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Last time

• units

• dimensional analysis

• unit conversions

• scientific notation



Overview

• scalars and vectors

• kinematic quantites

• interpreting graphs of kinematic quantities



Unit Conversion Examples

It may be necessary to change units several times to get to the
unit you need.

What is 60.0 mi/hr in m/s? (mi is miles, hr is hours)

1 mi = 1.609 km
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Kinematics in 1-dimension

We begin by studying motion along a single line.

This will encompass situations like

• cars traveling along straight roads

• objects falling straight down under gravity



Vectors and Scalars

scalar

A scalar quantity indicates an amount. It is represented by a real
number. (Assuming it is a physical quantity.)

vector

A vector quantity indicates both an amount (magnitude) and a
direction. It is represented by a real number for each possible
direction, or a real number and (an) angle(s).
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Notation for Vectors

In the lecture notes vector variables are represented using bold
variables.

Example:
k is a scalar
x is a vector

In the textbook and in writing, vectors are often represented with
an over-arrow: ~x

The magnitude of a vector, x is written:

|x| = x



Examples of Scalars and Vectors

Some physical quantities that are scalars are

• temperature

• mass

• pressure

Some physical quantities that are vectors are

• velocity

• force



Distance vs Displacement

How far are two points from one another?

Distance is the length of a path that connects the two points.

Displacement is the length together with the direction of a
straight line that connects the starting position to the final
position.

Displacement is a vector.



Position

Quantities

position x

displacement ∆x = xf − xi

distance d

Position and displacement are vector quantities.

Position and displacement can be positive or negative
numbers.

Distance is a scalar. It is always a positive number.
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Position

Quantities

position x

displacement ∆x = xf − xi

distance d

Position and displacement are vector quantities.

Position and displacement can be positive or negative
numbers.

Distance is a scalar. It is always a positive number.

SI units: meters, m



Position, Displacement, Distance Example

The starting position of the car is xi = 30 m i, the final position is
xf = 50 m i.

The distance the car travels is d = 50 m − 30 m = 20 m.

22 Chapter 2 Motion in One Dimension

obtain reasonably accurate data about its orbit. This approximation is justified because the 
radius of the Earth’s orbit is large compared with the dimensions of the Earth and the Sun. 
As an example on a much smaller scale, it is possible to explain the pressure exerted by a gas 
on the walls of a container by treating the gas molecules as particles, without regard for the 
internal structure of the molecules.

2.1 Position, Velocity, and Speed
A particle’s position x  is the location of the particle with respect to a chosen ref-
erence point that we can consider to be the origin of a coordinate system. The 
motion of a particle is completely known if the particle’s position in space is known 
at all times.
 Consider a car moving back and forth along the x axis as in Figure 2.1a. When 
we begin collecting position data, the car is 30 m to the right of the reference posi-
tion x 5 0. We will use the particle model by identifying some point on the car, 
perhaps the front door handle, as a particle representing the entire car.
 We start our clock, and once every 10 s we note the car’s position. As you can see 
from Table 2.1, the car moves to the right (which we have defined as the positive 
direction) during the first 10 s of motion, from position ! to position ". After ", 
the position values begin to decrease, suggesting the car is backing up from position 
" through position #. In fact, at $, 30 s after we start measuring, the car is at the 
origin of coordinates (see Fig. 2.1a). It continues moving to the left and is more than 
50 m to the left of x 5 0 when we stop recording information after our sixth data 
point. A graphical representation of this information is presented in Figure 2.1b. 
Such a plot is called a position–time graph.
 Notice the alternative representations of information that we have used for the 
motion of the car. Figure 2.1a is a pictorial representation, whereas Figure 2.1b is a 
graphical representation. Table 2.1 is a tabular representation of the same information. 
Using an alternative representation is often an excellent strategy for understanding 
the situation in a given problem. The ultimate goal in many problems is a math-
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Figure 2.1 A car moves back and forth along a straight line. Because we are interested only in the 
car’s translational motion, we can model it as a particle. Several representations of the information 
about the motion of the car can be used. Table 2.1 is a tabular representation of the information.  
(a) A pictorial representation of the motion of the car. (b) A graphical representation (position–time 
graph) of the motion of the car.

The displacement of the car is ∆x = xf − xi = 20 m i.

−−−−−→
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Position, Displacement, Distance Example
The starting position of the car is xi = 30 m i, the final position is
xf = −60 m i.

The distance the car travels is d = 130 m.
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Figure 2.1 A car moves back and forth along a straight line. Because we are interested only in the 
car’s translational motion, we can model it as a particle. Several representations of the information 
about the motion of the car can be used. Table 2.1 is a tabular representation of the information.  
(a) A pictorial representation of the motion of the car. (b) A graphical representation (position–time 
graph) of the motion of the car.

