changes in motion: force. We follow the same plan here: 
What is the cause of changes in rotational motion? 
 Imagine trying to rotate a door by applying a force of magnitude F perpendic-
ular to the door surface near the hinges and then at various distances from the 
hinges. You will achieve a more rapid rate of rotation for the door by applying the 
force near the doorknob than by applying it near the hinges.
 When a force is exerted on a rigid object pivoted about an axis, the object tends 
to rotate about that axis. The tendency of a force to rotate an object about some 
axis is measured by a quantity called torque tS(Greek letter tau). Torque is a vector, 
but we will consider only its magnitude here; we will explore its vector nature in 
Chapter 11.
 Consider the wrench in Figure 10.7 that we wish to rotate around an axis that is 
perpendicular to the page and passes through the center of the bolt. The applied 

r

F sin f

 F cos f

d

O

Line of
action

f

The component F sin f 
tends to rotate the wrench 
about an axis through O.

f

F
S

rS

Figure 10.7  The force F
S

 has a 
greater rotating tendency about an 
axis through O as F increases and 
as the moment arm d increases.

S O L U T I O N

τ = r × F = rF sinφ n̂

where φ is the angle between r and F, and n̂ is the unit vector
perpendicular to r and F, as determined by the right-hand rule.



Vectors Properties and Operations

Multiplication by a vector:

The Cross Product
Let A = Ax i+ Ay j

B = Bx i+ By j,

A× B = (AxBy − AyBx)k

The output of this operation is a vector.

Equivalently,

A× B = AB sin θ n̂AB

where n̂AB is a unit vector perpendicular to A and B.

336 Chapter 11 Angular Momentum

 We now give a formal definition of the vector product. Given any two vectors 
A
S

 and B
S

, the vector product A
S

3 B
S

 is defined as a third vector C
S

, which has a  
magnitude of AB sin u, where u is the angle between A

S
 and B

S
. That is, if C

S
 is 

given by
 C

S
5 A

S
3 B

S
 (11.2)

its magnitude is
 C 5 AB sin u (11.3)

The quantity AB sin u is equal to the area of the parallelogram formed by A
S

 and 
B
S

 as shown in Figure 11.2. The direction of C
S

 is perpendicular to the plane formed 
by A

S
 and B

S
, and the best way to determine this direction is to use the right-hand 

rule illustrated in Figure 11.2. The four fingers of the right hand are pointed along 
A
S

 and then “wrapped” in the direction that would rotate A
S

 into B
S

 through the 
angle u. The direction of the upright thumb is the direction of A

S
3 B

S
5 C

S
. 

Because of the notation, A
S

3 B
S

 is often read “ A
S

 cross B
S

,” so the vector product is 
also called the cross product.
 Some properties of the vector product that follow from its definition are as 
follows:

 1. Unlike the scalar product, the vector product is not commutative. Instead, 
the order in which the two vectors are multiplied in a vector product is 
important:

 A
S

3 B
S

5 2 B
S

3 A
S

 (11.4)
  Therefore, if you change the order of the vectors in a vector product, you 

must change the sign. You can easily verify this relationship with the right-
hand rule.

 2. If A
S

 is parallel to B
S

 (u 5 0 or 1808), then A
S

3 B
S

5 0; therefore, it follows 
that A

S
3 A

S
5 0.

 3. If A
S

 is perpendicular to B
S

, then 0 AS 3 B
S 0 5 AB.

 4. The vector product obeys the distributive law:

 A
S

3 1 B
S

1 C
S 2 5 A

S
3 B

S
1 A

S
3 C

S
 (11.5)

 5. The derivative of the vector product with respect to some variable such as t is

 
d
dt

1 A
S

3 B
S 2 5

d A
S

dt
3 B

S
1 A

S
3

d B
S

dt
 (11.6)

  where it is important to preserve the multiplicative order of the terms on 
the right side in view of Equation 11.4.

