Mechanics
 Kinematics in 1 Dimension

Lana Sheridan
De Anza College

Sept 26, 2018

Last time

- units
- dimensional analysis
- unit conversions
- scientific notation

Overview

- scalars and vectors
- kinematic quantites
- interpreting graphs of kinematic quantities

Unit Conversion Examples

It may be necessary to change units several times to get to the unit you need.

What is $60.0 \mathrm{mi} / \mathrm{hr}$ in m / s ? (mi is miles, hr is hours)

Unit Conversion Examples

It may be necessary to change units several times to get to the unit you need.

What is $60.0 \mathrm{mi} / \mathrm{hr}$ in m / s ? (mi is miles, hr is hours)
$1 \mathrm{mi}=1.609 \mathrm{~km}$

Unit Conversion Examples

It may be necessary to change units several times to get to the unit you need.

What is $60.0 \mathrm{mi} / \mathrm{hr}$ in m / s ? (mi is miles, hr is hours)
$1 \mathrm{mi}=1.609 \mathrm{~km}$

$$
(60.0 \mathrm{mi} / \mathrm{hr})\left(\frac{1.609 \mathrm{~km}}{1 \mathrm{mi}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{1 \mathrm{hr}}{60 \mathrm{~min}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)
$$

Unit Conversion Examples

It may be necessary to change units several times to get to the unit you need.

What is $60.0 \mathrm{mi} / \mathrm{hr}$ in m / s ? (mi is miles, hr is hours)
$1 \mathrm{mi}=1.609 \mathrm{~km}$

$$
\left(60.0 \frac{\mathrm{pri}}{\mathrm{hr}}\right)\left(\frac{1.609 \mathrm{~km}}{1 \mathrm{hri}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{1 \mathrm{hr}}{60 \mathrm{~min}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)
$$

Unit Conversion Examples

It may be necessary to change units several times to get to the unit you need.

What is $60.0 \mathrm{mi} / \mathrm{hr}$ in m / s ? (mi is miles, hr is hours)
$1 \mathrm{mi}=1.609 \mathrm{~km}$

$$
\begin{gathered}
\left(60.0 \frac{\text { hi }}{\text { hr }}\right)\left(\frac{1.609 \mathrm{~km}}{1 \mathrm{hri}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{1 \mathrm{hr}}{60 \mathrm{~min}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right) \\
=\frac{60.0 \times 1.609 \times 1000}{60 \times 60} \mathrm{~m} / \mathrm{s} \\
=26.8 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Kinematics in 1-dimension

We begin by studying motion along a single line.

This will encompass situations like

- cars traveling along straight roads
- objects falling straight down under gravity

Vectors and Scalars

scalar

A scalar quantity indicates an amount. It is represented by a real number. (Assuming it is a physical quantity.)

Vectors and Scalars

scalar

A scalar quantity indicates an amount. It is represented by a real number. (Assuming it is a physical quantity.)

vector

A vector quantity indicates both an amount (magnitude) and a direction. It is represented by a real number for each possible direction, or a real number and (an) angle(s).

Notation for Vectors

In the lecture notes vector variables are represented using bold variables.

Example:
k is a scalar
x is a vector
In the textbook and in writing, vectors are often represented with an over-arrow: $\overrightarrow{\mathbf{x}}$

The magnitude of a vector, \mathbf{x} is written:

$$
|\mathbf{x}|=x
$$

Examples of Scalars and Vectors

Some physical quantities that are scalars are

- temperature
- mass
- pressure

Some physical quantities that are vectors are

- velocity
- force

Distance vs Displacement

How far are two points from one another?

Distance is the length of a path that connects the two points.

Displacement is the length together with the direction of a straight line that connects the starting position to the final position.

Displacement is a vector.

Position

Quantities

$$
\begin{array}{cl}
\text { position } & \mathrm{x} \\
\text { displacement } & \Delta \mathrm{x}=\mathbf{x}_{f}-\mathbf{x}_{i} \\
\text { distance } & d
\end{array}
$$

Position and displacement are vector quantities.
Position and displacement can be positive or negative numbers.

Distance is a scalar. It is always a positive number.

Position

Quantities

$$
\begin{array}{cl}
\text { position } & \mathbf{x} \\
\text { displacement } & \Delta \boldsymbol{x}=\mathbf{x}_{f}-\mathbf{x}_{i} \\
\text { distance } & d
\end{array}
$$

Position and displacement are vector quantities.
Position and displacement can be positive or negative numbers.

Distance is a scalar. It is always a positive number.

Position

Quantities

$$
\begin{array}{cl}
\text { position } & \mathbf{x} \\
\text { displacement } & \Delta \mathbf{x}=\mathbf{x}_{f}-\mathbf{x}_{i} \\
\text { distance } & d
\end{array}
$$

Position and displacement are vector quantities.
Position and displacement can be positive or negative numbers.

Distance is a scalar. It is always a positive number.

SI units: meters, m

Position, Displacement, Distance Example

The starting position of the car is $\mathbf{x}_{i}=30 \mathrm{~m} \mathbf{i}$, the final position is $\mathbf{x}_{f}=50 \mathrm{~m} \mathbf{i}$.

The distance the car travels is $d=50 \mathrm{~m}-30 \mathrm{~m}=20 \mathrm{~m}$.

The displacement of the car is $\Delta \mathbf{x}=\mathbf{x}_{f}-\mathbf{x}_{i}=20 \mathrm{~m} \mathbf{i}$.

Position, Displacement, Distance Example

The starting position of the car is $\mathbf{x}_{i}=30 \mathrm{~m} \mathbf{i}$, the final position is $\mathbf{x}_{f}=-60 \mathrm{~m} \mathbf{i}$.