The displacement of the car is

∆x = xf − xi

= (−60i) − 30i m

= −90 m i

←−−−−−−−−−−−−−−−−−−−−−−−−−
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Position vs. Time Graphs
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Figure 2.1 A car moves back and forth along a straight line. Because we are interested only in the 
car’s translational motion, we can model it as a particle. Several representations of the information 
about the motion of the car can be used. Table 2.1 is a tabular representation of the information.  
(a) A pictorial representation of the motion of the car. (b) A graphical representation (position–time 
graph) of the motion of the car.
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Using an alternative representation is often an excellent strategy for understanding 
the situation in a given problem. The ultimate goal in many problems is a math-
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Figure 2.1 A car moves back and forth along a straight line. Because we are interested only in the 
car’s translational motion, we can model it as a particle. Several representations of the information 
about the motion of the car can be used. Table 2.1 is a tabular representation of the information.  
(a) A pictorial representation of the motion of the car. (b) A graphical representation (position–time 
graph) of the motion of the car.

1Figures from Serway & Jewett
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obtain reasonably accurate data about its orbit. This approximation is justified because the 
radius of the Earth’s orbit is large compared with the dimensions of the Earth and the Sun. 
As an example on a much smaller scale, it is possible to explain the pressure exerted by a gas 
on the walls of a container by treating the gas molecules as particles, without regard for the 
internal structure of the molecules.

2.1 Position, Velocity, and Speed
A particle’s position x  is the location of the particle with respect to a chosen ref-
erence point that we can consider to be the origin of a coordinate system. The 
motion of a particle is completely known if the particle’s position in space is known 
at all times.
 Consider a car moving back and forth along the x axis as in Figure 2.1a. When 
we begin collecting position data, the car is 30 m to the right of the reference posi-
tion x 5 0. We will use the particle model by identifying some point on the car, 
perhaps the front door handle, as a particle representing the entire car.
 We start our clock, and once every 10 s we note the car’s position. As you can see 
from Table 2.1, the car moves to the right (which we have defined as the positive 
direction) during the first 10 s of motion, from position ! to position ". After ", 
the position values begin to decrease, suggesting the car is backing up from position 
" through position #. In fact, at $, 30 s after we start measuring, the car is at the 
origin of coordinates (see Fig. 2.1a). It continues moving to the left and is more than 
50 m to the left of x 5 0 when we stop recording information after our sixth data 
point. A graphical representation of this information is presented in Figure 2.1b. 
Such a plot is called a position–time graph.
 Notice the alternative representations of information that we have used for the 
motion of the car. Figure 2.1a is a pictorial representation, whereas Figure 2.1b is a 
graphical representation. Table 2.1 is a tabular representation of the same information. 
Using an alternative representation is often an excellent strategy for understanding 
the situation in a given problem. The ultimate goal in many problems is a math-
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Figure 2.1 A car moves back and forth along a straight line. Because we are interested only in the 
car’s translational motion, we can model it as a particle. Several representations of the information 
about the motion of the car can be used. Table 2.1 is a tabular representation of the information.  
(a) A pictorial representation of the motion of the car. (b) A graphical representation (position–time 
graph) of the motion of the car.

1Figures from Serway & Jewett



Speed

We need a measure how fast objects move.

speed =
distance

time

If an object goes 100 m in 1 second, its speed is 100 m/s.

Speed can change with time.

SI units: meters per second, m/s
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Velocity

Driving East at 65 mph is not the same as driving West at 65 mph.

There is a quantity that combines the speed and the direction of
motion.

This is the velocity.

Velocity is a vector quantity. Speed is a scalar quantity.

If a car drives in a circle, without speeding up or slowing down, is
its speed constant?

Is its velocity constant?
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Velocity

Quantities
How position changes with time.

(instantaneous) velocity v = dx
dt speed and direction

average velocity vavg = ∆x
∆t

instantaneous speed v or |v| “speedometer speed”

average speed d
∆t distance divided by time

Can velocity be negative?

Can speed be negative?

Does average speed always equal average velocity?
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Position vs. Time Graph (Revisited)
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obtain reasonably accurate data about its orbit. This approximation is justified because the 
radius of the Earth’s orbit is large compared with the dimensions of the Earth and the Sun. 
As an example on a much smaller scale, it is possible to explain the pressure exerted by a gas 
on the walls of a container by treating the gas molecules as particles, without regard for the 
internal structure of the molecules.