 It is left as an exercise (Problem 4) to show from Equations 11.3 and 11.4 and 
from the definition of unit vectors that the cross products of the unit vectors  î,  ĵ, 
and k̂ obey the following rules:

  î 3  î 5  ĵ 3  ĵ 5 k̂ 3 k̂ 5 0 (11.7a)

  î 3  ĵ 5 2 ĵ 3  î 5 k̂ (11.7b)

  ĵ 3 k̂ 5 2k̂ 3  ĵ 5  î (11.7c)

 k̂ 3  î 5 2 î 3 k̂ 5  ĵ (11.7d)

Signs are interchangeable in cross products. For example, A
S

3 12B
S 2 5 2 A

S
3 B

S
 

and  î 3 12 ĵ 2 5 2 î 3  ĵ.
 The cross product of any two vectors A

S
 and B

S
 can be expressed in the follow-

ing determinant form:

 A
S

3 B
S

5 †  î  ĵ k̂
Ax Ay Az

Bx By Bz

† 5 `Ay Az

By Bz
`  î 1 `Az Ax

Bz Bx
`  ĵ 1 `Ax Ay

Bx By
` k̂

Properties of the X
vector product

Cross products of X
unit vectors

Pitfall Prevention 11.1
The Vector Product Is a Vector  
Remember that the result of tak-
ing a vector product between two 
vectors is a third vector. Equation 
11.3 gives only the magnitude of 
this vector.

Figure 11.1 The torque vector 
t
S lies in a direction perpendicular 
to the plane formed by the posi-
tion vector rS and the applied force 
vector F

S
. In the situation shown, 

rS and F
S

 lie in the xy plane, so the 
torque is along the z axis.

O

P

x

y

z

f

rS 

rS 

F
S

F
S

! !t
S

 

" # !

# !

u

A
S

B
S

C
S

A
S

B
S

A
S

B
S

C
S

S S

S
The direction of C is perpendicular 
to the plane formed by A and B,
and its direction is determined by 
the right-hand rule.

Figure 11.2  The vector product 
A
S

3 B
S

 is a third vector C
S

 having 
a magnitude AB sin u equal to the 
area of the parallelogram shown.



Vectors Properties and Operations

(See page 336 in Serway and Jewett.)

The Cross Product - with k components
In general: A = Ax i+ Ay j+ Azk

B = Bx i+ By j+ Bzk,

A× B = (AyBz − AzBy )i+ (AzBx − AxBz)j+ (AxBy − AyBx)k

How do we usually implement this formula?
Via the determinant of a matrix:

A× B =

∣∣∣∣∣∣
i j k
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣



Vector Operations: Cross Product Practice

Try it yourself! Find A× B when:

A = 1i+ 2j+ 3k ; B = −1i− 4j+ 5k

Now find B× A...
First A× B:

A× B = 22i− 8j− 2k

B× A = −22i+ 8j+ 2k
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Vectors Properties and Operations

(See page 336 in Serway and Jewett.)

The Cross Product - with k components

A× B = AB sin θ n̂AB

Properties

• The cross product is not commutative: A× B 6= B× A.
In fact, it is anticommutative because A× B = −(B× A).

• If A ‖ B, A× B = 0.

• If A ⊥ B, A× B = AB n̂AB.
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300 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

(C) What is the angular acceleration of the compact disc over the 4 473-s time interval?

Categorize  We again model the disc as a rigid object under constant angular acceleration. In this case, Equation 10.6 gives 
the value of the constant angular acceleration. Another approach is to use Equation 10.4 to find the average angular 
acceleration. In this case, we are not assuming the angular acceleration is constant. The answer is the same from both 
equations; only the interpretation of the result is different.

S O L U T I O N

Analyze  Use Equation 10.6 to find the angular 
acceleration: a 5

vf 2 vi

t
5

22 rad/s 2 57 rad/s
4 473 s

5 27.6 3 1023 rad/s2

Finalize  The disc experiences a very gradual decrease in its rotation rate, as expected from the long time interval 
required for the angular speed to change from the initial value to the final value. In reality, the angular acceleration of 
the disc is not constant. Problem 90 allows you to explore the actual time behavior of the angular acceleration.