The distance the car travels is $d=130 \mathrm{~m}$.

The displacement of the car is

$$
\begin{aligned}
\Delta \boldsymbol{x} & =\mathbf{x}_{f}-\mathbf{x}_{i} \\
& =(-60 \mathbf{i})-30 \mathbf{i} \mathbf{m} \\
& =-90 \mathrm{~m} \mathbf{i}
\end{aligned}
$$

Position vs. Time Graphs

${ }^{1}$ Figures from Serway \& Jewett

Position vs. Time Graphs

${ }^{1}$ Figures from Serway \& Jewett

Position vs. Time Graphs

${ }^{1}$ Figures from Serway \& Jewett

Position vs. Time Graphs

${ }^{1}$ Figures from Serway \& Jewett

Position vs. Time Graphs

${ }^{1}$ Figures from Serway \& Jewett

Position vs. Time Graphs

${ }^{1}$ Figures from Serway \& Jewett

Position vs. Time Graphs

${ }^{1}$ Figures from Serway \& Jewett

Speed

We need a measure how fast objects move.

$$
\text { speed }=\frac{\text { distance }}{\text { time }}
$$

If an object goes 100 m in 1 second, its speed is $100 \mathrm{~m} / \mathrm{s}$.
Speed can change with time.

Speed

We need a measure how fast objects move.

$$
\text { speed }=\frac{\text { distance }}{\text { time }}
$$

If an object goes 100 m in 1 second, its speed is $100 \mathrm{~m} / \mathrm{s}$.
Speed can change with time.

SI units: meters per second, m / s

Velocity

Driving East at 65 mph is not the same as driving West at 65 mph .

Velocity

Driving East at 65 mph is not the same as driving West at 65 mph .

There is a quantity that combines the speed and the direction of motion.

This is the velocity.

Velocity

Driving East at 65 mph is not the same as driving West at 65 mph .

There is a quantity that combines the speed and the direction of motion.

This is the velocity.

Velocity is a vector quantity. Speed is a scalar quantity.

Velocity

Driving East at 65 mph is not the same as driving West at 65 mph .

There is a quantity that combines the speed and the direction of motion.

This is the velocity.

Velocity is a vector quantity. Speed is a scalar quantity.

If a car drives in a circle, without speeding up or slowing down, is its speed constant?

Velocity

Driving East at 65 mph is not the same as driving West at 65 mph .

There is a quantity that combines the speed and the direction of motion.

This is the velocity.

Velocity is a vector quantity. Speed is a scalar quantity.

If a car drives in a circle, without speeding up or slowing down, is its speed constant?

Is its velocity constant?

Velocity

Quantities

How position changes with time.
(instantaneous) velocity $\mathbf{v}=\frac{\mathrm{dx}}{\mathrm{dt}}$
average velocity $\quad \mathbf{v}_{\text {avg }}=\frac{\Delta x}{\Delta t}$ instantaneous speed $\quad v$ or $|\mathbf{v}|$
average speed $\quad \frac{d}{\Delta t}$
speed and direction
"speedometer speed"
distance divided by time

Velocity

Quantities

How position changes with time.
(instantaneous) velocity $v=\frac{d x}{d t}$
average velocity $\quad \mathrm{v}_{\text {avg }}=\frac{\Delta x}{\Delta t}$
instantaneous speed $\quad v$ or $|\mathbf{v}|$
average speed $\quad \frac{d}{\Delta t}$
speed and direction
"speedometer speed"
distance divided by time

Can velocity be negative?

Velocity

Quantities

How position changes with time.
(instantaneous) velocity $v=\frac{d x}{d t}$
average velocity $\quad \mathrm{v}_{\text {avg }}=\frac{\Delta x}{\Delta t}$
instantaneous speed $\quad v$ or $|\mathbf{v}|$
average speed $\quad \frac{d}{\Delta t}$
speed and direction
"speedometer speed"
distance divided by time

Can velocity be negative?
Can speed be negative?

Velocity

Quantities

How position changes with time.
(instantaneous) velocity $\mathbf{v}=\frac{\mathrm{dx}}{\mathrm{dt}}$ speed and direction
average velocity $\quad \mathbf{v a v g}=\frac{\Delta x}{\Delta t}$ instantaneous speed $\quad v$ or $|\mathbf{v}|$
average speed $\quad \frac{d}{\Delta t}$
"speedometer speed"
distance divided by time

Can velocity be negative?
Can speed be negative?
Does average speed always equal average velocity?

Position vs. Time Graph (Revisited)

The average velocity in the interval $A \rightarrow B$ is the slope of the blue line connecting the points A and $B . v_{\mathrm{avg}}=\frac{\Delta x}{\Delta t}$
${ }^{1}$ Figures from Serway \& Jewett

Average Velocity, Sample Problem 2.01

You drive a beat-up pickup truck along a straight road for 8.4 km at $70 \mathrm{~km} / \mathrm{h}$, at which point the truck runs out of gasoline and stops. Over the next 30 min , you walk another 2.0 km farther along the road to a gas station.

${ }^{1}$ Halliday, Resnick, Walker, 10th ed, page 17.

Instantaneous Velocity and Position-Time Graphs

$$
\mathbf{v}=\lim _{\Delta t \rightarrow 0} \frac{\mathbf{x}(t+\Delta t)-\mathbf{x}(t)}{t+\Delta t-t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{x}}{\Delta t}=\frac{\mathrm{d} \mathbf{x}}{\mathrm{dt}}
$$

Summary

- kinematic quantities
- interpreting graphs of kinematic quantities

Quiz Start of class tomorrow (Thursday, Sept 27).

Homework

- Ch 2 Questions: 3; Problems: 1, 3, 7, 13
- Graphs: look at and understand figure 2-6, page 19.