2.1 Position, Velocity, and Speed
A particle’s position x  is the location of the particle with respect to a chosen ref-
erence point that we can consider to be the origin of a coordinate system. The 
motion of a particle is completely known if the particle’s position in space is known 
at all times.
 Consider a car moving back and forth along the x axis as in Figure 2.1a. When 
we begin collecting position data, the car is 30 m to the right of the reference posi-
tion x 5 0. We will use the particle model by identifying some point on the car, 
perhaps the front door handle, as a particle representing the entire car.
 We start our clock, and once every 10 s we note the car’s position. As you can see 
from Table 2.1, the car moves to the right (which we have defined as the positive 
direction) during the first 10 s of motion, from position ! to position ". After ", 
the position values begin to decrease, suggesting the car is backing up from position 
" through position #. In fact, at $, 30 s after we start measuring, the car is at the 
origin of coordinates (see Fig. 2.1a). It continues moving to the left and is more than 
50 m to the left of x 5 0 when we stop recording information after our sixth data 
point. A graphical representation of this information is presented in Figure 2.1b. 
Such a plot is called a position–time graph.
 Notice the alternative representations of information that we have used for the 
motion of the car. Figure 2.1a is a pictorial representation, whereas Figure 2.1b is a 
graphical representation. Table 2.1 is a tabular representation of the same information. 
Using an alternative representation is often an excellent strategy for understanding 
the situation in a given problem. The ultimate goal in many problems is a math-
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Figure 2.1 A car moves back and forth along a straight line. Because we are interested only in the 
car’s translational motion, we can model it as a particle. Several representations of the information 
about the motion of the car can be used. Table 2.1 is a tabular representation of the information.  
(a) A pictorial representation of the motion of the car. (b) A graphical representation (position–time 
graph) of the motion of the car.

The average velocity in the interval A→B is the slope of the blue
line connecting the points A and B. vavg =

∆x
∆t

1Figures from Serway & Jewett



Average Velocity, Sample Problem 2.01

You drive a beat-up pickup truck along a straight road for 8.4 km
at 70 km/h, at which point the truck runs out of gasoline and
stops. Over the next 30 min, you walk another 2.0 km farther
along the road to a gas station.

172-1 POSITION, DISPLACEMENT, AND AVERAGE VELOCITY

Calculation: Here we find

(Answer)

To find vavg graphically, first we graph the function x(t) as
shown in Fig. 2-5, where the beginning and arrival points on
the graph are the origin and the point labeled as “Station.”Your
average velocity is the slope of the straight line connecting
those points; that is, vavg is the ratio of the rise (!x " 10.4 km)
to the run (!t " 0.62 h), which gives us vavg " 16.8 km/h.

(d) Suppose that to pump the gasoline, pay for it, and walk
back to the truck takes you another 45 min. What is your
average speed from the beginning of your drive to your
return to the truck with the gasoline?

KEY IDEA

Your average speed is the ratio of the total distance you
move to the total time interval you take to make that move.

Calculation: The total distance is 8.4 km # 2.0 km # 2.0
km " 12.4 km. The total time interval is 0.12 h # 0.50 h #
0.75 h " 1.37 h.Thus, Eq. 2-3 gives us

(Answer)savg "
12.4 km
1.37 h

" 9.1 km/h.

" 16.8 km/h ! 17 km/h.

vavg "
!x
!t

"
10.4 km
0.62 h

Sample Problem 2.01 Average velocity, beat-up pickup truck

You drive a beat-up pickup truck along a straight road for
8.4 km at 70 km/h, at which point the truck runs out of gaso-
line and stops. Over the next 30 min, you walk another
2.0 km farther along the road to a gasoline station.

(a) What is your overall displacement from the beginning
of your drive to your arrival at the station?

KEY IDEA

Assume, for convenience, that you move in the positive di-
rection of an x axis, from a first position of x1 " 0 to a second
position of x2 at the station. That second position must be at 
x2 " 8.4 km # 2.0 km " 10.4 km. Then your displacement !x
along the x axis is the second position minus the first position.

Calculation: From Eq. 2-1, we have

!x " x2 $ x1 " 10.4 km $ 0 " 10.4 km. (Answer)

Thus, your overall displacement is 10.4 km in the positive
direction of the x axis.
(b) What is the time interval !t from the beginning of your
drive to your arrival at the station?

KEY IDEA

We already know the walking time interval !twlk (" 0.50 h),
but we lack the driving time interval !tdr. However, we
know that for the drive the displacement !xdr is 8.4 km and
the average velocity vavg,dr is 70 km/h. Thus, this average
velocity is the ratio of the displacement for the drive to the
time interval for the drive.