Do the same for the outer track: vf 5
v
rf

5
1.3 m/s

5.8 3 1022 m
5 22 rad/s 5 2.1 3 102 rev/min

Use Equation 10.9 to find the angular displacement of 
the disc at t 5 4 473 s:

Du 5 uf 2 ui 5 1
2 1vi 1 vf 2 t 

5 1
2 157 rad/s 1 22 rad/s 2 14 473 s 2 5 1.8 3 105 rad

The CD player adjusts the angular speed v of the disc within this range so that information moves past the objective 
lens at a constant rate.

(B)  The maximum playing time of a standard music disc is 74 min and 33 s. How many revolutions does the disc 
make during that time?

Categorize  From part (A), the angular speed decreases as the disc plays. Let us assume it decreases steadily, with a 
constant. We can then apply the rigid object under constant angular acceleration model to the disc.

Analyze  If t 5 0 is the instant the disc begins rotating, with angular speed of 57 rad/s, the final value of the time t is 
(74 min)(60 s/min) 1 33 s 5 4 473 s. We are looking for the angular displacement Du during this time interval.

Convert this angular displacement to revolutions: Du 5 11.8 3 105 rad 2 a 1 rev
2p rad

b 5 2.8 3 104 rev

 

▸ 10.2 c o n t i n u e d

10.4 Torque
In our study of translational motion, after investigating the description of motion, 
we studied the cause of changes in motion: force. We follow the same plan here: 
What is the cause of changes in rotational motion? 
 Imagine trying to rotate a door by applying a force of magnitude F perpendic-
ular to the door surface near the hinges and then at various distances from the 
hinges. You will achieve a more rapid rate of rotation for the door by applying the 
force near the doorknob than by applying it near the hinges.
 When a force is exerted on a rigid object pivoted about an axis, the object tends 
to rotate about that axis. The tendency of a force to rotate an object about some 
axis is measured by a quantity called torque tS(Greek letter tau). Torque is a vector, 
but we will consider only its magnitude here; we will explore its vector nature in 
Chapter 11.
 Consider the wrench in Figure 10.7 that we wish to rotate around an axis that is 
perpendicular to the page and passes through the center of the bolt. The applied 

r

F sin f

 F cos f

d

O

Line of
action

f

The component F sin f 
tends to rotate the wrench 
about an axis through O.

f

F
S

rS

Figure 10.7  The force F
S

 has a 
greater rotating tendency about an 
axis through O as F increases and 
as the moment arm d increases.

S O L U T I O N

τ = r × F = rF sinφ n̂

where φ is the angle between r and F, and n̂ is the unit vector
perpendicular to r and F, as determined by the right-hand rule.



Torque

Diagram also illustrates two points of view about torque:

300 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

(C) What is the angular acceleration of the compact disc over the 4 473-s time interval?

Categorize  We again model the disc as a rigid object under constant angular acceleration. In this case, Equation 10.6 gives 
the value of the constant angular acceleration. Another approach is to use Equation 10.4 to find the average angular 
acceleration. In this case, we are not assuming the angular acceleration is constant. The answer is the same from both 
equations; only the interpretation of the result is different.
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Finalize  The disc experiences a very gradual decrease in its rotation rate, as expected from the long time interval 
required for the angular speed to change from the initial value to the final value. In reality, the angular acceleration of 
the disc is not constant. Problem 90 allows you to explore the actual time behavior of the angular acceleration.

Do the same for the outer track: vf 5
v
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Categorize  From part (A), the angular speed decreases as the disc plays. Let us assume it decreases steadily, with a 
constant. We can then apply the rigid object under constant angular acceleration model to the disc.

Analyze  If t 5 0 is the instant the disc begins rotating, with angular speed of 57 rad/s, the final value of the time t is 
(74 min)(60 s/min) 1 33 s 5 4 473 s. We are looking for the angular displacement Du during this time interval.

Convert this angular displacement to revolutions: Du 5 11.8 3 105 rad 2 a 1 rev
2p rad

b 5 2.8 3 104 rev
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10.4 Torque
In our study of translational motion, after investigating the description of motion, 
we studied the cause of changes in motion: force. We follow the same plan here: 
What is the cause of changes in rotational motion? 
 Imagine trying to rotate a door by applying a force of magnitude F perpendic-
ular to the door surface near the hinges and then at various distances from the 
hinges. You will achieve a more rapid rate of rotation for the door by applying the 
force near the doorknob than by applying it near the hinges.
 When a force is exerted on a rigid object pivoted about an axis, the object tends 
to rotate about that axis. The tendency of a force to rotate an object about some 
axis is measured by a quantity called torque tS(Greek letter tau). Torque is a vector, 
but we will consider only its magnitude here; we will explore its vector nature in 
Chapter 11.
 Consider the wrench in Figure 10.7 that we wish to rotate around an axis that is 
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Figure 10.7  The force F
S

 has a 
greater rotating tendency about an 
axis through O as F increases and 
as the moment arm d increases.

S O L U T I O N

τ = r(F sinφ) n̂

or
τ = F (r sinφ) n̂

In the diagram, the distance d = r sinφ and is called the “moment
arm” or “lever arm” of the torque.



Torque
Torque:

268 Chapter 9 Linear Momentum and Collisions

is applied at the center of mass, the system moves in the direction of the force with-
out rotating (see Fig. 9.13c). The center of mass of an object can be located with 
this procedure.
 The center of mass of the pair of particles described in Figure 9.14 is located on 
the x axis and lies somewhere between the particles. Its x coordinate is given by

 xCM ;
m1x1 1 m2x2

m1 1 m2
 (9.28)

For example, if x1 5 0, x2 5 d, and m2 5 2m1, we find that xCM 5 2
3d. That is, the 

center of mass lies closer to the more massive particle. If the two masses are equal, 
the center of mass lies midway between the particles.
 We can extend this concept to a system of many particles with masses mi in three 
dimensions. The x coordinate of the center of mass of n particles is defined to be

 xCM ;
m1x1 1 m2x2 1 m3x3 1 c1 mnxn

m1 1 m2 1 m3 1 c1 mn
5

a
i

mixi

a
i

mi

5
a

i
mixi

M
5

1
M a

i
mixi 

  (9.29)

where xi is the x coordinate of the ith particle and the total mass is M ; oi mi where 
the sum runs over all n particles. The y and z coordinates of the center of mass are 
similarly defined by the equations

 yCM ;
1
M a

i
miyi and zCM ;

1
M a

i
mizi (9.30)

 The center of mass can be located in three dimensions by its position vector rSCM. 
The components of this vector are xCM, yCM, and zCM, defined in Equations 9.29 and 
9.30. Therefore,

 rSCM 5 xCM î 1 yCM  ĵ 1 zCM k̂ 5
1
M a

i
mixi î 1

1
M a

i
miyi  ĵ 1

1
M a

i
mizi k̂

 rSCM ;
1
M a

i
mi r

S
i (9.31)

where rSi is the position vector of the ith particle, defined by

rSi ; xi î 1 yi  ĵ 1 zi k̂

 Although locating the center of mass for an extended, continuous object is some-
what more cumbersome than locating the center of mass of a small number of par-
ticles, the basic ideas we have discussed still apply. Think of an extended object as a 
system containing a large number of small mass elements such as the cube in Figure 
9.15. Because the separation between elements is very small, the object can be con-
sidered to have a continuous mass distribution. By dividing the object into elements 
of mass Dmi with coordinates xi, yi, zi, we see that the x coordinate of the center of 
mass is approximately

xCM <
1
M

 a
i

xi Dmi

with similar expressions for yCM and zCM. If we let the number of elements n 
approach infinity, the size of each element approaches zero and xCM is given pre-
cisely. In this limit, we replace the sum by an integral and Dmi by the differential 
element dm:

 xCM 5 lim
Dmi S 0

 
1
M

 a
i

xi Dmi 5
1
M

 3  x dm (9.32)

Likewise, for yCM and zCM we obtain

 yCM 5
1
M

 3  y dm and zCM 5
1
M

 3  z dm (9.33)
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above the center of mass. 