Calculations: We first write

Rearranging and substituting data then give us

So,
(Answer)

(c) What is your average velocity vavg from the beginning of
your drive to your arrival at the station? Find it both numer-
ically and graphically.

KEY IDEA

From Eq. 2-2 we know that vavg for the entire trip is the ratio
of the displacement of 10.4 km for the entire trip to the time
interval of 0.62 h for the entire trip.

" 0.12 h # 0.50 h " 0.62 h. 
!t " !tdr # !twlk

!tdr "
!xdr

vavg,dr
"

8.4 km
70 km/h

" 0.12 h.

vavg,dr "
!xdr

!tdr
.

Additional examples, video, and practice available at WileyPLUS

Figure 2-5 The lines marked “Driving” and “Walking” are the
position–time plots for the driving and walking stages. (The plot
for the walking stage assumes a constant rate of walking.) The
slope of the straight line joining the origin and the point labeled
“Station” is the average velocity for the trip, from the beginning
to the station.
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Instantaneous Velocity and Position-Time Graphs
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Conceptual Example 2.2   The Velocity of Different Objects

Consider the following one-dimensional motions: (A) a ball thrown directly upward rises to a highest point and falls 
back into the thrower’s hand; (B) a race car starts from rest and speeds up to 100 m/s; and (C) a spacecraft drifts 
through space at constant velocity. Are there any points in the motion of these objects at which the instantaneous 
velocity has the same value as the average velocity over the entire motion? If so, identify the point(s).

represents the velocity of the car at point !. What we have done is determine the 
instantaneous velocity at that moment. In other words, the instantaneous velocity vx 
equals the limiting value of the ratio Dx/Dt as Dt approaches zero:1

 vx ; lim
Dt S 0

 Dx
Dt

 (2.4)

In calculus notation, this limit is called the derivative of x with respect to t, written 
dx/dt:

 vx ; lim
Dt S 0

 Dx
Dt

5
dx
dt

 (2.5)

The instantaneous velocity can be positive, negative, or zero. When the slope of the 
position–time graph is positive, such as at any time during the first 10 s in Figure 2.3, 
vx is positive and the car is moving toward larger values of x. After point ", vx is nega-
tive because the slope is negative and the car is moving toward smaller values of x. 
At point ", the slope and the instantaneous velocity are zero and the car is momen-
tarily at rest.
 From here on, we use the word velocity to designate instantaneous velocity. When 
we are interested in average velocity, we shall always use the adjective average.
 The instantaneous speed of a particle is defined as the magnitude of its instan-
taneous velocity. As with average speed, instantaneous speed has no direction asso-
ciated with it. For example, if one particle has an instantaneous velocity of 125 m/s 
along a given line and another particle has an instantaneous velocity of 225 m/s 
along the same line, both have a speed2 of 25 m/s.

Q uick Quiz 2.2 Are members of the highway patrol more interested in (a) your 
average speed or (b) your instantaneous speed as you drive?

Instantaneous velocity X

x (m)

t (s)
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Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1. (b) An enlargement of the 
upper-left-hand corner of the graph.

1Notice that the displacement Dx also approaches zero as Dt approaches zero, so the ratio looks like 0/0. While this 
ratio may appear to be difficult to evaluate, the ratio does have a specific value. As Dx and Dt become smaller and 
smaller, the ratio Dx/Dt approaches a value equal to the slope of the line tangent to the x -versus-t curve.
2As with velocity, we drop the adjective for instantaneous speed. Speed means “instantaneous speed.”

Pitfall Prevention 2.3
Instantaneous Speed and Instan-
taneous Velocity In Pitfall Pre-
vention 2.1, we argued that the 
magnitude of the average velocity 
is not the average speed. The mag-
nitude of the instantaneous veloc-
ity, however, is the instantaneous 
speed. In an infinitesimal time 
interval, the magnitude of the dis-
placement is equal to the distance 
traveled by the particle.

Pitfall Prevention 2.2
Slopes of Graphs In any graph of 
physical data, the slope represents 
the ratio of the change in the 
quantity represented on the verti-
cal axis to the change in the quan-
tity represented on the horizontal 
axis. Remember that a slope has 
units (unless both axes have the 
same units). The units of slope in 
Figures 2.1b and 2.3 are meters 
per second, the units of velocity.

v = lim
∆t→0

x(t + ∆t) − x(t)

t + ∆t − t
= lim

∆t→0

∆x
∆t

=
dx

dt



Summary

• kinematic quantities

• interpreting graphs of kinematic quantities

Quiz Start of class tomorrow (Thursday, Sept 27).

Homework
• Ch 2 Questions: 3; Problems: 1, 3, 7, 13

• Graphs: look at and understand figure 2-6, page 19.