The system rotates counter-
clockwise when a force is applied 
below the center of mass. 

The system moves in the 
direction of the force without 
rotating when a force is applied 
at the center of mass.

Figure 9.13 A force is applied 
to a system of two particles of 
unequal mass connected by a 
light, rigid rod.

Figure 9.14 The center of mass 
of two particles of unequal mass 
on the x axis is located at xCM, a 
point between the particles, closer 
to the one having the larger mass.

y

m1

x1

x 2

CM

m 2

x

x CM

Torque:

268 Chapter 9 Linear Momentum and Collisions

is applied at the center of mass, the system moves in the direction of the force with-
out rotating (see Fig. 9.13c). The center of mass of an object can be located with 
this procedure.
 The center of mass of the pair of particles described in Figure 9.14 is located on 
the x axis and lies somewhere between the particles. Its x coordinate is given by

 xCM ;
m1x1 1 m2x2

m1 1 m2
 (9.28)

For example, if x1 5 0, x2 5 d, and m2 5 2m1, we find that xCM 5 2
3d. That is, the 

center of mass lies closer to the more massive particle. If the two masses are equal, 
the center of mass lies midway between the particles.
 We can extend this concept to a system of many particles with masses mi in three 
dimensions. The x coordinate of the center of mass of n particles is defined to be

 xCM ;
m1x1 1 m2x2 1 m3x3 1 c1 mnxn

m1 1 m2 1 m3 1 c1 mn
5

a
i

mixi

a
i

mi

5
a

i
mixi

M
5

1
M a

i
mixi 

  (9.29)

where xi is the x coordinate of the ith particle and the total mass is M ; oi mi where 
the sum runs over all n particles. The y and z coordinates of the center of mass are 
similarly defined by the equations

 yCM ;
1
M a

i
miyi and zCM ;

1
M a

i
mizi (9.30)

 The center of mass can be located in three dimensions by its position vector rSCM. 
The components of this vector are xCM, yCM, and zCM, defined in Equations 9.29 and 
9.30. Therefore,

 rSCM 5 xCM î 1 yCM  ĵ 1 zCM k̂ 5
1
M a

i
mixi î 1

1
M a

i
miyi  ĵ 1

1
M a

i
mizi k̂

 rSCM ;
1
M a

i
mi r

S
i (9.31)

where rSi is the position vector of the ith particle, defined by

rSi ; xi î 1 yi  ĵ 1 zi k̂

 Although locating the center of mass for an extended, continuous object is some-
what more cumbersome than locating the center of mass of a small number of par-
ticles, the basic ideas we have discussed still apply. Think of an extended object as a 
system containing a large number of small mass elements such as the cube in Figure 
9.15. Because the separation between elements is very small, the object can be con-
sidered to have a continuous mass distribution. By dividing the object into elements 
of mass Dmi with coordinates xi, yi, zi, we see that the x coordinate of the center of 
mass is approximately

xCM <
1
M

 a
i

xi Dmi

with similar expressions for yCM and zCM. If we let the number of elements n 
approach infinity, the size of each element approaches zero and xCM is given pre-
cisely. In this limit, we replace the sum by an integral and Dmi by the differential 
element dm:

 xCM 5 lim
Dmi S 0

 
1
M

 a
i

xi Dmi 5
1
M

 3  x dm (9.32)

Likewise, for yCM and zCM we obtain

 yCM 5
1
M

 3  y dm and zCM 5
1
M

 3  z dm (9.33)
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at the center of mass.

Figure 9.13 A force is applied 
to a system of two particles of 
unequal mass connected by a 
light, rigid rod.

Figure 9.14 The center of mass 
of two particles of unequal mass 
on the x axis is located at xCM, a 
point between the particles, closer 
to the one having the larger mass.
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is applied at the center of mass, the system moves in the direction of the force with-
out rotating (see Fig. 9.13c). The center of mass of an object can be located with 
this procedure.
 The center of mass of the pair of particles described in Figure 9.14 is located on 
the x axis and lies somewhere between the particles. Its x coordinate is given by

 xCM ;
m1x1 1 m2x2

m1 1 m2
 (9.28)

For example, if x1 5 0, x2 5 d, and m2 5 2m1, we find that xCM 5 2
3d. That is, the 

center of mass lies closer to the more massive particle. If the two masses are equal, 
the center of mass lies midway between the particles.
 We can extend this concept to a system of many particles with masses mi in three 
dimensions. The x coordinate of the center of mass of n particles is defined to be

 xCM ;
m1x1 1 m2x2 1 m3x3 1 c1 mnxn

m1 1 m2 1 m3 1 c1 mn
5

a
i

mixi

a
i

mi

5
a

i
mixi

M
5

1
M a

i
mixi 

  (9.29)

where xi is the x coordinate of the ith particle and the total mass is M ; oi mi where 
the sum runs over all n particles. The y and z coordinates of the center of mass are 
similarly defined by the equations

 yCM ;
1
M a

i
miyi and zCM ;

1
M a

i
mizi (9.30)

 The center of mass can be located in three dimensions by its position vector rSCM. 
The components of this vector are xCM, yCM, and zCM, defined in Equations 9.29 and 
9.30. Therefore,

 rSCM 5 xCM î 1 yCM  ĵ 1 zCM k̂ 5
1
M a

i
mixi î 1

1
M a

i
miyi  ĵ 1

1
M a

i
mizi k̂

 rSCM ;
1
M a

i
mi r

S
i (9.31)

where rSi is the position vector of the ith particle, defined by

rSi ; xi î 1 yi  ĵ 1 zi k̂

 Although locating the center of mass for an extended, continuous object is some-
what more cumbersome than locating the center of mass of a small number of par-
ticles, the basic ideas we have discussed still apply. Think of an extended object as a 
system containing a large number of small mass elements such as the cube in Figure 
9.15. Because the separation between elements is very small, the object can be con-
sidered to have a continuous mass distribution. By dividing the object into elements 
of mass Dmi with coordinates xi, yi, zi, we see that the x coordinate of the center of 
mass is approximately

xCM <
1
M

 a
i

xi Dmi

with similar expressions for yCM and zCM. If we let the number of elements n 
approach infinity, the size of each element approaches zero and xCM is given pre-
cisely. In this limit, we replace the sum by an integral and Dmi by the differential 
element dm:

 xCM 5 lim
Dmi S 0

 
1
M

 a
i

xi Dmi 5
1
M

 3  x dm (9.32)

Likewise, for yCM and zCM we obtain

 yCM 5
1
M

 3  y dm and zCM 5
1
M

 3  z dm (9.33)
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at the center of mass.

Figure 9.13 A force is applied 
to a system of two particles of 
unequal mass connected by a 
light, rigid rod.

Figure 9.14 The center of mass 
of two particles of unequal mass 
on the x axis is located at xCM, a 
point between the particles, closer 
to the one having the larger mass.
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Question

A torque is supplied by applying a force at point A. To produce the
same torque, the force applied at point B must be:

(A) greater

(B) less

(C) the same
1Image from Harbor Freight Tools, www.harborfreight.com

B

A



Question

A torque is supplied by applying a force at point A. To produce the
same torque, the force applied at point B must be:

(A) greater←
(B) less

(C) the same
1Image from Harbor Freight Tools, www.harborfreight.com
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Summary

• relation of angular to translational quantities

• rotational kinematics

• torque (?)

2nd Test tomorrow.

Homework
• set yesterday: Ch 10 Probs: 2, 7, 9, 13, 19, 29 (won’t be on

2nd test)


